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ABSTRACT
Smoothed Particle Hydrodynamics (SPH) is the most widely established mesh-free method which has been used in several fields as astrophysics, solids
mechanics and fluid dynamics. In the particular case of computational fluid dynamics, the model is beginning to reach a maturity that allows carrying
out detailed quantitative comparisons with laboratory experiments. Here the state-of-the-art of the classical SPH formulation for free-surface flow
problems is described in detail. This is demonstrated using dam-break simulations in 2-D and 3-D. The foundations of the method will be presented
using different derivations based on the method of interpolants and on the moving least-squares approach. Different methods to improve the classic SPH
approach such as the use of density filters and the corrections of the kernel function and its gradient are examined and tested on some laboratory cases.

RÉSUMÉ
La méthode SPH est la méthode numérique sans maillage la plus largement établie et utilisée en astrophysique, mécanique des solides et dynamique
des fluides. Dans le cas particulier de la simulation numérique des écoulements, le modèle commence à atteindre une maturité suffisante pour permettre
des comparaisons quantitatives détaillées avec des mesures expérimentales. Dans cet article, l’état de l’art de la formulation SPH classique pour les
problèmes d’écoulements à surface libre est décrit en détail, en s’appuyant sur des simulations de rupture de barrage en 2D et 3D. Les fondements de la
méthode sont présentés selon différentes approches basées sur la méthode des interpolateurs et sur les moindres carrés mobiles. Différentes méthodes
d’amélioration de l’approche SPH classique telles que l’utilisation de filtrage de la densité et les techniques de correction de la fonction noyau et de
son gradient sont examinées et testées sur des cas de laboratoire.
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1 Introduction

Computational fluid dynamics (CFD) provides an alternative and
valuable tool of scientific investigation. On the one hand CFD
permits carrying out numerical experiments instead of expensive
and, in some cases, impossible experiments, where similarity
principles cannot be invoked and scale models cannot be used. On
the other hand, CFD provides additional information that cannot
be obtained from direct experimental observation, which is espe-
cially valuable when the aim of the study is not only to describe
some flow variable (such as velocity, pressure, etc.) but under-
standing the physical processes controlling the phenomenon (Liu
and Losada 2002).

Historically, CFD has focused on grid-based methods, where
two different frames are usually considered for describing the
physical governing equations, namely; the Eulerian and the
Lagrangian description. The finite element method element
method (FEM) is the paradigm of Lagrangian methods, where
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a grid is attached on the material and it can deform, to a certain
extent, following the deformation of the material. The Eule-
rian description is commonly represented by the finite difference
method (FDM) and the finite volume method (FVM), which are
the dominant methods in CFD. In spite of the doubtless successes
obtained during the last decades, both Eulerian and Lagrangian
approaches present important limitations, even when used in a
combined way (Hans 1999, Belytschko et al. 2000).

The use of mesh-free methods for CFD has experienced an
exponential growing during the last decade (for a complete
description see Liu (2003) and Belytschko et al. (1996)). These
methods, whose main idea is to substitute the grid by a set of arbi-
trarily distributed nodes, are expected to be more adaptable and
versatile than the conventional grid-based methods, especially
for those applications with severe discontinuities in the fluid.

Smoothed Particle Hydrodynamics (SPH), which was
invented in 1977 for simulating astrophysical problems (Lucy
1977, Gingold and Monaghan 1977), is arguably the most popular
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mesh-free method. Conceptually, the method uses integral inter-
polation theory and transforms the partial differential equations
into an integral form (reviews and background of the method-
ology are provided by Monaghan 1992, Monaghan 2005, Liu
and Liu 2003). In spite of its early appearance, the method
did not attract the interest of researchers in other fields until
the beginning of the 1990s, when the method was successfully
applied in fields such as impact penetration in solids (Libersky
et al. 1993, Randles and Libersky 1996) and two-phase flow
(Monaghan 1997).

In the particular case of fluid dynamics, perhaps the most
important success of the meshless SPH technique has been the
application of the method to free-surface flows, first attempted by
Monaghan (1994). Monaghan also studied the behavior of grav-
ity currents and solitary waves (Monaghan 1996, Monaghan et al.
1999), the wave arrival at a beach (Monaghan and Koss 1999)
or the behavior of a Scott Russell’s wave generator (Monaghan
and Kos 2000). In addition, Morris et al. (1997) introduced an
improved second-order derivative formulation to treat viscosity
and study low Reynolds incompressible flows. Other authors
(Shao and Lo 2003) studied the wave mechanics by means of
an incompressible SPH, in particular the model was applied to
the study of the wave-breakwater interaction (Gotoh et al. 2004,
Shao 2005). The same authors also analyzed the behavior of
breaking waves (Shao 2006). Also at the beginning of the 2000s,
Colagrossi and Landrini (2003) considered the study of interfa-
cial flows and introduced the use of density filters. The Electricite
de France (EDF) group has successfully used their code to study
both incompressible flows (Issa et al. 2005, Lee et al. 2008)
and turbulent free-surface flows (Violeau and Issa 2007). The
SPHysics group (http://www.sphysics.org) has mainly focused
its research on the wave propagation and interaction with coastal
structures, both in 2D (Gomez-Gesteira et al. 2005, Dalrymple
and Rogers 2006, Crespo et al. 2007a) and 3D (Gomez-Gesteira
and Dalrymple 2004, Crespo et al. 2007b, Crespo et al. 2008).
Other authors have focused their interest on the study of sloshing
type problems (Souto-Iglesias et al. 2004, Souto-Iglesias et al.
2006, Delorme et al. 2008), the interaction of solids with liquid
(Oger et al. 2006) simulating wedge water entries, the simula-
tion of flows in Pelton turbines (Marongiu et al. 2007) or near
shore processes (Landrini et al. 2007). Some multiphase work
for free-surface flows has been attempted with limited success
(Colagrossi and Landrini 2003, Cuomo et al. 2006). However,
part of the success of the SPH technique can be attributed to the
good results obtained by the aforementioned work for modeling
free-surface fluid flows using solely a single-phase approach.

As the most widely used formulation to date, the aim of this
paper is to describe the background of classical SPH and its appli-
cation to free-surface flows (alternative formulations can be seen
in the literature: Vila (1999), Ferrari et al. (2009), Molteni et al.
(2007), Colagrossi and Landrini (2003)). Special attention will
be paid to the capabilities of the method to solve free-surface
problems in general and wave problems in particular. Different
improvements and refinements of the classical technique will also
be analyzed. The SPHysics model will be used to depict the differ-
ent parameterizations considered to analyze dambreak problems

(Nsom et al. 2000, Chanson 2009), which constitute a well suited
benchmark for SPH method.

2 Smoothed Particle Hydrodynamics: Theoretical
background

2.1 Introduction

In SPH, the fluid domain is represented by a set of irregu-
larly spaced nodal points where physical properties (e.g., mass,
density, velocity, position, pressure) are known. These nodal
points then move with the fluid hence making the technique a
Lagrangian meshless method. These properties can change with
time due to the interactions with neighboring particles.

2.2 Derivation from interpolation method

The SPH method is based on the following integral

f(s, t) =
∫
v

W(s − x, h)f(x, t)dv (1)

where the integral is over the domain v and dv is the element of
volume which depends on the dimensionality of the problem and
W(s−x, h) is the weighting function also called smoothing kernel
in SPH. The size of the kernel is determined by the parameter h,
which determines a domain of influence around s. In 3D that
domain is a sphere of radius nh, where n depends on the kernel
definition. Although h is a constant in the simplest applications
of SPH, the parameter can depend both on time and space as
described in Monaghan (1992).

For computational purposes, the integrals are approximated
numerically by a summation of contributions from the surround-
ing particles in the domain:

f(s, t) ≈
∑
j

W(s − xj, h)fj�vj (2)

such that∑
j

W(s − xj, h)�vj = 1 (3)

where �vj is the volume associated with particle j. In SPH
the mass, mj , of particle j remains fixed and the density, ρj ,
is allowed to vary. Note that in the classical SPH formulation,
when solving the Navier-Stokes equations the fluid is treated as
compressible. If water is being simulated, then an artificial equa-
tion of state is used (Monaghan 1994); alternatively some authors
have considered incompressible formulations solving a pressure-
Poisson equation (Shao and Lo 2003, Gotoh et al. 2004, Shao
2005, Lee et al. 2008). In general, the volume is replaced by
�vj = mj/ρj in such a way that Eq. (2) becomes

f(s, t) ≈
∑
j

mj

ρj
W(s − xj, h)fj (4)

2.3 Moving Least-Squares interpolant

An alternative approach to derive SPH is using a moving least-
square (MLS) approximation (Belytschko et al. 1996, Dilts
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1999), described recently in Dalrymple et al. (2009). Given a
set of irregularly spaced data denoted f(xi) for i = 1, . . . , N, the
interpolating function at any value of s is

fp(s) =
M∑
j

aj(s)pj(s) ≡ pT(s)a(s) (5)

where pT(s) are monomials in the coordinate s and M < N. For
example, in two dimensions, the linear and quadratic bases are
pT(s) = [1, x, y] with M = 3 and pT(s) = [1, x, y, x2, xy, y2]
with M = 6.

