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1.  INTRODUCTION

Drought is one of the most damaging natural hazards
affecting the Iberian Peninsula, causing detrimental
impacts on agriculture, water resources and ecosys-
tems (Vicente-Serrano 2006c, López-Moreno et al.
2009, Lorenzo-Lacruz et al. 2010). There has been an
increase in drought severity on the Iberian Peninsula
in recent decades  (Vicente-Serrano et al. 2004,
Vicente- Serrano 2006a, Vicente-Serrano & Cuadrat-
Prats 2006), mainly associated with a decrease in pre-

cipitation that has affected most of the region
(González-Hidalgo et al. 2009).

Global warming processes may have a notable im -
pact on drought, increasing the severity of the episodes
as a consequence of  water loss by evaporation and tran-
spiration (Dai 2011). Although precipitation is the main
driver of drought conditions, recent studies have illus-
trated the im portance of temperature in explaining re-
cent trends in water resources (Nicholls 2004, Cai &
Cowan 2008, Gerten et al. 2008, Lorenzo-Lacruz et al.
2010) and the development of natural vegetation and

© Inter-Research 2011 · www.int-res.com*Email: svicen@ipe.csic.es

Effects of warming processes on droughts and
water resources in the NW Iberian  Peninsula

(1930−2006)

Sergio M. Vicente-Serrano1,*, Juan I. López-Moreno1, Anita Drumond2, 
Luis Gimeno2, Raquel Nieto2, Enrique Morán-Tejeda1, Jorge Lorenzo-Lacruz1,

 Santiago Beguería3, Javier Zabalza1

1Instituto Pirenaico de Ecología, and 3Estación Experimental de Aula Dei, CSIC (Spanish National Research Council), 
Campus de Aula Dei, PO Box 202, Zaragoza 50080, Spain

2Environmental Physics Laboratory, Universidade de Vigo, Ourense 32004, Spain

ABSTRACT: We analysed the evolution of drought on the NW Iberian Peninsula from 1930 to
2006, and identified differences between the effects of precipitation variability and warming pro-
cesses on drought severity and surface water resources. Two drought indices were used, one
based on precipitation (the standardised precipitation index, SPI) and the other based on water
balance, as reflected by the difference between precipitation and potential evapotranspiration,
PET (the standardised precipitation evapotranspiration index, SPEI). The results show that precip-
itation has increased in the region, but a significant increase has also occurred in PET. No statisti-
cally significant differences were found over the study period for the severity of drought, as
assessed by both the SPI and SPEI. In addition, although in the last 3 decades the mean duration
of drought episodes has increased by approximately 1 mo as a consequence of the increase of the
PET rates, the differences are not statistically significant. River discharge is mainly driven by pre-
cipitation variability, whereas warming processes did not have a noticeable influence on the
streamflow variability between 1930 and 2006. The implications of global warming projected by
global climate models on future drought severity and the availability of water resources are highly
relevant in the near future.

KEY WORDS:  Temperature trends · Streamflow · Aridification · Standardised precipitation index ·
SPI · Standardised precipitation evapotranspiration index · SPEI

Resale or republication not permitted without written consent of the publisher

Contribution to CR Special 27 ‘Climate change in the NW Iberian Peninsula’



Clim Res 48: 203–212, 2011204

crops (Jump et al. 2006, Andreu et al. 2007, Martínez-
Vilalta et al. 2008, Vicente-Serrano et al. 2010a). Thus,
Breshears et al. (2005) and Adams et al. (2009) coined
the term ‘the global warming−type drought’ to de scribe
droughts related to precipitation shortages and warmer
conditions. For example, the heat wave that affected
central Europe in summer 2003 showed how warming
processes can dramatically increase the severity of
drought (Ciais et al. 2005). On the Iberian Peninsula
there has been a general temperature increase of about
1°C during the 20th century (Brunet et al. 2006), and an
increase in the frequency and intensity of heat waves
(Rodríguez-Puebla et al. 2009, El Kenawy et al. 2011). It
is likely that this in crease has contributed to the in-
creased drought conditions in recent decades.

Warming processes may have a negative effect on
the availability of surface water resources, mostly dri-
ven by higher evapotranspiration (ET) rates. Recent
temperature trends are having a notable impact on the
availability of water resources. In the USA, Walter et al.
(2004) quantified the warming effect by means of
catchment balances in areas characterised by low
anthropogenic perturbation, and reported an increase
of water losses by evapotranspiration from 1950 on -
wards. Similar results have also been presented by
Yulianti & Burn (1998) for Canada and by Lespinas et
al. (2009) for the south of France.

