
Relationships of regional China precipitation to moisture transport

University of **Reading**

Liang Guo | Nicholas P. Klingaman | Marie-Estelle Demory | Pier Luigi Vidale | Andrew G. Tuner | Claudia C. Stephan National Centre for Atmospheric Science, University of Reading E-mail: l.guo@reading.ac.uk

Define regions over China for this study

China is divided into five regions according to P-E and topography.

Introduction and Conclusion

- China covers several climatic zones with different hydrological
- features. Therefore, it is divided into five regions.
- ° The ERA-Interim monthly data is used (1979-2012).
- <u>2D Precipitation recycling</u> (Brubaker et al. 1993) is used and is

expanded to consider moisture influxes from different directions.

• Results show that the western and southern moisture influxes are

• The hydrological cycles between these regions are different.

• Hydrological feature and topography within each region is consistent, even though it is not homogenous.

• Boundaries facing different directions are separated with different colours.

Precipitation recycling and Contribution from the moisture influxes

▼ Precipitation recycling following Brubaker et al. (1993): $\rho = \frac{EA}{EA + 2I} \circ E - \text{Regional mean evaporation}$ ○ I – Total horizontal moisture influx.

▼ Contribution from the moisture influx:

$$\alpha = 1 - \rho = \frac{2I}{EA + 2I}$$

major contributors to precipitation climatology.

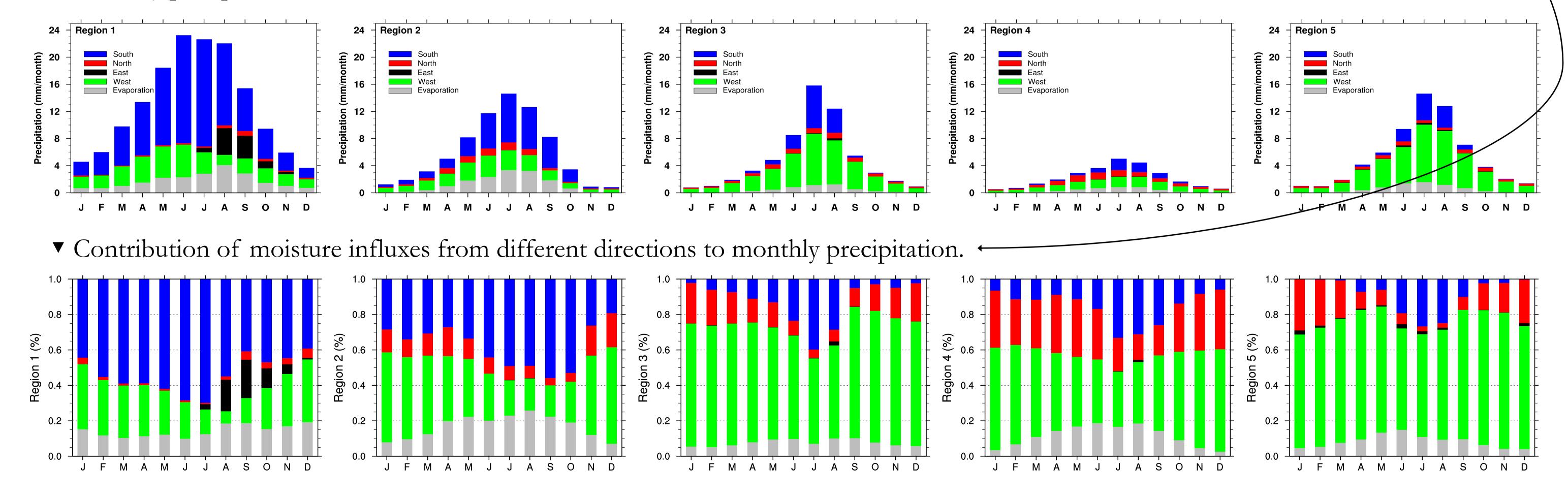
• The major contributor to precipitation climatology is not

necessarily the major contributor to precipitation inter-annual

variation.

▼ Decomposition moisture influx into different directions, the

contributions from the moisture of different directions:


$$\alpha_W = \frac{2I_W}{EA+2I}; \ \alpha_E = \frac{2I_E}{EA+2I}; \ \alpha_N = \frac{2I_N}{EA+2I}; \ \alpha_S = \frac{2I_S}{EA+2I}$$

▼ Therefore, the relationship between precipitation and moisture transport can be decomposed into:

$$\rho + \alpha_W + \alpha_E + \alpha_N + \alpha_S = 1$$

 $-P(\rho + \alpha_W + \alpha_F + \alpha_N + \alpha_S) = P$ and

▼ Monthly precipitation and its amount related to moisture influx from different directions.

Different relationships between moisture influxes to precipitation <u>climatology</u> and <u>the inter-annual variation</u>.

	R1	R2	R3	R4	R5	 Major moisture influx 		R1	R2	R3	R4	R5	 Major moisture influx
DJF	S,W	W,S	W	W,N	W	contributing to the precipitation	DJF	S,N	Ev		W	W,N	contributing to the precipitation
MAM	S	W,S	W	W,N	W	climatology (the combined	MAM	S	Ev	S,Ev	Ev,S,W	\mathbf{S}	inter-annual variation (the absolute
JJA	\mathbf{S}	S, Ev	W,S	W,S	W,S	percentage of contribution	JJA	Ev,S	\mathbf{S}	S	Ev	Ev,S	value of correlation coefficient
SON	S,W	S,W	W	W,N	W		SON	S	S	S,Ev	W,S,Ev	S	
						$\geq 60\%$).							between moisture influx and

Reference:

Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of Continental Precipitation Recycling. Journal of Climate, 6, 1077-

1979-2012).

monthly precipitation ≥ 0.5 for

1089,