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ABSTRACT
It is difficult to study the process of wave propagation from the deep ocean to the nearshore region using a single model due to the presence of multiple
scales both in time and in space. Numerical models based on the Boussinesq equations are well known to accurately propagate waves from intermediate
water depth to the nearshore region. Since they are 2D models, they are computationally efficient and can be applied to study wave transformations
over large domains. Numerical models based on Smoothed Particle Hydrodynamics can inherently capture multiply connected free surfaces and hence
can be naturally used to capture breaking free surfaces and estimate breaking induced runup and overtopping. Here, a hybrid model (SPHunwave) is
developed combining the main advantages of a Boussinesq model (FUNWAVE) and a SPH model (SPHysics). The details of the coupling procedure
along with preliminary validation tests are presented.

RÉSUMÉ
Il est difficile d’étudier le processus de propagation des vagues depuis l’océan profond jusqu’au bord du rivage avec un seul modèle en raison de la
présence de multiples échelles de temps et d’espace. Les modèles numériques basés sur les équations de Boussinesq sont bien connus pour propager
correctement les vagues depuis une profondeur intermédiaire de l’eau jusqu’à la région proche du rivage. Comme ce sont des modèles 2D, ils sont
informatiquement efficaces et peuvent être appliqués à l’étude de l’évolution des vagues sur de grands domaines. Les modèles numériques basés sur la
formulation SPH peuvent intrinsèquement gérer des surfaces libres multiplement connexes, ils peuvent donc naturellement traiter les déferlements et
permettre l’évaluation du runup et du déversement induits. On développe ici un modèle hybride (SPHunwave) qui combine les principaux avantages
d’un modèle de Boussinesq (FUNWAVE) et d’un modèle SPH (SPHysics). Les détails du procédé de couplage sont présentés ainsi que les premiers
tests de validation.

Keywords: Boussinesq type wave propagation model, coupling technique, FUNWAVE, hybrid model, smoothed particle
hydrodynamics, SPH, SPHysics

1 Introduction

A variety of oceanographic models using different numerical and
physical approaches have been developed to handle wave propa-
gation and different types of wave transformations as refraction,
diffraction, breaking, run-up and overtopping. An overview of
different models to describe wave behavior can be seen in Liu
and Losada (2002). These models have several advantages and
limitations that depend on their mathematical formulations and
numerical implementations.
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Recently, research has been focused on coupling models
that employ different numerical and mathematical approaches
(Cui and Williams 1998, Pun et al. 2000, Soares-Frazão and
Zech 2002). The primary goal of such an approach is to com-
bine the advantages of the individual models in a single model,
thus increasing the accuracy, efficiency and regime of validity.
Flekkoy et al. (2000) combined a compressible Navier Stokes
model to a molecular dynamics model to study both macroscopic
and microscopic behaviors of a fluid. They achieved the coupling
by using two planes in the computational domain to exchange
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information between the models about mass and momentum
flux. A similar hybrid model was developed by Nie et al. (2004)
wherein they used an overlap region to exchange information
between the models. They used a constrained dynamics approach
that ensured mass and momentum conservation. In coastal engi-
neering, Sitanggang et al. (2006) have coupled a Boussinesq
model and a Reynolds Averaged Navier Stokes (RANS) model.
They have used this model successfully to simulate solitary wave
propagation and standing waves.

Depth averaged models such as models based on the non-
linear shallow water equations, and Boussinesq equations are
widely used to describe wave transformation from the offshore
to the nearshore region. They have been successfully used to
study tsunami propagation, wave induced nearshore currents and
run-up. These models are attractive because they can accurately
describe wave propagation, and are computationally efficient
when compared to fully three dimensional models. This makes
it feasible to use such models to study wave transformation over
large domains. However, using these models it is difficult to study
the details of 3D flow features such as those observed during the
wave breaking process.

