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palavras-chave Peńınsula Ibérica, afloramento costeiro, fitoplâncton, clorofila, modelos de circulação e
biogeoqúımicos

resumo A costa noroeste da Peńınsula Ibérica (PI) é caracterizada por intensa atividade hidrológica
e biogeoqúımica, resultante em importantes recursos de peixe e marisco. Neste contexto,
o principal objetivo deste trabalho consiste no estudo da influência dos processos f́ısicos
na produção primária da região através de deteção remota e modelação numérica. Com
este propósito, a linha de costa foi dividida em três doḿınios: segmentos costeiros oeste,
intermédio e norte. Para cada um destes segmentos foi analisada a variabilidade do transporte
de Ekman, do ı́ndice de afloramento (IA), da temperatura da superf́ıcie do mar (TSM) e da
concentração de Clorofila-a (Clo-a) em termos de médias sazonais, anuais e mensais a partir
de dados de deteção remota. A influência das condições meteorológicas, definidas através
de padrões de circulação atmosférica (PCA), no IA e na concentração de Clo-a foi também
avaliada e quantificada através de uma análise de probabilidade condicionada. Foi também
implementado e validado um sistema de modelação de circulação e biogeoqúımica para a área
de estudo. A sua validação foi efetuada através da comparação das previsões numéricas com
dados in situ e de satélite de várias variáveis f́ısicas e biogeoqúımicas. Esta implementação
foi utilizada para investigar os padrões de fitoplâncton durante dois eventos de afloramento
costeiro distintos, observados principalmente nos segmentos costeiros oeste e intermédio. Os
resultados da análise aos dados de deteção remota sugerem que o transporte de Ekman, a
TSM e a concentração da Clo-a têm diferentes ciclos anuais em cada segmento costeiro,
apresentando elevada variabilidade. Em geral, as condições mais favoráveis à ocorrência
de afloramento ocorrem nos segmentos costeiros oeste e intermédio durante os meses de
primavera-verão e, consequentemente, é observada uma lente de água mais fria junto à
costa do que ao largo, assim como ńıveis de Clo-a elevados. Pelo contrário, no segmento
costeiro norte a TSM é elevada, devido ao aquecimento de verão na zona sudeste do Golfo
da Biscaia, e a concentração de Clo-a é baixa. Durante o inverno são observados elevados
ńıveis de Clo-a nos três segmentos costeiros, que estão relacionados com o efeito cumulativo
de eventos de afloramento e de descargas fluviais, que favorecem a entrada de nutrientes
na costa. Os resultados da análise de probabilidades efetuada evidenciam que ao longo
do segmento oeste as relações mais fortes entre os PCA, o IA e a concentração de Clo-a
foram obtidas na primavera-verão, quando padrões atmosféricos Norte, Nordeste e Noroeste
ocorrem. Nos segmentos costeiros intermédio e norte verificam-se elevadas probabilidades de
IA e de Clo-a quando os padrões atmosférico Este e Sul ocorrem, para as duas estações do
ano referidas. O modelo numérico implementado demonstrou capacidade em reproduzir com
precisão a dinâmica da região em estudo, quer à superf́ıcie, quer ao longo da coluna de água.
A análise dos resultados de modelação revela a existência de duas células de afloramento nos
dois eventos estudados, sendo os padrões de fitoplâncton diferentes para cada evento. De
acordo com os resultados, quando ocorrem ventos fortes favoráveis ao afloramento o tempo
de residência na zona costeira é muito baixo, não permitindo um crescimento significativo
do fitoplâncton. As águas ricas em nutrientes e fitoplâncton são então advetadas para o
largo, onde o tempo de residência é maior e existem condições favoráveis para a fotosśıntese.
Para eventos de afloramento fortes é observado um fluxo direcionado para o equador junto à
costa ao longo da coluna de água, enquanto para eventos mais fracos este fluxo é em direção
ao pólo, promovendo a retenção do fitoplâncton na zona costeira. Em suma, a análise
efetuada aos dados de deteção remota e de modelação numérica contribúıram para melhorar
o conhecimento dos principais processos que influenciam a produção primária ao longo da
costa noroeste da PI, à escala sazonal e de eventos. Como trabalho futuro destaca-se a
exploração com maior detalhe da dinâmica das células de afloramento detetadas e da resposta
do ecossistema à sua presença, assim como o estudo da influência de descargas fluviais na
produção primária da região, tirando partido da configuração numérica desenvolvida.
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keywords Iberian Peninsula, coastal upwelling, phytoplankton, chlorophyll, circulation and
biogeochemical models