The coefficients of the interpolating function, a(s), vary with
location, hence the name “moving”. To find these coefficients
at position s, the sum of the weighted squared errors between
the interpolating function for each position xi and data fi is
computed:

Err(s) =
N∑
i=1

W(s − xi)(pT(xi)a(s)− fi)
2 (6)

where W(s − xi) is a weighting function for node i that decays
with the distance from the node to position s. Coefficients a(s) are
calculated by minimizing the mean-squared error with respect to
those coefficients.

∂E

∂a
= A(s)a(s)− B(s)f = 0 (7)

where

fT = (f1, f2, . . . , fN) (8)

P =



p1(x1) p2(x1) · · · pM(x1)

p1(x2) p2(x2) · · · pM(x2)
...

...
...

...

p1(xN) p2(xN) · · · pM(xN)


 (9)

W(s) =



W(s − x1) 0 · · · 0

0 W(s − x2) · · · 0
...

...
...

...

0 0 · · · W(s − xN)


 (10)

Solving, a(s) = A−1(s)B(s)f the local approximation at s is
then given by Eq. (5).

The simplest interpolation is based on using only the first con-
stant monomial, which is simply fitting a constant locally; this
results in

a =
∑

j W(s − xj, h)fj∑
j W(s − xj, h)

(11)

and, consequently,

f(s, t) =
∑
j

W(s − xj, h)∑
k W(s − xk, h)

fj(t) (12)

which is usually known as the Shepard interpolant. More sophis-
ticated local fitting involves linear or higher order monomials
which results in the use of matrix inversions for the fitting, e.g.,
Colagrossi and Landrini (2003).

2.4 Kernels

According to Monaghan (1982), the kernel is required to satisfy
the following conditions

W(s − x, h)〉0 over the domain v. (13.1)

W(s − x, h) = 0 outside the domain v. (13.2)∫
v

W(s − x, h)dv = 1 (partition of unity). (13.3)

W(q, h) decreases monotonically with distance

q = ‖s− x‖/h. (13.4)

W(q, h) → δ(q) when h → 0, being δ a delta function.

(13.5)

According to Belytschko et al. (1996) the last condition is
unnecessary since any realistic function with compact support
and satisfying the four first conditions approaches a delta func-
tion. In addition, the limit h → 0 is never reached in real
computations.

There are a variety of possible weighting functions (see
Liu and Liu (2003) for a complete description). Gingold and
Monaghan (1977) use a Gaussian kernel, which is considered to
be the first “golden rule” of SPH (Monaghan 1992). Neverthe-
less, this kernel is C−1, since it is not equal to zero at any finite
distance as pointed out by Belytschko et al. (1996). A renormal-
ized Gaussian kernel with a cut-off limit (3h) to match the third
property is used in (Colagrossi and Landrini 2003, Landrini et al.
2007, Delorme et al. 2008). Dalrymple and Rogers (2006) use a
quadratic kernel previously defined by Johnson et al. (1996),
which has no inflection in its first derivative, in such a way
that the force between particles increases continuously when
decreasing the inter-particle spacing. For the propagation of non-
linear waves, Rogers and Dalrymple (2008) demonstrated that
using a quadratic kernel and its linear gradient still preserves the
nonlinear free-surface wave properties. Possibly, the most com-
monly used kernel is the cubic-spline kernel (see, for example,
Monaghan and Kos 1999, Gomez-Gesteira and Dalrymple 2004,
Souto-Iglesias et al. 2004, Shao 2005, Gomez-Gesteira et al.
2005, Souto-Iglesias et al. 2006, Crespo et al. 2007b, Crespo
et al. 2008)). Other authors prefer higher order kernels, as the
fourth-order spline used by Violeau and Issa (2007). The ker-
nel used in the Moving Particle Semi-implicit method (MPS)
(Koshizuka et al. 1995) depends on q−1, in such a way that both
the kernel and its first derivative, which is proportional to the
force in Navier-Stokes equation (to be shown later), diverge when
the inter-particle space tends to zero. In general, the accuracy of
the SPH interpolation increases with the order of the polynomial
used in the weighting function (Capone et al. 2007). However, the
computational time also increases with the order of the kernels.
The quintic kernel used by Lucy (1977) and Wendland (1995) can
constitute a good choice since it provides a higher order of inter-
polation with a computational cost comparable to the quadratic
kernel.
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2.5 Derivatives

One of the main advantages of SPH is that a differentiable inter-
polant of any function can be constructed from its values at the
particles simply by using a differentiable kernel in the summa-
tion process. So, given a scalar function A, its gradient can be
calculated as

∇Ai(s, t) =
∑
j

mj

ρj
∇W(s − xj, h)Aj (14)

But, following Monaghan’s second golden rule of SPH (Mon-
aghan 1992) the density should be placed inside operator. So,
using

ρ∇A = ∇(ρA)− A∇ρ (15)

the gradient of A at particle i can be calculated from

∇Ai(s, t) =
∑
j

mj

ρj
(Aj − Ai)∇W(s − xj, h) (16)

A similar expression can be used to calculate the divergence
of any vectorial function (e.g. velocity).

div(ui) =
∑
j

mj

ρj
(uj − ui)∇W(s − xj, h) (17)

2.6 SPH improvements

The SPH discrete summation procedure can generate impor-
tant inaccuracies in the vicinity of the boundaries and close to
free-surfaces, where the normalization condition is not fulfilled.
Considerable effort has been devoted to overcome this problem,
which has mainly concentrated on approaches that either corrects
the kernel and/or its first derivative, or by performing density fil-
ters, which can help to stabilize the pressure field. Note that
for the sake of clarity the kernel will be denoted Wij instead of
W(s − xj, h) from now on when used in discrete notation.

2.6.1 Density filters
While the kinematics of SPH simulations is generally realistic,
the pressure field of the particles can exhibit large pressure oscil-
lations, which can be particularly important in the near boundary
areas and close to free-surfaces. One of the most straightfor-
ward and computationally least expensive methods to smooth
out pressure oscillations is to perform a filter over the density of
the particles and to re-assign a density to each particle as done
by Colagrossi and Landrini (2003) following Belytschko et al.
(1998) and Dilts (1999). Two orders of correction are usually
considered.

2.6.1.1 Zeroth order – Shepard filter
The Shepard filter is a quick and simple correction to the density
field, and the following procedure is applied every m (= 20–50)

time steps

ρnew
i =

∑
j

ρjW̃ij

mj

ρj
=
∑
j

mjW̃ij (18)

where the kernel has been corrected using a zeroth-order
correction:

W̃ij = Wij∑
j Wij

mj

ρj

(19)

First order – Moving Least Squares (MLS) The Moving Least
Squares (MLS) approach was developed by Dilts (1999) and
applied by Colagrossi and Landrini (2003). The method is a first-
order correction so that the linear variation of the density field
can be exactly reproduced:

ρnew
i =

∑
j

ρjW
MLS
ij

mj

ρj
=
∑
j

mjW
MLS
ij (20)

The corrected kernel is evaluated as follows:

WMLS
ij = β(xi) · (xi − xj)Wij (21)

so that, for example, in 2-D

WMLS
ij = [β0(xi)+ β1x(xi)(xi − xj)+ β1z(xi)(zi − zj)]Wij

(22)

where the correction vector β is given by

β(xi) =

 β0

β1x

β1z


 = A−1


1

0
0


 (23.1)

A =
∑
j

WijÃ
mj

ρj
(23.2)

Ã =

 1 (xi − xj) (zi − zj)

(xi − xj) (xi − xj)
2 (zi − zj)(xi − xj)

(zi − zj) (xi − xj)(zi − zj) (zi − zj)
2




(23.3)

Similar to the Shepard filter the density correction should be
applied every m time steps.

2.6.2 Kernel and kernel gradient corrections
Some kernel corrective terms for improving the accuracy of ker-
nel and kernel gradient estimations on a set of interpolation points
are available in the literature (Belytschko et al. 1998, Bonet and
Lok 1999, Vila 1999, Chen and Beraun 2000). Here we will
describe some of them. Strictly speaking, operations that correct
the kernel gradient no longer preserve the momentum conserving
properties of the SPH method (Vaughan et al. 2008); however,
the potential gain in accuracy and stability means that these
techniques still possess unique attractions (Oger et al. 2007).