A new approach that combines the advantages of two existing
wave propagation models is proposed. This hybrid model couples
the finite difference Boussinesq model FUNWAVE (Kirby et al.
1998) to SPHysics (Gómez-Gesteira et al. 2009), a Smoothed
Particle Hydrodynamics (SPH) model. The aim of this paper is
the development of a hybrid model that employs FUNWAVE for
wave propagation in the offshore region and uses SPHysics to
handle wave transformation in the nearshore. The methodology
of coupling the two models is presented and the results from a
simulation of solitary wave propagation in a tank with constant
depth are discussed.

2 Coupling model

2.1 Boussinesq models: FUNWAVE

The standard form of the Boussinesq equations were derived by
Peregrine (1967) for variable depth assuming that both frequency
dispersion and nonlinearity were weak and comparable. Alterna-
tive forms of Boussinesq equations have been derived by Madsen
et al. (1991), Nwogu (1993) and Wei et al. (1995) to extend the
validity of the method and include new physics. Numerical results
based on Boussinesq approach, both on its standard or extended
formulations have shown a high accuracy when compared with
experimental data (Stansby 2003).

There are two dimensionless parameters that are important
to describe the characteristics of long wave models. These are
ε = ah∗ and µ∗ = kh, where a is the incident wave amplitude, h∗

is the reference water depth and k is the reference wave number.
Wei and Kirby (1995) derived a set of Boussinesq equations to
include all nonlinear terms and dispersive terms to order µ∗2 and
εµ∗2. This ensured that these equations were fully nonlinear with
respect to the assumptions made i.e. all the terms, arising out of
the expansion of the linear dispersion relationship, describing
the nonlinear effects were included. A finite difference model

of these fully nonlinear Boussinesq equations called FUNWAVE
was developed by them and is used as the Boussinesq model in
this paper. A detailed description and validation tests of the model
can be found in the FUNWAVE manual (Kirby et al. 1998).

The fully nonlinear Boussinesq equations solve the surface
elevation η and the velocity field uα = u(x, zα) evaluated at a
arbitrary elevation z = zα(x) and are given by

ηt + ∇ · M = 0 (1)

uαt + (uα · ∇)uα + g∇η + V1 + V2 = 0 (2)

where uα = u(x, zα) and the subscript ‘t’ represent the partial
time derivative.

A right handed coordinate system is chosen such that x is the
horizontal coordinate and the positive z-axis is directed upwards
with z = 0 on the still water surface.

The terms M, V1, V2 are given by

M = M1 + M2 (3)

M1 = (h∗ + η)uα (4)

M2 = (h∗ + η)

{[
1

2
z2
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M2, V1, V2 are the additional terms that account for the non-
linear and dispersive effects and are obtained as a result of the
approximation of the form of the velocity potential. It is clear that
neglecting M2, V1, V2 would reduce the system to a set of nonlin-
ear shallow water equations. In these equations, the value of the
free parameter zα needs to be specified. By minimizing the errors
between the linear dispersion relationship obtained from the stan-
dard Boussinesq equations and the linear dispersion relationship
of Stokes waves, Nwogu (1993) suggested that zα = −0.531h(x)

be used to obtain a best fit for the phase velocities.

2.2 SPH models: SPHysics code

SPHysics is a Smoothed Particle Hydrodynamics (SPH) model
of the Navier-Stokes equations (Monaghan 1992) developed to
study free-surface flows. It is the product of a collaborative effort
amongst researchers at the Johns Hopkins University (US), the
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University of Vigo (Spain) and the University of Manchester
(UK). The first version of SPHysics was released on August 2007
and is available for public use at www.sphysics.org. A complete
description of the software is available in the SPHysics user’s
guide (Gómez-Gesteira et al. 2009).

SPHysics can simulate various commonly observed free-
surface flow phenomena such as dam breaks, landslides, sloshing
in tanks and wave impacts on structures. The model, written
in FORTRAN90, is in a modular form enabling users to add
and remove features as desired. Consequently, the user has the
flexibility to choose from a variety of kernel functions, kernel
corrections, density filters, viscosity treatments, boundary con-
ditions, time schemes, operating systems and compilers. The
options chosen to run the simulations presented in this paper are
briefly described below.