Climate change scenarios predict a 15% decrease in
precipitation  and a large increase in temperature for
the 21st century in southern Europe (Giorgi et al. 2004,
Giorgi 2006), which will drive a large increase in the fre-
quency and magnitude of drought episodes (Blenkinsop
& Fowler 2007, Weiß et al. 2007). The frequency and
severity of droughts will probably increase during the
21st century on the Iberian Peninsula (Sheffield & Wood
2007), and it will cause a notable decrease in the avail-
ability of water resources (Lehner et al. 2006, Feyen &
Dankers 2009). In addition, the temperature increase
observed in recent decades may already have increased
drought severity and the availability of water resources.
The objective of the present study of the NW Iberian
Peninsula was to quantify and statistically analyse
drought indicators, to assess whether the observed
 temperature increase, which drives higher ET rates, is
 having a marked influence on the characteristics of
droughts in the region and whether water resources are
changing in response to the warming processes.

2.  METHODS

To quantify the evolution of drought for the NW Iber-
ian Peninsula we used 2 drought indices: (1) The stan-
dardised precipitation index (SPI), which is based on
precipitation data (McKee et al. 1993, Gutt man 1999,

Hayes et al. 1999, Vicente-Serrano 2006b). This index is
obtained in standardised units (z-scores) that are com-
parable among seasons. The SPI enables calculation of
estimates of the duration, magnitude and in tensity of
drought (e.g. Vicente-Serrano et al. 2004). (2) The stan-
dardised precipitation evapotranspiration index (SPEI)
(Vicente-Serrano et al. 2010b), which takes into account
both precipitation and ET demand of the atmosphere.
For this index a simple water balance is calculated as
the difference between monthly precipitation and the
potential evapotranspiration (PET). The difference se-
ries are then transformed to z-scores, as for the SPEI.
We calculated the PET from the Hargreaves equation
(Hargreaves & Samani 1985), using monthly averages
of daily maximum and minimum temperature data and
the potential incoming solar radiation. This method is
recommended when the required parameters to apply
the Penman-Monteith equation are not available
(Droogers & Allen 2002). In addition, some experimental
studies have showed similar PET estimations by means
of the Penman-Monteith and Hargreaves methods in
Spain (Martínez-Cob 2002, López-Urrea et al. 2006,
Gavilán et al. 2008, Vanderlinden et al. 2008, López-
Moreno et al. 2009).

The objective of using these 2 indicators was to en -
able comparison of drought evolution based only on
assessment of precipitation with that based on the com-
bined effects of precipitation and ET. Both indices
where obtained using the same log-logistic probability
distribution, which shows a very close fit to the series of
differences between precipitation and ET (Vicente-
 Serrano et al. 2010c), and also to the monthly precipita-
tion records. Use of the same probability distribution
enabled accurate comparisons among the series of the
2 indicators, ensuring that any differences between the
series were only related to the impact of temperature
on drought conditions, and not to the method used for
calculation. Both the SPI and SPEI can be obtained at
different time scales, which is very useful for monitor-
ing drought impacts on natural and socioeconomic sys-
tems (e.g. Ji & Peters 2003, Vicente-Serrano & López-
Moreno 2005, Lorenzo-Lacruz et al. 2010). Examples
for the meaning of the different drought time scales
can be found in Hayes et al. (1999), Vicente-Serrano
(2006b) and Vicente-Serrano et al. (2010b). In the pre-
sent study we used the time scale of 12 mo for the com-
parison between both drought indices, since the use of
more time scales would be redundant. Nevertheless,
to correlate with river discharge data (see below) we
also used time scales from 1 to 24 mo, since the optimal
time scale may vary notably among different hydro -
logical systems (Vicente-Serrano & López-Moreno 2005,
Lorenzo-Lacruz et al. 2010).

The SPI and SPEI were calculated using the Climatic
Research Unit (CRU) TS3 dataset (available at http://
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badc.nerc.ac.uk/data/cru/), with a spatial resolution of
0.5°. In the CRU TS3, after the creation of high-resolu-
tion grids, the homogeneity of the precipitation time
series was tested by means of a procedure that in -
cludes iterative checking, the creation of reference
series by means of a selection of neighbours, the com-
pletion of station records and the correction of inhomo-
geneities. Details on the quality of dataset creation can
be consulted in Mitchell & Jones (2005). For the period
1930–2006 the study region was covered by 23 grid
boxes. The 2 drought indices were calculated using
these time series and a regional series for the entire
NW Iberian Peninsula, which was obtained from the
average values of precipitation and PET from the 23
grid boxes.