2.6.2.1 Kernel correction
The method was proposed by Bonet and Lok (1999) and, in an
alternative form, by Liu et al. (1997). The kernel is modified
to ensure that polynomial functions are exactly interpolated up
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to a given degree. In spite of the first-order correction (linear
correction) is described in detail in Bonet and Lok (1999), the
same authors consider that the linear correction is unsuitable
for computational purposes. They also propose using constant,
rather than linear, correction. So, a vectorial variable (fi) can be
expressed as

fi =
∑

j

mj

ρj
fjWij∑

j

mj

ρj
Wij

(24)

2.6.2.2 Kernel gradient correction
The corrected kernel gradient ∇̃Wij should be used to calculate
the forces in the equation of motion instead of the normal kernel
gradient ∇Wij , being

∇̃Wij = Li∇Wij (25.1)

Li = M−1
i (25.2)

Mi =
num∑
j

mj

ρj
∇Wij ⊗ (xi − xj) (25.3)

where num is the number of particles interacting with particle i.
Considering, for the sake of clarity, a 2D medium, the diagonal

elements of Mi are defined positive since

∇Wij = dW

dr

1

rij
(xi − xj) (26)

with rij = ‖xi − xj‖ resulting in

Mi(1, 1) =

−

num∑
j=1

mj

ρj

dW

dr

1

rij
(xi − xj)

2


 (27)

with dW/dr < 0.
The same can be proved for

Mi(2, 2) =

−

num∑
j=1

mj

ρj

dW

dr

1

rij
(zi − zj)

2


 (28)

On the other hand, Mi is symmetric since

Mi(1, 2) = Mi(2, 1) = −

num∑
j=1

mj

ρj

dW

dr

1

rij
(xi − xj)(zi − zj)




(29)

Note that matrix M and its inverse L are equal to the identity
matrix when the particle i is placed far from the boundaries or
the free- surface. In this case, there is no real correction on the
kernel gradient (on the force). Nevertheless, when the particle i is
placed near the boundaries or the free-surface, the distribution of
particles around it is not symmetric anymore. Thus, both M and
L are different from the identity matrix and the kernel gradient
is corrected following[∇̃Wx

∇̃Wz

]
=
[
Li(1, 1) Li(1, 2)
Li(2, 1) Li(2, 2)

] [∇Wx

∇Wz

]
(30)

where the subscripts x and z represent the spatial coordinates.
Note that the correction is anisotropic since the terms Li(1, 2)
and Li(2, 1) involve both spatial coordinates.

2.6.2.3 Kernel and kernel gradient correction
A simple corrective kernel and kernel derivative correction tech-
nique was developed by Chen et al. (1999) combining a standard
SPH approach and a Taylor series expansion. In 1-D, using a
Taylor series expansion in the neighborhood of x, the corrected
kernel approximation for a variable fi (e.g. the velocity) is

fi =
∑

j

mj

ρj
fjWij∑

j

mj

ρj
Wij

(31)

and the corrective estimate of first-order derivatives becomes

Ai∇fi = Fi (32)

where

Ai =
∑
j

mj

ρj

(
xj − xi

)∇iWij (33)

and

Fi =
∑
j

mj

ρj

(
fj − fi

)∇iWij (34)

The method, which can be used for vectors and scalars, can be
generalized to higher space dimensions (Chen and Beraun 2000).
Thus, for example, in 2-D, the correction is obtained by solving
the equation

Aµνifνi = Fµi (35)

where

Aµνi =
∑
j

mj

ρj

(
νj − νi

)
Wij,µ (36)

and

Fµi =
∑
j

mj

ρj

(
fj − fi

)
Wij,µ (37)

in which µ and ν represent the spatial coordinates x and z, and
Wij,µ = ∂Wij/∂µj .

3 Governing equations

3.1 Introduction

In general, the fluid is considered slightly compressible in SPH,
although some authors have developed an incompressible ver-
sion of the method as mentioned above (Shao and Lo 2003,
Gotoh et al. 2004, Shao 2005, Lee et al. 2008). Here we will
describe the slightly compressible version of SPH, which is the
most commonly used approach for modeling water flows in SPH.

3.2 Conservation of mass

The conservation law for a compressible fluid can be written in
Eulerian form as

∂ρ

∂t
+ div(ρu) = 0 (38)

In Lagrangian form, the mass of fluid associated to node i is
constant as mentioned above. Thus, the previous expression can
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be re-written in Lagrangian form as

1

ρ

dρ

dt
= −div(u) (39)

which can be integrated over the domain v after multiplying both
sides of the equation by the kernel∫

ν

1

ρ

dρ

dt
W(s − x, h)dv = −

∫
v

div(u)W(s − x, h)dv (40)

By the reproducing nature of the kernel, Eq. (1), the left side
is (1/ρ)(dρ/dt) evaluated at position s and the right side can be
rewritten as

−
∫
v

[div(W(s − x, h)u)− u∇W(s − x, h)]dv (41)

Using the Gauss’s theorem

1

ρ

dρ

dt
=
∫
v

u∇W(s − x, h)dv−
∫
S

W(s − x, h)un dS (42)

where the last integral is a surface integral over the surface S that
encloses the volume v and n is a unit vector normal to the surface
and pointing outward. This integral can be neglected when the
surface is far from point s since the kernel function goes to zero
rapidly. In simulations, this condition is often not met as pointed
out by Belytschko et al. (1998), which can lead to problems in
accuracy.

In continuous form the equation becomes

1

ρ

dρ

dt
=
∫
v

u∇W(s − x, h)dv (43)

which can be rewritten in discrete form as(
1

ρ

dρ

dt

)
i

=
∑
j

mj

ρj
uj∇Wij (44)

Due to the symmetry of the gradient, its first derivative fulfills
∇iWij = −∇jWij which results in(

1

ρ

dρ

dt

)
i

= −
∑
j

mj

ρj
uj∇iWij (45)

Once again, Monaghan’s second golden rule should be
invoked to obtain an equation where the evolution of the vari-
able under scope depends on the difference between particles i
and j. From Eq. (14) the gradient of a constant is zero, so

0 =
∑
j

mj

ρj
∇iWij (46)

Multiplying by ui, this zero term can be added to Eq. (45) to
obtain(

dρ

dt

)
i

= ρi
∑
j

mj

ρj
(ui − uj) · ∇iWij (47)

A different interpolant

ρi =
∑
j

mj∇iWij (48)

which permits calculating the density as the summation over the
neighboring particles instead of solving a new differential equa-
tion. Nevertheless, this last equation is not the best option in fluid
calculations since it leads to a density drop near the free surface

of the fluid as stated by Monaghan (1992). On the other, using
Eq. (47) the density varies when the particles move relative to
each other.

3.3 Conservation of momentum

The equation that governs the fluid motion can be derived in
particle form using the same method as considered for the con-
servation of mass. If we consider the system in the absence of
viscosity (a special treatment for viscosity will be considered
later), the equation of motion in its Lagrangian form becomes

du
dt

= − 1

ρ
∇p− g (49)

The following change of variable can be considered to
symmetrize the pressure gradient

∇p
ρ

= ∇
(
p

ρ

)
+ p

ρ2
∇ρ (50)

In such a way that the equation of momentum for particle i
becomes(

du
dt

)
i

= −
∑
j

mj

(
pj

ρ2
j

+ pi

ρ2
i

)
∇iWij − g (51)

This expression is, possibly, the most commonly used to
describe the gradient of pressure in SPH although other authors
(Bonet and Look 1999) consider that the expression

−
∑
j

1

ρiρj
mj(pj + pi)∇iWij (52)

for the pressure gradient is variationally consistent with the use
of Eq. (39).

3.4 Viscosity

The viscosity plays a key role in preventing instabilities in fluid
motion, where single particles can move in a rather chaotic way.
These instabilities can be prevented by means of viscous terms,
which should be added to the previous momentum equation. Dif-
ferent viscosity treatments have been considered in the literature,
an overview on numerical modeling of complex turbulent free-
surface flows within the SPH context can be seen in Violeau and
Issa (2007). Here we will only refer to the most commonly used
methods to describe viscosity free-surface flows.

3.4.1 Artificial viscosity
The artificial viscosity proposed by Monaghan (1992) has been
used very often due to its simplicity. In SPH notation, the
momentum equation can be written as

dui
dt

= −
∑
j

mj

(
pj

ρ2
j

+ pi

ρ2
i

+�ij

)
∇iWij − g (53)

where �ij is the viscosity term:

�ij =




−αcijµij
ρij

uij xij < 0

0 uij xij > 0
(54)
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with µij = (huij xij)/(r2
ij + η2); where, uij = ui − uj and xij =

xi − xj , cij = (cj + ci)/2 being the mean speed of sound. The
parameter η2 = 0.01 h2 is included to avoid singularities and α is
a free parameter that can be changed according to each problem,
thus making the approach empirical. There was an additional term
depending on µ2

ij in the original formulation (Monaghan 1992)
which is not usually considered in fluid problems (Monaghan
1994).