Capone et al. (2007) performed a set of numerical tests to
assess the performance of different existing smoothing kernels
commonly used in SPH. They concluded that the quintic Wend-
land kernel (Wendland 2005) was accurate, easy to implement
and computationally inexpensive. Hence, the Wendland kernel is
used in the simulations presented herein. However the Wendland
kernel, as with a majority of kernels in SPH, suffers from tensile
instability (Swegle et al. 1995) which could potentially result in
particle clumping or explosion during a numerical simulation.
The empirical tensile instability correction proposed by Mon-
aghan (2000) is used to treat this problem. It is well known that
the standard SPH interpolation introduces errors at the bound-
aries where the compact support of the kernel is incomplete. The
mixed kernel and gradient corrections formulated by Chen and
Beraun (2000) to ensure accurate estimation of functions and
their gradients are used to ensure accurate interpolations near
the boundaries. Repulsive forces (Monaghan and Kos 1999) are
implemented to describe the boundary conditions. In order to ade-
quately represent the laminar viscous effects, the laminar stress
terms are discretized according to Morris et al. (1997). Viscous
dissipation due to turbulent motions in the fluid are included in
SPHysics by Favre-averaging the governing equations Dalrym-
ple and Rogers (2006) and Shao and Gotoh (2005). The turbulent
stresses in this Favre-averaged sub particle scale model are mod-
eled using a Smagorinsky (Smagorinsky 1963) eddy viscosity
technique. In order to maintain a stable solution, the density of
the particles are reinitialized using a Shepard filter (Panizzo 2004,
Colagrossi and Landrini 2003). The fluid is treated as weakly
compressible in the present approach, which allows the use of
an equation of state to determine fluid pressure, rather than solv-
ing a Poisson’s equation. The permissible time step for a stable
computation decreases with increasing sound speed. This pre-
cludes using the actual speed of sound in water to specify the
compressibility as this would result in really small time steps. It
has been shown by Monaghan (1994) that the numerical solu-
tions are not influenced by the sound waves as long as the sound
speed in the fluid is greater than ten times the maximum fluid
velocity. Therefore, the compressibility is artificially specified to
satisfy the above condition and allows for reasonable time step
size. The Beeman algorithm (Beeman 1976) is applied in the
numerical simulations to update the solutions in time. This time

stepping algorithm uses a Beeman predictor step and an Adams-
Bashforth-Moulton corrector step and is accurate to third order.
A variable time step is calculated according to Monaghan and
Kos (1999).

2.3 Coupling theory

The hybrid model presented here is a two way coupling, this
means that information is transferred between models in both
directions. Preliminary approaches of a hybrid model, which
involved a one way coupling where information was transferred
from the Boussinesq model to the SPH model, can be found in
Narayanaswamy and Dalrymple (2005) and Crespo et al. (2008).

Consider the problem domain shown in Fig. 1. The domain
is subdivided into a Boussinesq region and a SPH region. The
solution in the domain is carried out using FUNWAVE from the
offshore region till the virtual boundary CD. The flow is solved
using SPHysics from virtual boundary AB till the dry beach.
The overlap region ABCD is positioned offshore of the breaking
zone so that the Boussinesq model computes the wave transfor-
mation in the non-breaking region and the SPH model handles
the breaking and runup phases of the wave field. The Boussi-
nesq model provides the boundary condition to the SPH model at
boundary AB. Feedback from the SPH model to the Boussinesq
model is provided through boundary conditions at the Boussinesq
boundary CD.

The Boussinesq model solves for the nodal horizontal veloc-
ity uα, and wave height ηα at a reference depth z = zα(x). At
each particle i (small dots in Fig. 1), the SPH model solves for
velocities (ui, wi), position (xi, zi), density ρi and pressure Pi.

