Arctic Climate Processes Linked Through the Circulation of the Atmosphere (ACPCA)

The project "Arctic Climate Processes Linked Through the Circulation of the Atmosphere" is funded thourgh the "ERAnet.RUS" programme within FP7.

 

The climate of the Arctic is the product of a range of processes, involving not only the atmosphere but also the ocean, sea ice, land-surface conditions, and snow cover. These processes are linked through the atmospheric circulation. The circulation moves weather systems across the Arctic and controls surface climate and snow cover. It transports heat, water vapour, and aerosol particles from the midlatitudes into the Arctic, it distributes these quantities within the Arctic, and it affects sea ice through wind stress. At the same time, atmospheric circulation is affected by the energy balance of the Arctic surface and thus by sea-ice and snow cover as well as by factors outside the Arctic. The goal of the project is to study the role of these interactions for decadal variability and trends in Arctic climate. The five partners University of Bern (Switzerland), RIHMI (Russia), University of Vigo (Spain), Alfred Wegener Institute, Potsdam (Germany) and NILU (Norway) will use newly available observation based data sets, long reanalyses, numerical techniques such as trajectory modeling or nudging, and different climate models that allow addressing effects of sea-ice and snow cover. The knowledge gained from better understanding the processes governing decadal climate variability in the Arctic may eventually lead to a better assessment of climate models, supporting an increased accuracy of seasonal predictions, projections, and adaptation plans.

 

Publications and Reports

By UVigo Team:

  • M. Vázquez, R. Nieto, A. Drumond, L. Gimeno (2017) Extreme Sea Ice Loss over the Arctic: An Analysis Based on Anomalous Moisture Transport, Atmosphere, 8(2), 32; doi:10.3390/atmos8020032 
  • M. Vázquez, R. Nieto, A. Drumond, L. Gimeno (2016) Moisture transport into the Arctic: Source-receptor relationships and the roles of atmospheric circulation and evaporation, Journal of Geophysical Research: Atmospheres, 121, doi:10.1002/2016JD025400 
  • L. Gimeno, M. Vázquez, R. Nieto, R.M. Trigo (2015) Atmospheric moisture transport: the bridge between ocean evaporation and Arctic ice melting, Earth System Dynamics, pages: 583-589, vol: 2, doi:10.5194/esd-6-583-2015 
  • M. Wegmann, Y. Orsolini, M. Vázquez, L. Gimeno, R. Nieto, O. Bulygina, R. Jaiser, D. Handorf, A. Rinke, K. Dethloff, A. Sterin, S. Brönnimann (2015) Arctic moisture source for Eurasian snow cover variations in autumn, Environmental Research Letters, 10 054015 

By other ACPCA partners:

 

  • Brönnimann, S., O. Martius, J. Franke, A. Stickler, and R. Auchmann (2013) Historical weather extremes in the “Twentieth Century Reanalysis”. In: Brönnimann, S. and O. Martius (Eds.) Weather extremes during the past 140 years. Geographica Bernensia G89, p. 7-17, DOI: 10.4480/GB2013.G89.01 
  • Brönnimann, S., M. Wegmann, R. Wartenburger, and A. Stickler (2013) Arctic Winds in the “Twentieth Century Reanalysis”. In: Brönnimann, S. and O. Martius (Eds.) Weather extremes during the past 140 years. Geographica Bernensia G89, p. 59-67, DOI: 10.4480/GB2013.G89.07 
  • Jaiser, R., K. Dethloff, and D: Handorf (2013) Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes, Tellus, A, 65. doi:10.3402/tellusa.v65i0.19375. 
  • Rinke, A., K. Dethloff, W. Dorn, D. Handorf, and J. C. Moore (2013) Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies, Journal of Geophysical Research: Atmospheres, 118 (14), pp. 7698-7714. doi:10.1002/jgrd.50584. 
  • Wu, B., D. Handorf, K. Dethloff, A. Rinke, and A. Hu (2013) Winter Weather Patterns over Northern Eurasia and Arctic Sea Ice Loss, Monthly Weather Review, 141, 3786–3800. doi:10.1175/MWR-D-13-00046.1. 
  • Akperov, M., I. Mokhov, A. Rinke, K. Dethloff, and H. Matthes (2014) Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations, Theor. Appl. Climatol., doi:10.1007/s00704-014-1272-2. 
  • Cohen, J., J. A. Screen, J. C. Furtado, M. Barlow, D. Whittleston, D. Coumou, J. Francis, K. Dethloff, D. Entekhabi, J. Overland and J. Jones (2014) Recent Arctic amplification and extreme mid-latitude weather, Nature Geoscience, 17, doi: 10.1038/NGEO2234. 
  • Wegmann, M., S. Brönnimann, J. Bhend, J. Franke, D. Folini, M. Wild, and J. Luterbacher (2014) Volcanic influence on European summer precipitation through monsoons: Possible cause for “Years Without a Summer”. J. Climate, 27, 3683-3691, doi: 10.1175/JCLI-D-13-00524.1. 
  • Knudsen E. M, Y. J. Orsolini, T. Furevik, and K. I. Hodges (2015) Observed anomalous atmospheric patterns in summers of unusual Arctic sea ice melt. JGR Atmospheres, DOI: 10.1002/2014JD022608 
  • Orsolini Y. J., R. Senan, G. Balsamo, A. Weisheimer, F. Vitart, and F. Doblas-Reyes (2016) Influence of the Eurasian snow on the negative North Atlantic Oscillation in seasonal forecasts of the cold winter 2009/10. Clim Dyn 47: 1325. doi:10.1007/s00382-015-2903-8 
  • Sterin A. M., A. A. Timofeev (2016) Estimation of surface air temperature trends over the Russian Federation territory using the quantile regression method. A.A. Russ. Meteorol. Hydrol. 41: 388. doi:10.3103/S1068373916060029. 

 

Presentations and Outreach

 

Líneas de Investigación para trabajos Fin de Grado en Ciencias Ambientales