Reconstructing the past to understand the present: inferring Amazon climate from tree ring oxygen isotopes

Jess Baker

Contributors : Manuel Gloor, Dominick Spracklen, Steve Arnold, Arnoud Boom, Julia Tindall, Santiago Clerici, Melanie Leng and Roel Brienen

@JessTreeBaker

Introduction to tree rings

- Tree rings are a natural climate record
- Annual ring formation now confirmed in 230 tropical tree species (Brienen et al., 2016)
- Various tree ring characteristics can contain information about climate

Why is $\delta^{18}O_{TR}$ a proxy for precipitation over such a large area?

TNA

But $\delta^{18}O_{TR}$ also correlates strongly with SSTs and the El Niño Southern Oscillation

Brienen et al., 2012 PNAS

Studies which found a relationship between $\delta^{18}O_{\text{TR}}$ and ENSO

Is the $\delta^{18}O_{TR}$ signal pantropical and therefore not a direct reflection of Amazon climate?

What drives interannual variation in $\delta^{18}O_{TR}$ in the Amazon?

Approach 1: Back trajectory analysis

- ROTRAJ trajectory model (Methven, 1997)
 - ECMWF ERA-Interim reanalysis wind data
- Calculate daily 10-day back trajectories for 1998-2011
- Gridded TRMM precipitation data
- Accumulate precip (∑P) along each trajectory during its time over land
- Relate $\delta^{18}O_{TR}$ to ΣP

Jess Baker

Correlations between $\delta^{18}O_{TR}$ and Σ Precip

Correlations between $\delta^{18}O_{TR}$ and Σ Precip

How does air parcel history relate to $\delta^{18}O_{TR}$?

Approach 2: Water vapour transport analysis

• Wind fields and columnintegrated water vapour flux fields from ERA-Interim

 Calculate wet season moisture transport into and out of Amazon basin 1979-2010

Tree ring δ^{18} O reflects Amazon basin moisture balance

Tree ring δ^{18} O reflects Amazon basin moisture balance

Wind and sea level pressure anomalies

 $1997/98 - High \delta^{18}O_{TR}$

2008/09– Low $\delta^{18}O_{TR}$

Northern Bolivia $\delta^{18}O_{TR}$ record: 1865-2014

New record from Ecuador

Conclusions

- Variation in $\delta^{18}O_{TR}$ is controlled by basin-intrinsic processes
- Rainout during transport over the basin is the most important factor affecting $\delta^{18}O_{\text{TR}}$
- This suggests $\delta^{18}O_{\text{TR}}$ can be reliably used to reconstruct Amazon basin precipitation
- Extending such proxy records backwards in time can help us to understand recent shifts in Amazon hydrology

Many thanks for your attention

With thanks to: John Methven Rob Newton Simon Bottrell Timothy Heaton and Sarah Hunt

Further evidence for large-scale controls on tree ring oxygen isotopes

Baker et al., 2015 Global and Planetary Change

Variation in source water $\delta^{18}O$

Trajectories 1998-2010/11

What controls interannual variation in ∑Precip?

What controls interannual variation in ∑Precip?

Two sources of interannual variation:

- 1. Climate
- 2. Trajectory pathway

What controls interannual variation in Σ Precip?

Two sources of interannual variation:

- 1. Climate
- 2. Trajectory pathway

Experiment description	Correlation between Σ Precip and $\delta^{18}O_{TR}$
Control (normal trajectories and climate)	-0.85 (<i>p</i> <0.001)
Experiment 1: remove interannual variation in climate	
Experiment 2: remove interannual variation in transport pathway	

What controls interannual variation in Σ Precip?

Two sources of interannual variation:

- 1. Climate
- 2. Trajectory pathway

Experiment description	Correlation between Σ Precip and $\delta^{18}O_{TR}$
Control (normal trajectories and climate)	-0.85 (<i>p</i> <0.001)
Experiment 1: remove interannual variation in climate	-0.83 (<i>p</i> <0.001)
Experiment 2: remove interannual variation in transport pathway	-0.75 (<i>p</i> <0.01)

Confirms the importance of within-basin processes

Wet season (Oct-Apr) and dry season (May-June) trajectories

Changes in Amazon hydrology 1990 – 2010

Gloor et al., 2013 GRL

Why study Amazon hydrology?

6 May 2009

At least 19 people die after months of heavy rains

A firefighter helps residents to salvage belongings in Teresina, northern Brazil. Photograph: Efrem Ribeiro/AFP/Getty Images EFREM RIBEIRO/AFP/Getty Images

28 February 2012

808

117,000 affected by floods in NE Brazil

Flooding of the Acre River has caused extensive damage in Cobija, Pando department, northern Bolivia, on the border with Brazil.

Approximately 117,000 people have been affected by the floods in the Brazilian state of Acre, according to the JCSsource (Sational Defense Ministry.

29 January 2014

BBC	Sign in		News	Sport	Weather	
NEW	′S					
Home UK	World	Business	Politics Te	ech Scie	ence Health	
World Afr	ica Asia	a Australia	Europe	Latin Am	erica Middle	

Bolivia floods: State of emergency declared

29 January 2014 Last updated at 01:47 GMT

Oxygen isotopes in tree rings

Model for hydrogen and oxygen isotope ratios in tree-ring cellulose

δ¹⁸O_{TR} enriched by ~27‰ relative to water present during synthesis Roden et al., 2000

EGU Leonardo 2016