At each Boussinesq time step, the boundary values (uαb, ηαb)

for FUNWAVE at the Boussinesq-SPH interface (line CD in
Fig. 1), are specified using the information obtained from the SPH
model. This technique to calculate the average velocity at a cer-
tain point was also applied in Gómez-Gesteira et al. (2005). The
velocity is obtained by computing the smoothed particle velocity
at elevation z = zα(x) from the SPH model as

uαb =
∑

j

ujVjWbj (8)

The summation is carried out over all particles within a radius of
2h from (xαb, zα(xαb)) where xαb is the x-coordinate position of
line CD. The boundary value of the wave-height is obtained by
determining the particle with the largest z value at xαb.

FUNWAVE

SPHysicsA

B

D

C

Coast

Figure 1 Schematic of the domain subdivision in the coupled model.
Big dots correspond to Boussinesq model nodes, the small ones are SPH
particles, the black squares are the wavemaker particles and the ABCD
area is the overlap region
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The boundary conditions for the SPH model are implemented
in the form of a Boussinesq wavemaker at boundary AB. A col-
umn of SPH boundary particles is placed along AB at t = 0.
Subsequently, the velocity of these boundary particles is deter-
mined from the velocity of the adjacent Boussinesq nodes. The
position of the wavemaker particles are then computed from these
velocities.

Since the SPH timestep is much smaller than the Boussinesq
time step, the Boussinesq nodal velocities at each SPH time step
are computed using a linear interpolation in time. The temporal
grids in the SPH and Boussinesq models are staggered by 0.5�tb

where �tb is the Boussinesq time step i.e. the SPH time lags the
Boussinesq time by half a Boussinesq time step. When the SPH
computations are carried out, the Boussinesq nodal velocities at
each SPH time step are computed using a linear fit of the two
most recent Boussinesq solutions.

Let the coordinates of a boundary particle P be denoted by
(xp, zp). The Boussinesq nodes on either side of xp are first
determined at each SPH time step. The Boussinesq velocity uαp

at xp is then determined by a linear interpolation in space. The
Boussinesq model assumes a quadratic variation of the horizontal
velocities over the depth. Hence, the velocity atP is determined as

up = uαp + ∂zα

∂x

∂h∗uα

∂x
+ (zα − zp)

∂

∂x

∂h∗uαp

∂x

+ zα

∂zα

∂x

∂uαp

∂x
+ 1

2
(z2

α − z2
p)

∂

∂x

∂uαp

∂x
(9)

The position of the boundary particle P is then updated using
xn+1

p = xn
p + �tS up, where �ts is the SPH time step.

3 Working example

To prove the capability of this hybrid approach, the model is used
to simulate the propagation of a solitary wave in a constant depth
tank. The solitary wave is generated in the FUNWAVE domain.
The wave is propagated into the region modeled by SPHysics, it is
reflected at the end wall and propagated back into the FUNWAVE
domain.

Figure 2 shows the initial configuration and the subdivided
domain of this testcase. The tank is 20 m long with a water depth
of 0.5 m. The FUNWAVE region starts at x = 0 and extends to

0.5

0

−0.5
0 4 8

INTIAL SETUP

Funwave SPHysics

A C

B DX (m)
12 16 20

(m
)

η

Figure 2 Initial setup of the testcase

Table 1 SPH parameters used in the numer-
ical application

h (smoothing length) 0.0325 m
µ (kinematic viscosity) 1e−6 m2s−1

np (number of particles) 5103
nb (boundary particles) 363
〈dt〉 (mean time step) ≈ 1e−4 s

x = 16 m. SPHysics is used to model the wave evolution from
x = 13 m tox = 20 m. The colored ABCD area corresponds to the
overlap area. Black dots along AB line represent the wavemaker
particles positions. These positions will change in time.

The solitary wave is generated at x = 4 m with an amplitude
a = 0.15 m and a period Tp = 1 s. A 20 cm grid size is used on
FUNWAVE with a time step of t = 0.001 seconds. The initial free
surface elevation and velocity of the solitary wave can be obtained
as a solution of the weakly nonlinear Boussinesq equations (Wei
et al. (1995)). These are given as

η(x, t = 0) = (C1 + C3) sec h2(C2x) (10)

uα(x, t = 0) = C4 sec h2(C2x) (11)

The derivation and the coefficients Ci i = 1–4 are described in
Wei et al. (1995).