abstract The northwestern coast of Iberian Peninsula (IP) is a region of great hydrologic and
biogeochemical activity, resulting in important fish and shellfish resources. In this context,
the main aim of this work is to study the influence of physical processes on primary production
of the region through remote sensing imagery and numerical modelling. For this propose, the
coastline was divided in three domains: western, intermediate and northern coastal segments.
For each coastal segment was analysed the variability of Ekman transport, upwelling index
(UI), sea surface temperature (SST) and chlorophyll (Chl-a) concentration in terms of
seasonal, annual and monthly averages of remote sensed data. The influence of meteorological
conditions, defined by circulation weather types (CWTs), on UI and Chl-a concentration
was also evaluated and quantified, through a conditional probability analysis. Afterwards,
a coupled circulation and biogeochemical model was implemented and validated along the
study area. Validation was performed through the comparison of numerical predictions with in
situ and satellite data for several physical and biogeochemical variables. This implementation
was then used to investigate phytoplankton patterns during two distinct upwelling events,
mainly observed at western and intermediate coastal segments. Results from remote sensed
data analysis suggest that Ekman transport, SST and Chl-a concentration had different annual
cycles within each coastal segment and high seasonal variability. Generally, the most upwelling
favourable conditions occur along the western and intermediate coastal segments during
spring-summer months and consequently a lens of water colder than offshore is observed
in the coastal region along with high Chl-a levels. Otherwise, at northern coastal segment
high SST, related to the summer warming at the southeastern Bay of Biscay, and low Chl-
a concentration are observed. During winter high Chl-a levels were also observed at the
three coastal segments, that are related to the cumulative effect of upwelling events and
river runoff, favouring the entrance of nutrients onto the coast. Results from the probability
analysis show that along the western coastal segment the strongest relations between CWTs,
UI an Chl-a concentration were obtained in spring-summer when weather types Northerly,
Northeasterly and Northwesterly occur. At northern and intermediate segments results
reveal high probabilities of UI and Chl-a when weather types Easterly and Southerly were
observed, for both stations referred. The numerical model showed the capability to reproduce
accurately the dynamics of the study region, either at surface or along the water column. The
modelling results analysis reveals the existence of two upwelling cells for both events studied,
being phytoplankton patterns different for each event. According to results, when upwelling
favourable winds are strong, the residence time near coast is very short, not allowing significant
phytoplankton growth. Nutrient and phytoplankton rich waters are then advected offshore,
where the residence time is higher and favourable conditions for photosynthesis occur. For
strong upwelling events an equatorward flow develops near coast along the water column,
while for weaker events this flow is poleward, promoting the retention of phytoplankton in
the coastal region. In summary, the analysis performed to remote sensed data and numerical
modelling predictions, have contributed to improve the knowledge about the main processes
that influence primary production along the northwestern coast of IP, at seasonal and event
scales. For future, is highlighted the exploitation in detail of the upwelling cells dynamics and
the ecosystem response to their presence, as well as the study of river runoff influence in the
primary production of the region, taking advantage of the numerical application developed.
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Chapter 1

Introduction

1.1 Motivation

The knowledge of physical processes at global or regional scales in the ocean is

essential to understand ocean biogeochemical processes, particularly those related to

primary production. Phytoplankton is one of the marine ecosystem key components,

representing the base of trophic web and therefore its variability affects the dynamics

of the whole ecosystem. It is responsible for the conversion of carbon dioxide in

organic carbon, through photosynthesis, i.e. primary production. The best measure

of phytoplankton biomass would be to determine the amount of organic carbon in

the phytoplankton cells. However, such a measure is almost impossible in a natural

seawater sample due to the presence of other organisms, like detritus and dissolved

organic matter. Consequently, photosynthetic pigments (usually chlorophyll-a (Chl-a),

once it is a quantity monitored by satellite) are used as a proxy and its concentration

can be used to estimate the phytoplankton biomass in water quality and ecological

studies.

