LAGRANGIAN HYDROLOGIC ANALYSIS FOR THE ARCTIC REGION: SOURCE-RECEPTOR RELATIONSHIP AND THE ROLE OF ATMOSPHERIC CIRCULATION

UniversidadeVigo

M. Vázquez¹ (martavazquez@uvigo.es), R. Nieto^{1,2}, A. Drumond¹, L. Gimeno¹

¹EPhysLab, University of Vigo, Ourense, Spain

²Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Brazil

OBJECTIVE

The proposal of this work is to realize an hydrological characterization for the Arctic region. The origin of the moisture arriving (and then precipitating) in the Arctic is a crucial question in our understanding of the Arctic hydrological cycle. In an attempt to answer this, the present study uses the Lagrangian diagnosis model FLEXPART to localize the main sources of moisture for the Arctic region, to analyze their contribution to precipitation, and to consider the implications of any changes in the transport of moisture from particular sources within the system.

I. METHOD		
FLEXPART v9.0 model	The atmosphere is	every 6 hours with a
+	divided homogeneously	1°x1° resolution on 60
meteorological reanalysis	in a large number of	vertical levels
data ERA-Interim from	particles (2 million) with	(14 model levels below
ECMWF	the same constant mass m	1500m)

The increases (e) and decreases (p) in moisture along the trajectory can be calculated through changes in (q) with the time:

$$-p = m \frac{dq}{dt} \quad \bullet e-p_{-10} \quad \bullet e-p_{-3}$$

When adding (e-p) for all the particles residing in the atmospheric column

e

II. EXPERIMENT To localize moisture sources for the system, trajectories of particles reaching the Arctic for every day on the period 1980-2012 were follow **BACKWARD** in time. From this analysis it is possible to identify those areas where particles gains moisture (e-p)>0. Considering every particle and calculating E-P for every grid area, sources of **moisture** correspond with areas showing **positive** (**E-P**) values. For located sources particle trajectories can be followed **FORWARD** in time to analyze their moisture contribution

into the system. So, we are interested in those areas where **E-P is negative** from the source (**SINK areas**, where particles lose moisture).

From both analysis is possible to investigate the variability on moisture and its contribution to Arctic hydrological