3.4.2 Laminar viscosity
An additional formulation for viscosity was proposed by Morris
et al. (1997) to solve problems involving low Reynolds number
flows. The momentum equation can then be re-written as

dui

dt
= −

∑
j

mj

(
pj

ρ2
j

+ pi

ρ2
i

)
∇iWij

− g +
∑
j

mj

(
4υ0xij∇iWij

(ρi + ρj)(r
2
ij + η2)

)
uij (55)

where, in general, the kinetic viscosity of laminar flow υ0 is on
the order of 10−6 m2s−1 for water.

3.4.3 Laminar viscosity and Sub-Particle Scale (SPS)
turbulence

The artificial viscosity represents viscosity in a phenomenologi-
cal way and prevents particles from interpenetration. In addition,
it helps to keep numerical stability of the computational scheme.
Nevertheless, the method is too dispersive affecting shear and,
even, fluid propagation, especially when the flow is not dom-
inated by its gravitational component. On the other hand, the
laminar viscosity proposed by Morris et al. (1997) is accurate
for low Reynolds number flows but does not capture the main
features of the flow when turbulent terms are involved.

Using the concepts of Large Eddy Simulation (LES), the Sub-
Particle Scale (SPS) approach to modeling turbulence was first
described by Gotoh et al. (2001) to represent the effects of tur-
bulence in their MPS model and adapted to SPH by Shao and
Gotoh (2005) and Dalrymple and Rogers (2006). SPS scaling for
a compressible fluid requires a spatial averaging methodology as
Favre-averaging. The momentum conservation equation can be
written as

du
dt

= − 1

ρ
∇p− g + υ0∇2u + 1

ρ
∇ τ̃ (56)

where the three first terms on the right hand side (pressure gra-
dient, gravitation and laminar terms) can be treated following
Eq. (55) and τ̃ represents the SPS stress tensor given by

τ̃µν = ρ̄

(
2υtS̃µµ − 2

3
S̃κκδµν − 2

3
CI�l

2δµν

)
(57)

where CI = 0.0066, following (Dalrymple and Rogers 2006);
�l is the particle-particle spacing and the Favre-filtered rate of
strain tensor is

S̃µν = −1

2

(
∂uµ

∂xν
+ ∂uν

∂xµ

)
(58)

A standard Smagorinsky model (Smagorinsky 1963) is used
to determine the eddy viscosity

υt = [min(Cs�l)]2|S̃| (59)

being Cs = 0.12 the Smagorinsky constant and the local strain
rate |S̃| = (2SµνSµν)1/2. Thus, the SPS stress can be discretized
in symmetric form as

1

ρi

(
∂τ̃µν

∂xν

)
i

=
∑
j

mj

(
(τ̃µν)j

ρ2
j

+ (τ̃µν)i

ρ2
i

)
∂Wij

∂xν
(60)

3.5 Equation of state

Following (Batchelor 1974, Monaghan 1994), the relation-
ship between pressure and density is assumed to follow the
expression:

p = B

[(
ρ

ρ0

)γ
− 1

]
(61)

where γ is a constant between 1 and 7 (although 7 is used in
most of the oceanic applications) ρ0 = 1000 kg m−3 being the
reference density, usually at the free surface. The main advan-
tage of this approach is that there is no need to solve an additional
partial differential equation for pressure (Poisson equation) that
can become time consuming. In addition, solving the Poisson
equation involves determining the free surface, which is not
straightforward in most of the cases, especially in those with
wave breakings and loss of continuity in the fluid. Unfortu-
nately, these are precisely the cases where the SPH can show
a higher performance compared to grid based methods. Nev-
ertheless, several authors (Lee et al. 2008, Lee et al. 2009)
have considered this incompressible approach with accurate
results.

The speed of sound depends on the derivative of pressure with
respect to density

c2(ρ) = ∂p

∂ρ
= Bγ

ρ0

(
ρ

ρ0

)γ−1

(62)

In such a way that, B = c2
0ρ0/γ, c0 being the speed of sound at

the reference density. Realistic speeds of sound cannot be used for
computational purposes since the associated time step imposed
by the Courant-Friedrich-Levy is too small. Following Monaghan
and Kos (1999), the speed of sound can be artificially slowed
with accurate results in fluid propagation (not in sound propa-
gation). Nevertheless, the speed of sound should be, at least, 10
times higher than the maximum fluid velocity expected in the
flow (Monaghan and Kos 1999). Monaghan (1994) also indi-
cates for wave problems that the sound speed in models should
be at least 10 times the water wave speed. Further they show that
the value of γ is not very important once that criterion is met.
In spite of the fluid being treated as weakly compressible, other
authors have preferred alternative incompressible formulations
as we mentioned above.



Journal of Hydraulic Research Vol. 48 Extra Issue (2010) State-of-the-art of classical SPH for free-surface flows 13

3.6 Moving the particles

Particles are moved using the XSPH variant due to Monaghan
(Monaghan 1989).

dxi
dt

= ui + ε
∑
j

m
j

ρij
uijWij (63)

where 0 ≤ ε ≤ 1 is a constant and ρij = (ρi + ρj)/2. This
method moves the particle with a velocity that is close to the
average velocity in its neighborhood.

3.7 Tensile instability

Most of the kernels described in section 2.3 have a maximum in
their first derivative in such a way that the forces between particles
go to zero in the equation of motion with decreasing inter-particle
spacing. Note that both the body and shear forces in the momen-
tum equation depend on the first derivative of the kernel. This
so-called tensile instability manifests itself as particles clumping
together unrealistically. In the case of fluids, a tensile correction
proposed by Monaghan (2000) removes the instability by adding
an artificial pressure.
pk

ρ2
k

→ pk

ρ2
k

(1 + Rk�
n) (64)

where the subscript k represents the particle (i or j), n is an integer
(usually 4), � = W(q)/W(qmin) is the ratio between the kernel
at q (the present interparticle spacing) and at qmin, the distance at
which the first derivative of the kernel reaches the local minimum;
and Rk is a coefficient.

Rk =
{

0.006 if pk > 0

0.6 if pk < 0
(65)

4 Implementation

4.1 Boundary conditions

The boundary conditions do not appear in a natural way in the
SPH formalism. When a fluid particle approaches a solid bound-
ary, only the particles located inside the domain are included
in the SPH interpolants, without any interaction from the out-
side. The incompleteness of the kernel can generate unrealistic
effects, due to the different nature of the variables to solve, since
some, such as the velocity, fall to zero when they approach
the boundaries, while others, such as the density, do not. The
different solutions to avoid boundary problems consist of the
creation of several virtual particles that characterize the limits of
the domain. Basically, three different types of boundaries can be
distinguished:

Ghost particles. Randles and Libersky (1996) considered
boundary particles whose properties, included their position, vary
each time step. When a real particle is close to a contour (at a
distance shorter than the kernel smoothing length) then a virtual
(ghost) particle is generated outside of the system, constituting
the mirror image of the incident one with respect to the boundary.
Both particles have the same density and pressure, but opposite

velocity, so creating a repulsion mechanism. One of the main
drawbacks is that the number of boundary particles varies each
time step, which complicates its implementation in the code. In
addition, the real position of the boundary with respect to which
the ghost particle will be created is difficult to be univocally
determined in complex geometries. Indeed, modeling complex
geometries with ghost particles, in particular sharp edges and
arbitrarily curved surfaces in 3-D, represents the biggest draw-
back of this technique. Similar to the idea of ghost particles,
Hieber and Koumoutsakos (2008) use regularized SPH (rSPH) to
incorporate the Immersed Bounday Method (IBM), however, at
present this approach requires the non-existence of a free-surface.

Repulsive particles. This type of boundary technique is due
to Monaghan (1994). In this case the particles that constitute the
frontier exert central forces on the fluid particles, in analogy with
the forces among molecules. Thus, for a boundary particle and
a fluid particle separated a distance r, the force for unit of mass
has the form given by the Lennard-Jones potential. In a similar
way, other authors (Peskin 1977) express this force assuming the
existence of forces in the boundaries, which can be described
by a delta function. This method was refined in Monaghan and
Kos (1999) by means of an interpolation process, minimizing the
inter-spacing effect of the boundary particles on the repulsion
force of the wall. Finally, the method proposed by Monaghan
and Kos (1999) can be modified to adjust the magnitude of the
force according to the local water depth and velocity of the water
particle normal to the boundary. This method is described in detail
in Rogers and Dalrymple (2008). The calculation of normals and
tangents to the surface is not easy in complex geometries. In
addition, the dependence of the force on water depth and velocity
can be a source of numerical instabilities. Similar to this approach
there is also the work of Kulasegaram et al. (2004) who use
the variational approach as the initial start for a new boundary
condition which eventually uses an empirical function to account
for the lack of complete kernel support.