The most productive areas worldwide are the upwelling regions. The rising of cold

water makes nutrients available for primary production in the euphotic zone, where

mass and energy are transferred through trophic webs, which generates rich areas

in terms of biological abundance. Therefore, the spatial and temporal analysis of

Chl-a in coastal upwelling regions is really important considering its high economic

value. Upwelling is usually linked to an increase in primary production in most coastal

areas, creating an extraordinary commercial interest for fisheries. In fact, more than
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20% of global fish catches occur in upwelling areas, although they occupy less than

1% of the world’s ocean surface (McGregor et al., 2007). The relationship between

Chl-a and fishery depends upon the number of linkages between phytoplankton and

the higher trophic level. For some species, such as anchovies and sardines, which

eat phytoplankton at some phase in their life cycle, the linkage is direct (Ware and

Thomson, 2005), whereas for other species there are many trophic levels in between.

In the open ocean 2% of primary production is needed to support the fishery catch,

but in coastal regions the requirements ranges from 24-35%, suggesting that these

systems are at or beyond their carrying capacity (Pauly and Christensen, 1995).

Freshwater and sediment inputs from rivers also play a major role in sustaining coastal

ecosystems, carrying nutrients that promote biological productivity. Therefore, the

study of marine biogeochemistry in coastal waters and its dependence on physical,

chemical and biological factors is imperative. The demand for this kind of information

arises from a range of fields and applications, such as scientific research on marine

ecosystems, monitoring of seawater quality and decision-making support for marine

and coastal management.

Moreover, ocean primary production and Chl-a levels can be highly sensitive to

changes in sea surface temperature (SST) and wind patterns. The ocean temperatures

worldwide have shown a global warming trend (Levitus et al., 2000), which may have

a negative impact on marine ecosystems generating latitudinal displacements of the

population of phytoplankton and zooplankton toward cooler regions (Richardson, 2008;

Richardson and Schoeman, 2004). Global warming could intensify alongshore winds

and accelerate coastal upwelling circulation (Bakun, 1990; McGregor et al., 2007; Relvas

et al., 2009; Bakun et al., 2010) leading to an increase in primary production.

Remote sensing data constitutes an efficient way to improve the knowledge on

environmental conditions of an ecosystem, being extensively used for monitoring

different variables over the oceans, such as Chl-a concentration, SST and wind patterns.

The exploitation of these data gives the opportunity to analyse spatial maps containing

more information than isolated points. Therefore, satellite data provide valuable

information about spatial and temporal distribution of these variables, which can be

used to research the possible implications of their variations on coastal ecosystems,

and therefore to characterize the primary production over vast areas. However, due to
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cloud cover, mainly in winter, the satellite information is often missing.

The demand for numerical models able to reproduce physical and biogeochemical

interactions along the oceans arise to overcome the lack of continuous and long term

observations of physical and biological variables and to provide forecasts of coastal

ocean state, allowing the comprehension and quantification of the different processes

that occur in coastal waters. Water temperature, salinity, current velocity, chlorophyll

and primary production rank among the top products demanded by research scientists

and coastal managers (Marta-Almeida et al., 2012).

