

Fidelity in Global Model Simulations and Predictions of Atmospheric Rivers

Michael J. DeFlorio, Duane E. Waliser, Bin Guan, Vicky Espinoza

Jet Propulsion Laboratory/Caltech Pasadena, CA

> **8th EGU Leonardo Conference** October 2016; Ourense, Spain

ARs : Poleward Moisture Transports Influencing global Climate & Water Extremes

Over 90% of poleward moisture transport at midlatitudes is by ARs that take up only ~10% of the zonal circumference; Zhu and Newell (1998)

For discussion on connections between ARs, Tropical Moisture Exports (TMEs) and Warm Conveyor Belts (WCBs), see Cordeira (2015).

Few/No Global Studies of ARs

In the west, ARs account for ~40% of annual precipitation and most floods.

Regions of Concentrated AR Research Isolated impact studies in a few other regions

Manually identified ARs for 2 year YOTC period; Waliser et al. (2012)

Global AR Detection

Guan & Waliser 2015

Based on Integrated Vapor Transport (IVT)

Intensity threshold:

IVT > max(85th percentile, 100 kg m-1 s-1)

Geometry threshold: Length > 2000 km, Length/Width > 2

Global AR Detection

AR Date, Transports, Shape, Axis, Landfall Location, Etc.

Over ~90% agreement in detected AR landfall dates compared to 3 independent studies in western US, Britain, and East Antarctica (Neiman et al. 2008; Lavers et al. 2011; Gorodetskaya et al. 2014)

Applications

- Global characterization
- GCM evaluation
- Forecast assessment
- Climate change

Based on ERA-Interim 6-hourly IVT

Guan and Waliser (2015)

Global AR Frequency, IVT & Landfalls

Jet Propulsion Laboratory

Global Climate Variability & ARs

Also for AO & MJO

Guan and Waliser (2015)

El Nino Southern Oscillation (ENSO)

Global AR Prediction Skill

DeFlorio, Waliser, Guan et al. (2016, In Prep)

S2S Project Hindcasts - ECMWF (1996-2014) Observations - ERA-Interim

- Global detection algorithm applied to observations and each ensemble member.
- Count fraction of number of "hits" vs leadtime, etc.

Global AR Prediction Skill

Seasonal Variability

Sensitivity To Distance Threshold

DeFlorio, Waliser, Guan et al. (2016, In Prep)

Global AR Prediction Skill

Dependence of prediction skill on season, lead time and geography

- Solid lines = 1000km threshold
- Dashed lines = 500km threshold

DeFlorio, Waliser, Guan et al. (2016, In Prep)

AR prediction skill, N. Pac. (140E–230E, 30N–60N)

AR prediction skill, S. Pac. (140E-230E, 30S-60S)

Climate Change & ARs

Frequency & Transports

Example Result for GFDL CM3 GCM

North Pacific Ocean

Historical:	~10	% AR Days
RCP4.5:	~ 14	% AR Days
RCP8.5:	~ 16	% AR Days

Southern Ocean

Historical:	~10 % AR Days
RCP4.5:	~15 % AR Days
RCP8.5:	~19 % AR Days

Espinoza, Waliser, Guan, Lavers (2016, In Prep)

500

Climate Change & ARs

Espinoza, Waliser, Guan, Lavers (2016, In Prep)

Difference with 2nd Observation Reference; MERRA-2

Observed Frequency; ERA-Interim

Jet Propulsion Laboratory California Institute of Technology

Modeled – Observed

20-year simulations from 24

global climate/weather models

10.8

9.6

8.4

7.2

4.8

3.6

2.4

1.2

1.5

.5

- Broad-scale distribution of AR frequency reasonably represented in ensemble mean
- Biases are in general within reanalysis uncertainty, except in Southeastern Pacific

GEWEX / YOTC / MJO TF Multi-Model Experiment

Jet Propulsion Laboratory California Institute of Technology

- Significant variation in model fidelity in biases and spatial patterns of AR frequency
- Largest errors tend to occur in models with coarsest resolutions, and some coupled models
- Experiment's model output allows interrogation of AR processes -> Future Work

AR Widths and Lengths

- AR geometry reasonably represented in ensemble mean (only slightly wider/longer than reference)
- Large biases in coarsest-resolution models: too many wide ARs / too few narrow ARs

Portrait Diagram

Guan and Waliser (2016, In Prep)

Summary

- Atmospheric Rivers are a global phenomena that shape the Earth's climate, water and energy cycles, as well as account for regional weather and water extremes.
- We've developed a detection algorithm that can be *consistently* used on global "observations" (i.e. re-analyses), climate simulations and forecast models.
- Using this detection algorithm, we are:
 - Examining climate variation of ARs (e.g. ENSO, PNA).
 - Evaluating AR model performance and identify weaknesses to guide model improvement.
 - Quantifying AR forecast skill in a suite of operational S2S/weather prediction models.
 - \circ Characterizing projected 21ST century changes in ARs.

Extra Slides

Comparison to CalWater Dropsonde Measurements

IVT Histogram Based On 2140 NE Pacific ARs 124-164W, 23-43N; Jan 15-Mar 25

17 AR Event Transects 450 +/- 200 kg/m/s Min 130; Max 810

Ralph et al. (2016)

AR Landfalls Fraction of Annual Precipitation

Zonal and Meridional IVT Strength

- AR zonal & meridional IVT well represented in ensemble mean
- Notable biases in coarsest-resolution models, but not as strong as in AR geometry

Global Map of AR Frequency and IVT