Dynamic particles. These particles verify the same equations
of continuity and of state as the fluid particles, but their posi-
tion remains unchanged or is externally imposed. An interesting
advantage of these particles is their computational simplicity,
since they can be calculated inside the same loops as fluid parti-
cles. In this method, boundary particles are forced to satisfy the
same equations as fluid particles. Thus, they follow the continuity
equation and the equation of state described in previous section
and they are included in the momentum equation of the fluid
particles. However, they do not move according to a momen-
tum equation but they remain fixed in position (fixed boundaries)
or move according to some externally imposed function (moving
objects like gates, and wavemakers), Dalrymple and Knio (2001).

These particles have been previously used to study the inter-
action between waves and coastal structures (Gómez-Gesteira
and Dalrymple 2004, Gómez-Gesteira et al. 2005, Crespo et al.
2007b, Crespo et al. 2008). The method is described in detail in
Crespo et al. (2007a) and Gómez-Gesteira et al. (2009).

The main problem of this boundary is the evolution from the
initial condition. When the particles start moving and separate
from the walls the density decreases locally, which generates
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a pressure decrease that results in a “pseudo-viscosity” forcing
small groups of particles to remain stuck on the wall. This also
has the effect of generating a larger than physical boundary layer.
Finally, the technique does not guarantee that the fluid particles
do not penetrate through the boundary in an unphysical way —
a problem that does not exist with the other techniques.

In summary, the creation of realistic boundary conditions is
still an open topic in SPH methods and new research should
be conducted. Several attempts to improve the accuracy of the
boundary treatment have been carried out during the last few
years, such as the method proposed by Marongiu et al. (2007) to
simulate flows on Pelton turbines being one the most promising
advances.

4.2 Variable time step

To march the simulations forward in time, all SPH schemes
use time integration schemes which should be at least second-
order accurate since the particles are moving in space. In the
results presented herein, either a second-order predictor-corrector
(Monaghan 1994) or a Verlet scheme is used (Verlet 1967). The
time step is strongly dependent on the flow properties. Thus, for
example, the time step decreases when the fluid collides with
a fixed boundary, since the forces increase suddenly; or after
the formation of a water splash, where the velocities increase.
In general, the time-step control should be dependant on the
CFL condition, the forcing terms and the viscous diffusion term
(Monaghan 1989).A variable time step�t is calculated according
to Monaghan and Kos (1999):

�t = C · min(�tf ,�tcv) (66.1)

�tf = min
i
(
√
h/|fi|) (66.2)

�tcv = min
i

h

cs + max
j

∣∣∣ huijxij
r2ij

∣∣∣ (66.3)

Here �tf is based on the force per unit mass |fi|, and �tcv
combines the Courant and the viscous time-step controls. C is
a constant on the order of 0.1.

There are a variety of methods to march the solution of SPH
equations in time. In general, it is advisable to use at least a
second order accurate scheme in time. For a description of dif-
ferent schemes usually considered in SPH the reader is referred
to Dalrymple et al. (2009) and Gomez-Gesteira et al. (2009).

4.3 Computational efficiency: link list

Following Monaghan and Lattanzio (1985) the computational
domain is divided into square cells of side nh, where n depends
on the particular choice of the kernel as mentioned above. Thus,
for a particle located inside a cell, only the interactions with the
particles of neighboring cells need to be considered. In this way
the number of calculations per time step diminishes from N2

operations to the order of N, being N the number of particles.
This results in considerable saving in computational time. For a

complete description of link lists the reader is referred toViccione
et al. (2008).

5 Results

5.1 Introduction

As we mentioned above, different test cases will be used to depict
the main features of SPH method and its capability to repro-
duce experimental results accurately. In particular, the model
SPHysics (Gomez-Gesteira et al. 2009) will be considered to run
the different study cases.

5.2 2D Dam break over dry bed

SPHysics will be used to analyze the collapse due to the gravity
of water column in a tank. A complete description of the exper-
iment (Fig. 1) can be obtained from Koshizuka and Oka (1996).
The same setup was used by Violeau and Issa (2007) and Crespo
et al. (2007a) to check the accuracy of their SPH codes. The tank
is 4 m long, the initial volume of water is 1 m long and its height
2 m. The numerical experiment will be considered 2D since the
third dimension (the width) is negligible for the phenomenon
under scope.

The system was solved with a predictor-corrector algorithm
(Monaghan 1989), using a cubic-spline kernel (Monaghan and
Latanzio 1985), dynamic boundary conditions (Crespo et al.
2007a), artificial viscosity, α = 0.5, and the XSPH correction
(Monaghan 1989) with ε = 0.5 to smooth gradients in fluid
particles movement. Fluid particles were initially placed on a
staggered grid with zero initial velocity. Nodes of the grid are
located at R = l dx i + mdzk with a two-point basis (0, 0) and
(dx/2, dz/2) referred to the corner defined byR. l andm are inte-
gers, i, k are unit vectors in x- and z-directions. Fixed particles
(bottom and walls) were placed in two rows forming a staggered
grid with the same interspacing as the fluid particles.

From now on, the standard case will correspond to dx = dz =
0.012 m, h = 0.0156 m (29,723 particles) and without density fil-
ter or kernel correction. Additional cases will be run for different
discretizations (h), density filters and kernel corrections.

Figure 2 shows the velocity magnitude (standard case) at dif-
ferent instants of dam evolution where the color of each particle
corresponds to its instantaneous velocity. The colorbar is com-
mon to all snapshots. Distances are in meters and velocities in
meters per second. At t = 0.40 s the dam break has evolved

2 m

4 m

1 m

Figure 1 Initial configuration of the water column and the tank
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Figure 2 Collapse of a water column in a tank simulated with SPH model plotting the particle velocities

from its initial square-shaped configuration, forming a toe where
the maximum velocities can be observed. The toe velocity evo-
lution will be compared with experimental data in next figure.
At t = 0.60 s the wave front has approached the right wall. In
t = 0.80 s the water has collided with the right wall and generated
a splash. Note that water velocity in the bulk of the fluid is much
faster than at the splash zone. At t = 1.00 s water is observed to
climb onto the right wall.

The movement of the fluid inside the box is dependent on the
fluid movement near the dam toe. Figure 3 shows how SPHysics

Figure 3 Dam break over a dry bed. Lines represent the X position
of the dam toe for different numerical discretizations (h = 0.0156 m,
h = 0.0260 m and h = 0.0390 m). Dots represent experimental data

fits the experimental position of the toe (X in meters) provided by
Koshizuka and Oka (1996) in an accurate way. Dots correspond to
experimental values and solid lines to different realizations of the
same experiment with different smoothing lengths. In particular,
h = 0.0156 m (29723 particles), h = 0.0260 m (11203 particles)
andh = 0.0390 m (5156 particles) were considered with a similar
accuracy in the comparison with experimental data. Actually, the
square of the correlation coefficient between experimental and
numerical data, R2, is higher than 0.99 in all cases.

The observed difference between numerical and experimental
results can be quantified by means of two statistical parameters.

Ar =

∑

i

(Varnum
i )2

/∑
j

(Varexp
i )2




1/2

(67.1)

Pd =

∑

i

(Varnum
i − Varexp

i )2

/∑
j

(Varexp
i )2




1/2

(67.2)

where “Var” is the variable under scope (horizontal velocity of
the dam toe in this case) and the superscripts refer to experi-
mental or numerical values. The first parameter, Ar, represents
the relative amplitude of both signals, in such a way that a per-
fect agreement between experimental and numerical data would
result in Ar → 1. On the other hand, the second parameter, Pd ,
is the phase difference between both signals, a perfect agree-
ment would result in Pd → 0. Table 1 summarizes the values
of Ar and Pd obtained for the different smoothing length val-
ues. Although both statistical parameters show a satisfactory
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Table 1 Statistical parameters Ar and Pd for different
smoothing lengths (h). The method without density
filter was used in the three cases

h = 0.0156 m h = 0.0260 m h = 0.0390 m

Pd 0.09 0.10 0.11
Ar 0.94 0.93 0.91

Figure 4 Dam break over a dry bed. Lines represent the X position of the
dam toe for different numerical approaches (without density filter, with
a Shepard density filter and with a MLS density filter). Dots represent
experimental data

agreement between numerical and experimental solutions, results
show to be more accurate when decreasing the smoothing length.
One of the important features of SPH method is that it provides
reliable results, at least referred to the toe position, even using a
coarse discretization. Note that the execution time relative to the
coarsest discretization is 2.5 times longer for h = 0.0260 m and
5 times longer for h = 0.0156 m.