To assess the possible impact of warming processes
on surface water resources, we used monthly river
discharges (in hm3) from the gauging station of Cre-
cente in the Miño River (see Fig. 3). This is a unique
station with a long and reliable time series in the
study area that records the flows generated in the
region. There were also other stations available, but
they were located near the mouth of the Douro River,
which receives flows from a large drainage basin
mostly outside the study area. Details of the hydrolog-
ical data used can be found in Lorenzo-Lacruz et al.
(2011). To determine the possible impact of warming
on the water resources, we used 2 different ap -
proaches. On the one hand, we first transformed
monthly river discharges to standardised streamflows,
by means of the calculation of an optimal standard-
ised streamflow index (SSI) (Vicente-Serrano et al.
2011). A correlation analysis was applied using the
SSI and the average SPI and SPEI for the entire
drainage basin for the Crecente station, in order to
study to what extent the streamflow variability is
related to the SPI or SPEI. The analysis was conducted
using different SPI/SPEI time scales, since, a priori we
do not know which would be the most suitable in the
case of the Miño River. This analysis isolates the
effect of warming processes, since the difference in
the explained variance by SPI or SPEI will be due to
the evolution of PET.

On the other hand, and following the approach
applied by Walter et al. (2004), we obtained the rela-
tionship between annual precipitation, for the entire
drainage catchment, and annual discharge. This was
assessed by means of a linear regression model in
which precipitation was the independent variable and
streamflow the dependent variable. The residuals from
the model (observed streamflow− predicted stream-
flow) were related to PET evolution. Following this
approach, Lespinas et al. (2009) found a significant im -
pact of warming processes on surface water resources
in the south of France.

3.  RESULTS

Fig. 1 shows the evolution of the 12 mo SPI and SPEI
for the NW Iberian region, and also shows the evolu-
tion of the difference between the 2 indices (SPI–SPEI).
The evolution of each series was very similar, and both
detected the main drought episodes in the decades of
1940, 1950, 1990 and 2000, suggesting a high degree of
similarity between the 2 series. The coefficient of corre-
lation among them is 0.99. However, calculation of
SPI–SPEI identified a temporal pattern with positive
differences at the beginning of the study period and
negative differences at the end. Thus, there was a dif-
ference between the SPI and the SPEI of about +0.2
standard deviations for the decades of 1990 and 2000,
i.e. the SPEI shows an increase in the severity of
drought compared with the SPI, because of the in -
creased PET. The figure also shows the SSI for the Cre-
cente station from 1945 to 2005. The series shows a
higher temporal frequency than that observed for the
12 mo SPI and SPEI, but the main drought periods are
also observed, mainly in the de cades of 1940 and 1950.
However, some high-intensity drought episodes were
also recorded in the decades of 1980, 1990 and 2000.

Fig. 2 shows the evolution of annual precipitation
and annual PET in the NW Iberian region from 1930 to
2006. These 2 variables showed a sig nificant positive
trend (Rho-Spearman test, p < 0.05). Thus, precipita-
tion increased by 20.7 mm decade−1, whereas PET in -
creased by 4.2 mm decade−1. When the same analysis
was applied to the annual values of both drought
indices (December values, which summarise the an -
nual drought conditions), the SPEI showed an increase
of 0.07 standard deviations decade−1, which was less
than that found for the SPI (0.09 standard deviations
decade−1). Nevertheless, neither annual drought indi-
cator showed a significant trend (p = 0.052 and p = 0.10,
for the SPI and SPEI, respectively).

Fig. 3 shows the spatial distribution of the trends in
the annual difference between the SPEI and SPI, and
the annual temperature and annual precipitation.
Trends were analysed by means of Rho-Spearman’s
rank correlation test, because it is less affected than
other tests by the presence of outliers and non-
 normality of the series (Lanzante 1996). The trend is ob -
tained by means of the non-parametric correlation
between the series of years and the annual series of the
3 variables (SPI−SPEI difference, precipitation and
temperature). Statistically significant trends were de -
fined as p < 0.05. The trend in the difference between
the SPEI and SPI was negative and significant in all
0.5° × 0.5° pixels of the study area (p < 0.05). The
strongest trends were found in the eastern inland
areas, which was consistent with the regions in which
the positive trend of the PET was stronger. In contrast,
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the spatial pattern of precipitation did
not appear to explain the trend toward
dryer conditions, given that the calcu-
lation of both indicators takes this vari-
able into account.