The SPHysics numerical parameters used in the model are
summarized in Table 1.

Snapshots of the SPH wavemaker (line AB in Fig. 2) at differ-
ent time instants are depicted in Fig. 3. Each snapshot shows the
uα = u(x, zα) velocity at each x-node (solid line) and wavemaker
velocities (arrows). The first snapshot (time = 4 s) corresponds
to the wave advancing in the x-direction, which corresponds to
positive uα. Using these values of uα and Eq. (2), positive veloc-
ity values are obtained for SPH wavemaker particles (arrows).
Hence the wavemaker advances in x-direction. The second snap-
shot (time = 8 s) corresponds to the reflected wave after hitting
the right wall. As expected, the observed negative values of
uα generate negative velocities for wavemaker particles and the
wavemaker propagates the wave offshore towards FUNWAVE
region.

In order to analyze the performance of this hybrid model,
results from the FUNWAVE part of the hybrid model and results
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Figure 3 Wavemaker movement

obtained from using FUNWAVE to propagate the solitary wave
over the entire domain are compared. Figure 4 shows the compar-
ison between the free-surface elevation from solving the hybrid
model (crosses) and from a pure FUNWAVE simulation of the
solitary wave evolution in the entire domain for the simulation
(solid line). The three first snapshots show the incoming wave
propagating towards the SPH region and the last three figures
correspond to the reflected wave. A better agreement is observed
before the wave hits the end wall, while bigger differences are
found observing the reflected wave. One reason for this is due to
the fact that the impact mechanism of the wave against the end
wall is handled by SPHysics in the hybrid model using a repul-
sive force and is handled in the pure FUNWAVE simulations
by prescribing the reflection conditions of zero normal velocity
and zero free surface slope in FUNWAVE. Also, the FUNWAVE
boundary conditions are prescribed at line CD in Fig. 2 using
Eq (1). This could lead to the differences observed in the wave
heights as the simulation progresses.

Apart from this visual comparison, the observed differences
in the snapshots of Fig. 4 can be quantified considering two
statistical parameters as explained in Crespo et al. (2007):

Ar =
√√√√ N∑

i=1

(
F ∗

i

)2

/
N∑

i=1

(
FFUN

i

)2
(12)
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√√√√ N∑

i=1

(
F ∗

i − FFUN
i

)2

/
N∑

i=1

(
FFUN

i

)2
(13)

where F ∗
i and FFUN

i refer to the free-surface position obtained
from the hybrid model and from the pure FUNWAVE simulation
respectively.

A perfect agreement between both signals should result in
Ar → 1 and Pd → 0. The results obtained using Eqs. (12)–(13)
for the time instants depicted in Fig. 5 are shown in Table 2.

For the incident wave (Time = 3 s–5 s), the average parameters
are Ar = 0.93 and Pd = 0.05, and for the reflected wave (Time
= 7 s–9 s) are Ar = 0.78 and Pd = 0.12. It is observed from

the statistical analysis as well that the incident waves as observed
in the hybrid model and FUNWAVE compare better than the
reflected wave. This test establishes the fact that the mechanism
to transfer information from the SPHysics to FUNWAVE at line
CD in Fig. 2 works reasonably well.

Figure 5 shows snapshots of the solitary wave at different
instants in time obtained using the hybrid model. FUNWAVE
results are plotted along the first 16 meters (solid line). The over-
lap region is represented by a colored background (13–16 m) and
dots represent the SPHysics particles. The same instants of time
as shown in Fig. 4 are depicted here i.e. the incoming wave is
observed in the first three snapshots, the wave hits the right wall
at Time = 6 s and then the last three plots show the reflected wave
as it propagates towards the Boussinesq region.

From Fig. 5, it can be observed that the wave heights predicted
by FUNWAVE and SPHysics compare well in the overlap region
for both the incident and reflected phases of the solitary wave
propagation.