As we mentioned above, the pressure field of the particles can
exhibit large pressure oscillations, which can be smoothed out by
performing a filter over the density. First of all, the toe position
was calculated again for the finest discretization (h = 0.0156 m)
without density filter (standard case), with a Shepard filter and
with a MLS filter. Filters were only used every m = 40 time
steps. Figure 4 shows how the three water front locations are
practically equal. Actually, the difference between Shepard and
MLS signals is on the order of the numerical roundoff. The three
signals are in good agreement with the experimental data; this
close agreement is because the flow is primarily a gravity-driven
flow and the pressure field during this time in the simulation is
still close to hydrostatic. Nevertheless, the important differences
among the density fields can be observed by comparing Figs. 5
(without density filter), 6 (with a Shepard filter) and 7 (with a
MLS filter). Each figure reproduces three different instants of
dambreak propagation. In the first frame, t = 0.70 s, the toe
is colliding with the front wall of the box, giving rise to local
increase of density. Note that the density increase immediately
results in pressure increase following Eq. (61). The formation of

Figure 5 Dam break evolution and collision with the front wall.
Calculations were run without density filter. The color of each particle
corresponds to its instantaneous density in kg m−3

a jet is observed in the second, t = 0.79 s, and third, t = 0.88 s,
frames.

Important density oscillations can be observed in the unfiltered
solution (Fig. 5). These oscillations are especially important near
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Figure 6 Dam break evolution and collision with the front wall. Calcu-
lations were run with a Shepard density filter. The color of each particle
corresponds to its instantaneous density in kg m−3

Figure 7 Dam break evolution and collision with the front wall. Cal-
culations were run with a MLS density filter. The color of each particle
corresponds to its instantaneous density in kg m−3
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Table 2 Statistical parameters Ar and
Pd for the method without density filter
and the filtered solutions (Shepard and
MLS). The last column corresponds to
the case without density filter but with
a corrected kernel gradient (CKG). The
same smoothing length (h = 0.0156 m)
was used in all calculations

no filter Shepard MLS CKG

Pd 0.09 0.08 0.08 0.08
Ar 0.94 0.95 0.95 0.95

the lower right corner, which correspond to the region where
water collides with the container, given rise to the highest pres-
sure values. These fluctuations tend to destroy the quality of the
calculated fields, especially when considering low viscosity val-
ues, Note that a rather high artificial viscosity (α = 0.5) was used
in the case under scope, which helped to stabilize the solution.
The use of more realistic viscosity values would lead to unphysi-
cal density and pressure fields. The density fields obtained using
Shepard (Fig. 6) and MLS (Fig. 7) filters are similar and less noisy
than the ones obtained without filters (Fig. 5). Table 2 summarizes
the values of Ar and Pd obtained for the different methods con-
sidering the same smoothing length (h = 0.0156 m). Although
both statistical parameters show a satisfactory agreement between
numerical and experimental solutions, the filtered methods show
to be more accurate than the unfiltered one.

Apparently, the main features of the three solutions (the
free-surface profile) remain practically unchanged, only small
differences in shape can be observed near the jet tip in the second
and third frames. Nevertheless, these initially small differences
can evolve in time giving rise to unphysical results as depicted in
Fig. 8, where the upper row corresponds to the unfiltered method,
the middle one to the Shepard filter and the lower one to the MLS
filter. Apart from the previously mentioned fluctuations in density
field, the shape of the jet created after the overturning depends
on the method. Thus, at t = 1.80 s the jet height is smaller in the
unfiltered solution. At t = 2.40 s the jet in the unfiltered solution
has suffered unphysical fragmentation and is different both in
shape and position to the ones observed in the cases with density
filters. In addition, the wave profile generated after overturning
is also different. Bubble capture generated by two consecutive
breakings of the reflected wave is reproduced by Shepard and
MLS method but not by the unfiltered method. A small num-
ber of particles remain attached to the front wall (t = 2.40 s)
in all methods due to the particular choice of boundary particles
(Crespo et al. 2007a).

The importance of local density fluctuations can be quantified
following

�ρ = 1

Md

M∑
i=1



∑Md

j=1
j 	=i

|ρi − ρj|Wij

∑Md
j=1
j 	=i
Wij


 (68)

where Md refers to all particles inside a particular area. In par-
ticular, the area close to the lower right corner was considered,

3.5 m ≤ xi ≤ 4.0 m and 0.0 m ≤ zi ≤ 0.5 m. Note that all
interactions at a distance higher than 2h immediately cancel out
since the kernel Wij is zero. Figure 9 shows the mean density
fluctuations for the three methods before and after the collision
with the right wall of the container (∼ 0.7 s). The fluctuations are
in average 5 times higher in the case without density filter (solid
line) than in the cases with Shepard (dashed line) or MLS (dotted
line) filters.

In addition to the good accuracy to reproduce experimental
results, the method can be observed to conserve the total energy
which is the sum of kinetic, potential and thermal energy. The
thermal energy associated to each particle can be calculated every
time step using the expression given by (Monaghan 1992)

dei

dt
= 1

2

∑
j

mj

(
pj

ρ2
j

+ pj

ρ2
i

+�ij

)
uij∇iWij (69)

Note that artificial viscosity (Eq. (54)) was considered in this
particular case.

The percentage of energy increment,�E = 100(E(t)−E(t =
0))/E(t = 0), is represented in Fig. 10 for the three cases
described above. The energy increase is similar in the three cases,
although slightly higher (solid line) in the case without density
filter and lower in case with Shepard filter. The highest energy
variation is close to 0.01% in 18000 time steps lying inside the
limits proposed by (Monaghan 1992). The sudden change in gra-
dient in this curve is due to the fluid impact on the right-hand
wall.

Finally, the particular choice of m (the number of time steps
between two consecutive density filters) does not play a key role
in this particular case and similar results can be obtained formval-
ues ranging from 10 to 100 time steps. In general, it is advisable
to use m values on that order of magnitude since higher values
do not smooth out the solution and lower values have an impor-
tant computational cost as previously described by Colagrossi
and Landrini (2003). Apart from accuracy, an important issue is
the computational cost of the density filters. The speed of the
different methods was compared for a run of 3 s in real time with
the smallest smoothing length (h = 0.0156 m) and m = 40. The
method without density filter showed to be about 8% faster than
the rest.

Figure 11 shows the X position of the dam toe for different
numerical approaches. The toe position was calculated again for
the finest discretization (h = 0.0156 m) without kernel correction
(solid line) and with a kernel gradient correction (dashed line).
This correction is expected to improve the fluid description near
the leading edge of the dambreak, due to the deficiency in the
number of particles in that zone. This improvement can be seen
in the last column of Table 2, where the kernel gradient correction
provides an accuracy equal to the one obtained by using density
filters.

5.3 2D Dam break over a wet bed

SPH is an especially well suited method when the complexity
of the phenomenon under investigation increases. Dam break
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Figure 8 Dam break evolution and water overturning. Comparison among the results obtained by means of the three methods: without density filter
(upper row); with Shepard filter (middle row); with MLS filter (lower row). Both the density distribution and the jet and wave profile are observed to
be different in the case without filter
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Figure 9 Mean density fluctuation (in kg m−3) for the three methods
before and after the collision with the front wall in the vicinity of the
right lower corner of the container. Density fluctuations are much higher
in the calculation without density filter (solid line)

Figure 10 Energy change (in percentage) for the three methods. The
method without density filter (solid line) is the worst one in terms of
energy conservation and the method with Shepard filter (dashed line)
the best one

propagation over a dry bed similar to the one analyzed in last
subsection has been previously treated using SPH (Monaghan
1994, Colagrossi and Landrini 2003, Gómez-Gesteira and Dal-
rymple 2004, Violeau and Issa 2007, Crespo et al. 2007b)
showing reasonable accuracy when compared with experiments.
Nevertheless, considerably less attention has been paid to the
study of dam break propagation over wet bed (Gómez-Gesteira
and Dalrymple Crespo et al. 2008, Lee et al. 2008) where the
complexity of fluid motion increases.

The laboratory experiments by Janosi et al. (2004) have been
used to validate the dam break evolution over a wet bed simulated
by SPH. This experiment is one of the validation test cases that
can be found at the SPHERIC website (http://www.sphysics.org).
The sketch of their experimental tank is shown in Fig. 12.
The channel (right part of the sketch), begins at x = 38 cm
and is 955 cm long and 15 cm wide. The bottom and side
walls of the channel were constructed with glass. The lock

Figure 11 Dam break over a dry bed. Lines represent the X position of
the dam toe for different numerical approaches. The solid line correspond
to the case without kernel correction and the dashed one to the one with
kernel gradient correction. Dots represent experimental data

Figure 12 Setup of Janosi et al. (2004) experiment

(left part of the sketch) is 15 cm wide and 38 cm long includ-
ing the lock gate. The lock was initially filled with water until
d0 = 0.15 m. The initial water depth in the channel, d, varied
depending on the experiment. The experiments were recorded by
two charge-coupled device cameras. Experimentally, the gate
was removed from above at approximately constant velocity
(Vgate = 1.5 ms−1).

