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Water cycle ~ radiation and convection

2

in numerous studies published over the past decades (e.g.,

Hartmann and Short 1980; Hartmann et al. 1986; Ramana-
than et al. 1989; Gutowski et al. 1991; Ohmura and Gilgen

1993; Pinker et al. 1995; Li et al. 1997; Gleckler and Weare

1997; Kiehl and Trenberth 1997; Wild et al. 1998; Gupta
et al. 1999; Hatzianastassiou and Vardavas 1999; Potter and

Cess 2004; Raschke and Ohmura 2005; Trenberth et al.

2009; Trager-Chatterjee et al. 2010; Ohmura 2012; Qian
et al. 2012; Wild 2012; Stephens et al. 2012a, b). This

becomes also evident when comparing different schematic
diagrams of the global energy balance published in text

books or in the peer-reviewed literature, which often vary

greatly in the numbers given therein representing the mag-
nitudes of these energy flows in terms of global means (e.g.,

Kiehl and Trenberth 1997; Trenberth et al. 2009; Wild et al.

1998; Raschke and Ohmura 2005; Wild 2012; Stephens et al.
2012b). A representation of such an energy balance diagram

is given in Fig. 1 and will be discussed in more detail in this

study.
Knowledge on the energy exchange between Sun, Earth

and space has recently been improved through new satellite

missions such as the Clouds and the Earth’s Radiant Energy
System (CERES, Wielicki et al. 1996) and the Solar

Radiation and Climate Experiment (SORCE, Anderson and

Cahalan 2005). These allow the determination of the top of

atmosphere (TOA) radiative flux exchanges with unprece-

dented accuracy (Loeb et al. 2012).
Much less is known, however, about the energy distri-

bution within the climate system and at the Earth surface.

Unlike the fluxes at the TOA, the surface fluxes cannot be
directly measured by satellites. Instead, they have to be

inferred from the measurable TOA radiances using

empirical or physical models to account for atmospheric
attenuation and emission, which introduces additional

uncertainties. Uncertainties in the components of the sur-
face radiation budget are thus generally larger and less well

quantified than at the TOA. Debated are, for example, the

partitioning of solar energy absorption between the atmo-
sphere and surface, as well as the determination of the

thermal energy exchanges at the surface/atmosphere

interface (e.g., Raschke and Ohmura 2005; Wild 2008,
2012; Trenberth et al. 2009; Stephens et al. 2012b).

In the present study, we do not only rely on satellite

observations, but make extensive use of the information
contained in radiation measurements taken from the Earth

surface, to provide direct observational constraints also for

the surface fluxes. Such observations become increasingly
available from ground-based radiation networks (Sect. 2).

We use these observations to assess the radiation budgets as

simulated in the latest modeling efforts performed within

Fig. 1 Schematic diagram of the global mean energy balance of the
Earth. Numbers indicate best estimates for the magnitudes of the
globally averaged energy balance components together with their

uncertainty ranges, representing present day climate conditions at the
beginning of the twenty first century. Estimates and uncertainty
ranges based on discussion in Sect. 5. Units Wm-2

M. Wild et al.

123

Wild et al 2013, Clim. Dyn



Renner and Kleidon EGU-Leonardo 2016

Systems’ perspective on earth 

natural system
processes 

interacting at 
multiple time scales

3

Global climate 
model

dynamic state 
equations  
sub-grid 

parameterisations



Renner and Kleidon EGU-Leonardo 2016

Systems’ perspective on earth 

natural system
processes 

interacting at 
multiple time scales

3

Global climate 
model

dynamic state 
equations  
sub-grid 

parameterisations

Perfection is achieved, not when there is nothing more 
to add, but when there is nothing left to take away. 

Antoine de Saint-Exupery 

Can we formulate a simple earth system model which 
captures the most important (thermo)dynamics to predict the 
response to radiative changes?
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A simple climate model
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radiation heat motion

Ts

Ta
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energy balances:

Rs: absorbed solar radiation
Rl: net emission of terrestrial radiation
H: sensible heat flux
λE: latent heat flux

unknown: partitioning between 
Rl and H + λE?

given: absorbed solar radiation Rs 
(= 240 W m-2) and surface 
temperature Ts (= 288 K)

Rs �Rl �H � �E = 0

Rs � �T 4
a = 0

energy balances as starting points

λEH
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Atmospheric heat engine
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Kleidon and Renner (2013) Hydrol. Earth Syst. Sci.
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assume blackbody emission 
for surface and atmosphere:

A simple climate model
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heat
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radiation heat motion
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Rl

exchange of terrestrial radiation

λEH

Rl,s = �T 4
s

Rl,a = �T 4
a

linearize emission: 

�T 4 ⇡ R0 + kr(T � T0)

results in simple expression for net 
longwave radiative exchange: 

Rl = Rl,s �Rl,a

= kr(Ts � Ta)
Kleidon and Renner (2013) Hydrol. Earth Syst. Sci.
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convective heat fluxes depend on a 
rate of mass exchange, ρw:

A simple climate model

7

heat
engine

Rs

radiation heat motion

Ts

Ta

Rl

parameterization of heat fluxes

λEH

H = cp⇢w(Ts � Ta)

�E = �⇢w(qs � qa)

�E =
s

�
H

assume saturation for surface 
and atmosphere and linearize 
saturation vapor pressure curve 
with slope s

�E = cp⇢w
s

�
(Ts � Ta)

γ: psychrometric 
constant

ρw

convective
mass

exchange

Kleidon and Renner (2013) Hydrol. Earth Syst. Sci.
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Carnot limit for generating convection
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Kleidon and Renner (2013) Hydrol. Earth Syst. Sci.
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max. power limit predicts equal 
partitioning among radiative and 
turbulent fluxes:
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Kleidon and Renner (2013) Hydrol. Earth Syst. Sci.
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surface energy partitioning on land
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Kleidon, Renner, Porada (2014) Hydrol. Earth Syst. Sci.
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Sensitivity to type of radiative forcing
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Hydrologic Cycling and Surface Warming
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Hydrologic Cycling and Surface Warming
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Hydrologic Cycling and Surface Warming
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Analogy: Increasing the temperature of a pot on a stove
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Analogy: Increasing the temperature of a pot on a stove

Solar geoengineering: 
Compensate temperature increase by lid by reducing the heating

Hydrologic Cycling and Surface Warming
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Summary and Conclusions
Earth systems’ approach 

• atmosphere as a heat engine

• trade-off between temperature gradient and the 
turbulent heat flux

• thermodynamic optimality - state of maximum power

• allows first order predictions on earth system 
Conclusion:

• type of radiative change (SW <-> LW) is key to 
predict response of temperature and water cycle

• 2.2% / K increase of water cycle by greenhouse 
warming understood by saturation vapour pressure 
constrained by surface energy balance

14
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