Based on run theory (Yevjevich
1967), we determined the individual
drought episodes from the SPEI and
SPI series using a threshold of 0, which
represents 50% of the probability dis-
tribution of the standardised variable,
considering that all the negative values
relate to dry conditions. We then deter-
mined the duration and magnitude of
each drought event (Dracup et al.
1980): the duration is the number of
consecutive months with values <0
and the sum of the index values is the
drought magnitude. We focused on the
1980– 2006 period, during which the
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differences between the SPI and SPEI were most evi-
dent, and we compared the pattern with the initial
25 yr (1930−1955). For the 1980− 2006 period, the SPI
and SPEI series show a similar number of drought
episodes (18 and 17, re spectively). The average dura-
tion for the SPI-based drought episodes was 7.05 mo,
but for the SPEI it was 7.94 mo. The average magni-
tudes were 5.03 and 6.0 for the SPI and SPEI series,
respectively. These numbers are much lower than the
averages for the 1930−1955 period (12.3 and 13.6 mo
duration, and 9.3 and 10.6 magnitude, for the SPI and
SPEI, respectively). Fig. 4 shows the duration and mag-
nitude of the drought events recorded between 1930
and 1955 and between 1980 and 2006 from the 2 series.
Drought severity decreased, in terms of both duration
and magnitude, between the first and second time

period. For the 1980−2006 period, drought severity was
higher for the SPEI, but the difference between the 2
indices was low, and ANOVA indicated no statistically
significant differences between the average drought
duration and magnitude determined from the SPI ver-
sus the SPEI series during that period. This indicates
that trends in PET in the region have affected drought
severity in the last 8 decades, but the changes in
drought duration and magnitude have not been statisti-
cally significant.

The previous results are in agreement with the
observed pattern from the analysis of surface water
resources. Fig. 5A shows the correlation coefficients
obtained between the SSI at Crecente and the 1 to
24 mo SPI and SPEI for the drainage basin. The highest
correlations are found at the time scales of 3 to 8 mo for
both the SPEI and the SPI. Correlations are slightly
higher for the SPEI, which suggests that PET explains
some of the variability in the SSI. However, the differ-
ence is so small (<0.02 of the coefficient of correlation)
that most of the SSI variability appears to be driven by
precipitation. This can be confirmed by an annual sta-
tistical  precipitation/ discharge model. Fig. 5B shows
the annual river discharge at the station of Crecente
and the average annual precipitation for its drainage
basin. There is a high similarity in the evolution of both
series. The linear regression model based on precipita-
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Fig. 3. Spatial distribution of annual trends: difference be-
tween standardised precipitation index (SPI) and standard-
ised precipitation evapotranspiration index (SPEI), potential
evapotranspiration (PET) and precipitation. + p < 0.05. Units
are Rho-Spearman correlation coefficients. Limits of the grid
boxes are: 41.25−43.25° N and 8.75−6.75° W. The gauging
 station of Crecente (d) and the Miño drainage basin (red 

perimeter) are also shown
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tion explains 61.6% of the annual discharge variability.
We tried to include the PET in the model by means of a
stepwise multiple regression method, but the inclusion
of this variable did not reach the required significance
threshold. Fig. 5C confirms that ET processes do not
significantly affect the availability of surface water
resources in NW Iberia. The figure shows evolution of

the residuals from the annual  precipitation/ discharge
model and evolution of the PET for the Crecente
drainage basin. The correlation between both series is
low (R = 0.16) and non-significant, showing the avail-
ability of surface water resources has not been highly
affected by the PET increase observed during the last
decades.
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4.  DISCUSSION AND CONCLUSIONS

The present study investigated drought on the NW
Iberian Peninsula using the SPI and SPEI. The series
of both indices showed similar evolution and identi-
fied the main drought episodes that affected this
region between 1930 and 2006 (mainly in the
decades of 1940, 1950, 1990 and 2000). The results
also indicated that droughts did not increase between
1930 and 2006, in agreement Moreira et al. (2006,
2008). This contrasts with the general trends found in
other Iberian regions, in which the duration and mag-
nitude of drought have increased  (Vicente-Serrano
2006a). On a regional scale, there is evidence of a
significant increase in the severity of drought in the
Ebro basin (Vicente- Serrano & Cuadrat-Prats 2006,
Vicente- Serrano & López-Moreno 2006), some areas
of the Valencia region (Vicente-Serrano et al. 2004)
and the Tagus basin (Lorenzo-Lacruz et al. 2010),
with implications on the availability of water
 re  sources (Hisdal et al. 2001, Lorenzo-Lacruz et al.
2010) and the management of drought episodes
(López - Moreno et al. 2009b). Sousa et al. (2010),
using the Palmer Drought Severity Index, have also
shown that NW Iberia is an exception to the predomi-
nant trend in the 20th century towards drier condi-
tions, which has been recorded for most of the west-
ern Mediterranean.