Once again, the medium will be considered two-dimensional
for computational purposes since the third dimension (the width)
is negligible for the initial phenomenon under scope, namely
the formation of multiply-connected shockwave which eventu-
ally breaks and overturns. Fluid particles were initially placed
on a staggered grid with zero initial velocity. Nodes of the grid
are located at R = l dx i + mdzk with a two-point basis (0, 0)
and (dx/2, dz/2) referred to the corner defined by R. l and m
are integers, i,k are unit vectors in X,Z directions, and dx =
dz = 0.005 m. Fixed particles (bottom and walls) were placed in
two rows forming a staggered grid with dx = dz = 0.005 m and
zero initial velocity. Gate particles were initially placed in a sin-
gle row with a finer interparticle spacing (dx/2, dz/2) to prevent
particle penetration. In most of SPH applications the gate sepa-
rating both domains is instantaneously removed at the beginning
of the calculation. However, experimentally it is known that the
movement of the gate has been observed to play a key role in the
early stages of the movement since its velocity was on the order
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Figure 13 Comparison between experimental (dots) and numerical (tri-
angles) dam-break velocity. Velocity was averaged in space during the
first 3 m in both cases

of magnitude of water displacement. Numerically, the velocities
and positions of the gate particles were externally imposed to
mimic the experimental movement of the gate according to the
constant velocities Vx = 0.0 ms−1; Vz = 1.5 ms−1.

The system was solved with a Verlet time–marching algo-
rithm (Verlet 1967), using a cubic-spline kernel with smoothing
length h = 0.006 m, dynamic boundary conditions (Crespo et al.
2007a), artificial viscosity, α = 0.08 and the XSPH correction
(Monaghan 1989) with ε = 0.5 to smooth gradients in fluid parti-
cles movement. The number of boundary particles was 3,879. The
number of fluid particles depends on the water layer thickness,
d, in the channel before the gate is lifted. According to Crespo
et al. (2008), where a wide range of d values was considered,
the number of fluid particles ranges from 4,484 for dam break
movement on a dry bed to 30,884 with a water layer comparable
to the initial dam break height, d = 0.078 m.

The capabilities of the SPH method to reproduce experimental
results is shown in Fig. 13, were the numerical and experimental
velocities of the leading edge are represented. Experimental and
numerical velocities were spatially averaged along the first 3 m
of the tank. Numerically, the position of the leading edge was cal-
culated every 0.06 s and velocity was obtained by linear fitting.
Both velocities and initial water depths are depicted in a dimen-
sionless form. Velocity is normalized with V = √

gd0 and d/d0

is the ratio between the initial water depth in the channel and lock
region. The normalized velocity is observed to decrease with d.
There is a good agreement between experimental measurements
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Figure 14 Comparison between experimental and numerical profiles of dam-break evolution over wet bed, (d = 0.018 m). Experimental values are
represented by dots and numerical ones by solid lines

(light dots) and numerical results (dark squares) in most of the
cases. Note that SPH velocity for a dry bed is higher than observed
in the experiments, since experiments were not performed on a
real dry bed, due to the impossibility of completely drying the
tank.

An additional comparison between numerical and experimen-
tal results consists in calculating the free surface position. The
experimental free surface was determined from digitized pic-
tures (Janosi et al. 2004). Numerically, the free-surface level is
evaluated by an iterative procedure that searches for any x coordi-
nate the coordinate in z direction where the SPH particle density
equals one half, although this definition may not be unique when
the domain is not simply-connected as in the case of splashing
or over-turning waves. The model is observed to reproduce the
experimental profiles in Fig. 14. The case d = 0.018 was chosen
to compare numerical results (solid) and experiments (dots). The
water initially placed in the lock area pushes the channel water
(first and second frames), generating the “mushroom” jet previ-
ously mentioned by Stansby et al. (1998) and Janosi et al. (2004).
The first and second wave breaking can be observed in the third
and sixth frames. Note that the shape of the front is completely
different from the classical toe observed in dam break propagation
over dry bed since the propagating water front in a completely
dry dam break is a shallow water rarefaction wave (see for exam-
ple the first and second snapshots in Fig. 2). Here, the leading
edge is similar to that previously described in Gomez-Gesteira
and Dalrymple (2004).

The observed difference between numerical and experimen-
tal results can be quantified by means of the two statistical
parameters defined in Eq. (67), where now the variable under
scope is the free-surface position. The good mean results obtained
for d = 0.018 m (Ar = 1.014, Pd = 0.076) prove the accuracy
of the method.

A variable that can also be obtained from SPH calculation is
the vorticity, which can be calculated in lagrangian formalism
following Monaghan (1992)

ωi =
∑
j

mj
vi − vj

ρi
∇iWij (70)

Different instants of dam break propagation can be observed
in Figure 15 for d = 0.018 m where the color of each parti-
cle corresponds to its instantaneous vorticity. The water initially



22 M. Gomez-Gesteira et al. Journal of Hydraulic Research Vol. 48 Extra Issue (2010)

T = 0.35 s

T = 0.50 s

T = 0.65 s

T = 0.80 s

−100 −50 0 50 100 150 200 250 300 s−1

Figure 15 Vorticity plot for d = 0.018 m (d/d0 = 0.12)

placed in the lock gate pushes the water initially placed in the
channel (t = 0.35 s) giving rise to the “mushroom” jet men-
tioned above. Negative vorticity (light colors) appears on the left
side of this “mushroom” due to counterclockwise water rota-
tion. In addition, the frame also shows the beginning of the first
wave breaking. The second frame (t = 0.50 s) corresponds to
the instant previous to the second wave breaking. The figure also
shows a positive eddy (dark color) generated after the first wave
breaking. The third frame (t = 0.65 s), which generates the sec-
ond positive eddy depicted in the fourth frame t = 0.80 s) shows
a second eddy with positive vorticity (dark colors) generated by
the second wave breaking. Positive vorticity near bed due to bot-
tom friction can be observed in all frames, especially in the third
and fourth ones. For a full description of the different breaking
mechanisms depending on the initial water depth in the channel
the reader is referred to Crespo et al. (2008).

5.4 Collision between a 3D dam break and a structure

The dam breaks considered in previous sections can be considered
2D. However, the nature of the observed phenomena becomes
3D when solid structures are hit by the incoming wave. Here
we will examine the impact of a single wave with a tall struc-
ture. The resulting velocities and the force exerted by the wave
on the structure are compared with experimental data taken by

Figure 16 Experimental setup

Yeh and Petroff at the University of Washington. Previous com-
parisons to these data with a numerical model were carried out
by P. Raad at Southern Methodist University, using his three
dimensional Eulerian–Lagrangian marker and microcell (Chen
et al. 1997), see http://engr.smu.edu/waves/solid.html for details
about the experimental data. The same data were used by Gomez-
Gesteira and Dalrymple (2004) to be compared with their SPH
results.

The experimental domain (Fig. 16) is 160 cm long, 61 cm wide
and 75 cm high. The volume of water initially contained behind
the gate was 40 cm long × 61 cm wide × 30 cm high. The struc-
ture, which was 12 × 12 × 75 cm in size, was placed 50 cm
downstream of the gate and 24 cm from the nearest sidewall of
the tank. A thin water layer (approximately 1 cm deep) existed
initially on the bottom of the tank, due to the experimental diffi-
culty to completely drain the tank downstream of the gate prior to
the dam break. Experimentally, the net force exerted on the struc-
ture and the fluid velocities at different locations were recorded.
The velocity measurement was taken 14.6 cm upstream of the
center of the structure and 2.6 cm off the floor of the tank.

The system was solved with a predictor-corrector algorithm
(Monaghan 1989), using a cubic-spline kernel (Monaghan and
Latanzio 1985) corrected following Bonet and Lok (1999) as
described in Sec. 2.6.2.1 (see (24)). Dynamic boundary condi-
tions (Crespo et al. 2007a), the XSPH correction (Monaghan
1989) with ε = 0.5 and a variable time step were also considered.
Two different viscosity treatments were considered, artificial vis-
cosity with α = 0.01 and SPS viscosity (Eq. (56)). Fluid particles
were initially placed on a staggered grid with zero initial velocity.
Nodes of the grid are located atR = l dx i+mdx j+mdzk with
a two-point basis (0,0) and (dx/2, dy/2, dz/2) referred to the cor-
ner defined by R. l, m and n are integers, i, j,k are unit vectors
in X, Y,Z directions. Fixed particles (bottom and walls) were
placed in two rows forming a staggered grid with the same inter-
spacing as the fluid particles. Both the initial spacing, dx, dy, dz,
and the smoothing length, h = 0.85

√
dx2 + dy2 + dz2, will

depend on the different realizations of the numerical experiment.
Figure 17 summarizes the number of particles (first panel) and the
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Figure 17 Dependence of the number of particles (N in the first panel)
and normalized duration of the run (Tn in the second panel) on the
smoothing length (h)

normalized duration (second panel) of the different realizations
of the experiment. Note that a decrease in the smoothing length
on the order of 50% results in an increase of the computational
time on the order of 20 times.

