Impact of irrigation over the California Central Valley on regional climate
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Science Question: Methods:
— What is the role of irrigation over the California Central Valley (CCV) on regional climate? — Use Weather Research and Forecasting (WRF) coupled with a realistic irrigation scheme to represent irrigation over the
a. Can model performance be improved by inclusion of a realistic irrigation scheme? CCV, the coupled model is driven by NARR data as atmospheric forcing.
b. What is the impact of CCV irrigation on local and regional climate? — Use a Water Vapor Tracer Scheme in WRF to differentiate between the direct and indirect impacts of the CCV on local and
c. Can we distinguish the direct and indirect impacts of irrigation on local and regional climate? regional climate.
Experiment Design Irrigation impact over the CCV Irrigation impact on regional precipitation
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SW is the soil moisture, SW,yp is the soil moisture content at wilting point, SWe is the maximum amount of soil that hold against = CAPE is increased by 58.89 Jkg. E | v Irrigation has improved performance of surface temperature, relative humidity, and dew point temperature;
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. . | | | _ | CCV. However, as shown later there is no potential energy (CAPE, J kg-1), f) PBL height (m), g) lifting condensation downwind region; induces wave pattern in geopotential height that leads to precipitation over the CRB.
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