In the NW Iberian region, calculation of the differ-
ence between the 2 indices used (SPEI–SPI) indicated
more negative values in recent decades. Given that
this may be related to the evolution of PET processes,
our data suggest that global warming is influencing the
evolution of drought in the region. Thus, the significant
negative trend in the difference between the 2 indices
suggests that the SPEI is detecting drier conditions. As
the calculation procedure was the same for both
indices, this demonstrates that the observed trends in
PET (which are related to warming processes) have
contributed to the intensification of drought conditions
in recent decades. Various studies have demonstrated
the importance of PET in explaining soil moisture vari-
ability. For example, Syed et al. (2008) showed that ET
is the most significant variable explaining water stor-
age variability at mid-latitudes. Similarly, Hu & Willson
(2000) demonstrated that ET plays a major role in
drought variability quantified using drought indices,
and that this is comparable to the effect of precipita-
tion. Soil water losses due to ET also affect runoff,
which affects river discharges and groundwater stores.
Moreover, PET can cause large losses from water bod-
ies including reservoirs (Wafa & Labib 1973, Snoussi et
al. 2002).

The difference between the 2 indicators suggests
that the SPEI has recorded the occurrence of dryer con-

ditions in recent decades, but the severity of the
drought episodes has not increased significantly as a
consequence of global warming processes.

In the NW Iberian region, it is likely that the high
level of precipitation that characterises the region is
reducing the influence of ET on drought severity.
Moreover, the large increase in annual precipitation
that has occurred since the decade of 1930 (20.7 mm
decade−1) substantially ex ceeds the observed increase
of PET (4.2 mm decade−1), suggesting that the effect of
precipitation on drought conditions has been greater
than that of PET. This has been confirmed through the
analysis of river discharge records for the Miño basin,
which show that the interannual variability in surface
water resources is mainly driven by precipitation vari-
ability, and, al though better correlations have been
found between SSI and SPEI in relation to the SPI
series, the difference is too small to represent a real
impact of the warming processes.

Current climate models indicate that a large
increase in temperature will occur in southern Europe
in the future. Based on the IPCC emissions scenario
A1B, 9 general circulation models predict a tempera-
ture increase of 2 to 3°C for the period 2040–2070, rel-
ative to 1960–1990 (García-Ruiz et al. 2011). Such a
change could exacerbate drought conditions much
more than a simple decrease in precipitation. Du brov -
s ky et al. (2008) and Vicente-Serrano et al. (2010b)
demonstrated that a temperature increase of 2 to 4°C
in the 21st century could increase drought severity
more than that expected on the basis of the projected
decrease in precipitation in southern Europe. Recent
models predict a notable decrease in water resources
across southern Europe and the Iberian Peninsula.
Mariotti et al. (2008) have predicted a decrease of
20% by the end of the 21st century under the A1B
scenario, and Lehner et al. (2006) suggested that, in
southern Europe, the drought events that occur
approximately every 100 yr may change to a future
frequency of 10 to 70 yr around 2070, warming being
one of the key processes in such a change (Mimikou
et al. 1991). Furthermore, the influence of warming
processes on water resources has already been de -
monstrated in some precipitation-limited environ-
ments. Cai & Cowan (2008) showed a direct relation-
ship be tween the increase of temperature and the
decrease of river flow (about 15% for 1°C of warming)
in southern Australia, and, recently, Liang et al.
(2010) showed that discharge is better correlated with
the temperature trend than with precipitation, indicat-
ing an intensification of ET processes. 

It is difficult to assess how the multiplicity of mech-
anisms involved will affect future drought conditions.
For example, factors such as surface net solar radia-
tion, humidity and wind speed could also change
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notably and, thus, alter the future response of ET
 processes to temperature (Dai 2011). Furthermore,
changes in precipitation intensity could affect the
runoff to precipitation ratio, which could, in turn,
alter soil−water balances and hydrological regimes
even if precipitation were to remain constant. In ad -
dition, part of the projected increase in temperature
over the Mediterranean region could be caused by
increased drought, which shifts the soil and vegeta-
tion temperature, the evaporation and transpiration
processes and ultimately the radiation balance from
latent heat to sensible heat (Wilson & Baldocchi
2000). These complex feedbacks show the acute
need of further drought research in the context of
global warming processes in the Mediterranean
region.
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