Figure 18 shows different instants of wave propagation in col-
lision with the structure. The initial movement of the dam break
is shown at t = 0.01 s. At t = 0.20 s the dam break has advanced
and approached the obstacle. Note that the water movement is
completely 2D before the collision with the obstacle. The lead-
ing edge of this dam break is completely different from the one
shown in Fig. 2. Instead of the typical toe observed over dry bed,
it appears that the leading edge plows up the stationary water
layer to create a waveform that would not be there in the absence
of the water layer. This waveform is observed to hit the structure
at t = 0.40 s. Thus, the experimental results are completely dif-
ferent from those that would occur if the bottom was dry beyond
the gate as shown in (Gomez-Gesteira et al. 2004).

A preliminary comparison between the experimental and
numerical results was carried out in previous studies (see Fig. 5
in Gomez-Gesteira et al. (2004)). Both the velocity (a) and
the force (b) are observed to be accurately calculated, at least

Figure 18 Different instants of dam break propagation over a wet bed.
Initial movement of the dam break (t = 0.01 s). Dam break approaching
the obstacle (t = 0.20 s). The shape of the leading edge depends on the
presence of near bed water prior to the dam break arrival. Waveform
hitting the structure (t = 0.40 s)

qualitatively, by the model. Here, a more detailed comparison
will be considered. The original experimental series, which were
not homogeneously sampled in time and some time multi-valued
were interpolated by means of a spline function to obtain a new
series at equally spaced, δt = 0.015 s, time intervals. This δt coin-
cides with the recording period of the numerical signal in such a
way that a point to point comparison can be performed between
the experimental and numerical signals. The two parameters
defined in Eq. (67), Ar and Pd , were considered, being velocity
and force the variables of interest in this case. Figure 19 shows the
relative amplitude (Ar) corresponding to velocity (first panel) and
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Figure 19 Relative amplitude (Ar) corresponding to velocity (first
panel) and force (second panel). Dark solid lines correspond to cal-
culations with artificial viscosity and light solid lines to SPS viscosity.
The dashed line represents the theoretical perfect agreement between
signals (Ar = 1)
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Figure 20 Phase difference (Pd) corresponding to velocity (first panel)
and force (second panel). Lines as described in previous figure

force (second panel). Dark solid lines correspond to calculations
with artificial viscosity and light solid lines to SPS viscosity. The
dashed line represents the theoretical perfect agreement between
signals (Ar = 1). Both for velocity and force, accuracy tends
to increase when decreasing the smoothing length. Finally, both
viscosity treatments provide similar results. Figure 20 shows the
phase difference (Pd) corresponding to velocity (first panel) and
force (second panel). Dark solid lines correspond to calculations
with artificial viscosity and light solid lines to SPS viscosity. The
dashed line represents the theoretical perfect agreement between
signals (Pd = 0). Although velocity accuracy is good for any
considered smoothing length, it increases when decreasing h.
Force accuracy is not good when considering coarse resolutions,
although it increases for smaller smoothing lengths. Once again,
both viscosity treatments provide similar results which are not
surprising as this case is dominated by gravity effects and an
accurate modeling of turbulence is not essential for success here.

6 Conclusions

SPH has been shown to be a robust and powerful method for
describing deforming media in a great variety of fields, for exam-
ple, astrophysics, solid mechanics and fluid dynamics. In the
particular case of computational fluid dynamics, the classical
SPH formulation is especially well suited for problems involv-
ing large fluid deformation and fluid continuity breaking such
as occur in highly nonlinear and potentially violent free-surface
flows. Thus, problems like wave flooding and collision with
obstacles can be handled in a natural way both in 2D and 3D.

One of the main drawbacks of the method is the need of a
huge number of particles and very small time steps (O(10−5 s)) to
achieve high accuracy when compared with experimental results.
This burden results in a high computational cost which can be
partially alleviated by means of parallel (Moulinec et al. 2008,
Maruzewsky et al. 2010, Lee et al. 2010) and GPU (Herault
et al. 2010) computing. Both approaches will give rise to the
main advances in applying the SPH technique during the next
few years. An alternative way to speed up computations is to
create hybrid methods, combining SPH with other techniques.
Thus, Groenenboom and Cartwright (2010) combined SPH with
a Finite Element model and Narayanaswamy et al. (2010) created
a hybrid version of SPHysics and a wave propagation Boussinesq
model.

Another limitation of the model is the formulation of an
accurate viscosity treatment which will be particularly acute for
problems at high Reynolds numbers, although important steps in
the right direction have been given during the last decade (see
Violeau and Issa (2007) for an overview), new research should
be conducted to achieve robust and computationally efficient
formulations.

An open question in SPH is the use of an equation of state to
calculate pressure from density (slightly compressible approach)
or to solve the Poisson equation (incompressible approach) to
determine pressure. In spite of most of the authors have pre-
ferred the first approach (the one mainly used in this text), which
results in an artificial decrease of the speed of sound, recently,
some authors (Issa et al. 2005, Lee et al. 2008, Lee et al.
2010) have considered the incompressible approach with accurate
results.

In summary, the considered 2D and 3D test cases have shown
that the technique has reached a maturity that allows quantitative
comparison with experimental measurements with an accuracy
level similar to that observed for more conventional techniques.
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Notation

A, Ã = Matrices in MLS method
A = Scalar function
Ar = Relative Amplitude factor

a(x) = Coefficients of the interpolating function
B = Constant in the equation of state
c0 = Speed of sound at the reference density
C = Constant in time-step control (∼0.1)
CI = Constant in SPS formalismo (0.0066)
Cs = Smagorinsky constant (0.12)

d = Initial water depth in the channel
d0 = Initial water depth in the lock

dx, dy, dz = Inter-particle spacing
div = Divergence
ei = Thermal energy of particle i

f , f = Scalar or vector variable used in kernel
correction

e = Thermal energy
E = Energy
g = Gravitational acceleration
h = Smoothing length

i, j,k = Unit vectors
k = SPS turbulence kinetic energy
L = Matrix in corrected kernel gradient

M = Inverse of L
m = Particle mass
Md = Number of particles inside a domain

n = Integer in tensile instability correction (4)
n = Unit vector normal to the surface S and pointing

upward
N = Number of particles

Num = Number of particles around particle i
pT(x) = Monomial

p = Pressure
Pd = Phase difference
qmin = Distance at which the first derivative of the

kernel reaches a minimum
Rk = Coefficient in tensile instability correction
q = Normalized distance
R = Correlation coefficient
s = Position vector
S = Surface enclosing volume v

Sµν = Element of SPS strain tensor
t = Time
u = Velocity vector
v = Volume of water
V = Coefficient for water velocity normalization

(
√
gd0)

Varexp = Experimental variable for statistical comparison
Varnum = Numerical variable statistical comparison
Vgate = Gate velocity
Vx, Vz = Components of gate velocity
Wij = Smoothing kernel in discrete notation (also

W(s − xj, h))
W(s − xj, h) = Smoothing kernel in continuous notation

x = Position vector

x, y, z = Spatial coordinates
α = Coefficient in artificial laminar viscosity (0.5)

β0, β1x, β1z = Parameters in MLS method
γ = Coefficient in the equation of state (7)
δ = Dirac delta
δt = Sampling interval in 3D experiments (also

recording period in numerics)
�E = Energy increment
�l = Particle–particle spacing
�t = Time-step
�tcv = Time-step control (based on Courant and

viscosity terms)
�tf = Time-step control (based on force terms)
�vj = Volume associated to particle j
�ρ = Density increment due to fluctuation
ε = Parameter in XSPH correction (0.5)
ψ = Coefficient in tensile instability correction
η = Term in viscosity to prevent singularities

(= 0.1 h)
ρ = Density
ρ0 = Reference density
� = Artificial viscosity term
τµν = Sub-particle stress tensor
υ0 = Kinetic viscosity of laminar flow (10−6 m2s−1)

υt = Turbulence eddy viscosity
ω = Vorticity
∇ = Gradient

∇W = Kernel gradient
∇̃W = Corrected kernel gradient
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