Following the same procedure used to quantitatively compare
the results from the hybrid model and the pure FUNWAVE sim-
ulation, statistical parameters [Eqs. (12)–(13)] are calculated to
measure the accuracy of the information transfer at the boundaries
between the FUNWAVE and the SPH interfaces of the hybrid
model. F ∗

i in Eqs. (12)–(13) now refers to the free-surface posi-
tion obtained from SPH. Table 3 shows the results of the statistical
analysis obtained for the time instants depicted in Fig. 5.

4 Concluding remarks

A Hybrid SPHysics-FUNWAVE model to study coastal wave
propagation has been developed and presented. This model has
been developed with the idea of using FUNWAVE to propagate
waves, with low computational cost, accurately till the surf zone
and then using SPHysics to handle the breaking and post-breaking
processes as it can naturally track multiply connected free sur-
faces. Thus, the advantages of both models are used to develop an
efficient wave model. One of the key developments achieved in
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Figure 4 Comparison of FUNWAVE free-surface results

Table 2 Statistical comparison between the positions of the
free-surface calculated only by FUNWAVE (solid line in Fig. 4)
and by FUNWAVE coupled to SPH (crosses in Fig. 4) in the overlap
region

Time Ar Pd

3 s 0.97 0.05
4 s 0.93 0.04
5 s 0.88 0.05
6 s 0.82 0.08
7 s 0.83 0.09
8 s 0.74 0.16
9 s 0.77 0.12

Table 3 Statistical comparison between the position of the free-surface
calculated only by FUNWAVE coupled to SPH (solid line in Fig. 5) and
by SPH coupled to FUNWAVE in the overlap region. The free surface
was calculated according to the position of the particles shown in Fig. 5

Time Ar Pd

3 s 0.97 0.14
4 s 0.95 0.39
5 s 1.19 0.43
6 s 1.14 0.26
7 s 1.11 0.23
8 s 1.15 0.25
9 s 0.90 0.21
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Figure 5 Different instants of wave propagation using the hybrid model

this model is the algorithm to prescribe the boundary conditions
for the individual models in the overlap region.

A simple working case has been used to demonstrate the capa-
bility of the model to propagate a solitary wave in a constant
depth tank. The results of the hybrid model were first compared
with a pure FUNWAVE simulation of the same solitary wave in
the same tank. Good free surface comparisons were found for the
incident wave, although some differences were obtained for the
reflected wave. These differences are due the formulation of vis-
cous effects, and the manner in which wave reflection is treated
in the individual models.

Subsequently, different the performance of the hybrid model
has been assessed by comparing the FUNWAVE and SPHysics
results of the wave heights in the overlap region at instants

of time. Good comparisons between the two results were
observed demonstrating the ability of the model to accurately
transfer information between the SPHysics and FUNWAVE
regions.

Additional research should be conducted to validate this
hybrid model using published experimental data of solitary wave
runup on planar beaches. Special attention should be paid to the
study of the conservation properties of this coupling algorithm.
Specifically, it is not clear that mass is conserved due to the
manner in which information from SPH is used to specify the
boundary conditions for the Boussinesq model. Once this model
has been validated and the conservation properties studied, it is
envisioned that a similar procedure will be carried out to couple
2D-FUNWAVE and 3D-SPHysics.
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Notation

a = Incident wave amplitude
Ar = Relative amplitude (statistical parameter)

C1, C2, C3 = Parameters in Boussinesq equation
g = Gravity acceleration
h = Smoothing length

h∗ = Reference water depth
k = Reference wave number

np = Number of particles
Pd = Phase difference (statistical parameter)
Tp = Period of the incident wave

ui, wi = Velocity of particle i

uα = Nodal Boussinesq solution
xi, zi = Position of particle i

zα = Arbitrary reference where nodal FUNWAVE
velocities are evaluated

�tb = Boussinesq time step
�tS = SPHysics time step

ε = Dimensionless parameter
η = Free-surface elevation
µ = Kinematic viscosity

µ∗ = Dimensionless parameter
ρi = Particle density
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