The northwestern coast of Iberian Peninsula (IP) (Figure 1.1) is the northern

boundary of the Canary Upwelling Ecosystem (CUE), which is one of the four major

Eastern Boundary Upwelling Systems (EBUS) of the world (Pelegri et al., 2005). It is a

region of great hydrologic and biogeochemical activity, as a result of coastal upwelling

induced by seasonal wind that is the main recognized source of phytoplankton (Fraga,

1981; Tenore et al., 1995; Peliz et al., 2002; Relvas et al., 2007). Coastal upwelling in this

area shows a well defined seasonality (Wooster et al., 1976; Fraga, 1981; Fiúza, 1983),

with active and persistent conditions prevailing from June to September (Wooster

et al., 1976), promoting high levels of Chl-a. It is remarkable that due to the different

coastline direction, northerly winds produce upwelling off the western coastal segment

Figure 1.1: Study area, with the location of the main freshwater sources (Mondego, Douro,
Minho, Eume and Nalon Rivers) and capes (Cape Finisterre, Ortegal and Peñas).
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(from 40 ◦N to 43 ◦N), northerly and easterly winds at intermediate coastal segment

(between Cape Finisterre and Cape Ortegal) (McClain et al., 1986; Torres et al., 2003),

whereas easterly winds do it off the northern coastal segment (between 8 ◦W and 5 ◦W).

In wintertime, the wind regime favours coastal convergence (Peliz and Fiúza, 1999),

however upwelling events may also occur and an increase in its frequency and intensity

in the last decades was reported (Alvarez et al., 2003; Borges et al., 2003; deCastro

et al., 2006; Prego et al., 2007; Santos et al., 2004). In addition, the spring and autumn

Chl-a maxima occur within the transitional periods of onset and cessation of upwelling

season, respectively, determining the fate of the accumulated Chl-a: off-shelf export

versus in situ mineralization (Alvarez-Salgado et al., 2003).

The northwestern IP is also strongly influenced by freshwater input from rivers,

being the most important Mondego, Douro and Minho at western, Eume at

intermediate and Nalon at northern coastal segments (Figure 1.1). Generally, river

plumes are turbid and rich in nutrients, remaining near surface due to their buoyancy

and breaking up into lenses of less saline water, stimulating phytoplankton growth

(Lunven et al., 2005).

1.2 Aims

The main goal of this work is to study the influence of physical processes on the

spatial and temporal patterns of Chl-a concentration along the northwestern coast of

IP, through remote sensing imagery and numerical modelling. Due to the coastaline

direction (Figure 1.1), three coastal segments were considered for analysis: the western

coastal segment from 40 ◦N to Cape Finisterre; the intermediate coastal segment from

Cape Finisterre to Cape Ortegal; and the northern coastal segment from Cape Ortegal

to 5 ◦W. In particular, this work aims to:

• characterize the Chl-a concentration, SST and wind patterns;

• perform a comparative review between the processes along the three coastal

segments;

• investigate the atmosphere-ocean-land conditions that drive phytoplankton

blooms development and highlight localized changes;
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• understand and evaluate the influence of the meteorological conditions, through

Circulation Weather Types (CWTs) on upwelling and Chl-a concentration

variability;

• develop a 3D biogeochemical model application coupled to a circulation numerical

model to reproduce the main hydrodynamic and biogeochemical features of the

study region, as well as spatio-temporal patterns of water temperature, salinity,

phytoplankton and oxygen;

• evaluate circulation and phytoplankton patterns during two distinct upwelling

events through numerical modelling.

1.3 Literature review

1.3.1 Primary production: Chl-a concentration

As previously referred, coastal upwelling systems generally exhibit high productivity

rates and biological diversity and therefore they have significant economic importance.

Accordingly, Patti et al. (2008) aimed to identify the responsible factors for the

differences in Chl-a concentration observed between the different EBUS that supports

large commercial fisheries: California, Canary, Humboldt and Benguela (Pauly and

Christensen, 1995). Authors found that nutrient concentration levels, which are mainly

governed by local upwelling intensity, explain the differences between relatively low

(Canary and California) and high (Benguela and Humboldt) production areas. Also,

the extent of the continental shelf width is the key factor explaining the higher primary

production observed in Benguela region compared to Humboldt region. Patti et al.

(2008) work was performed using Chl-a remote sensed data (1998–2004), revealing its

importance to analyse the surface ocean over a larger spatial and temporal context.

The first studies regarding the temporal and spatial variability of regional remote

sensing Chl-a concentration have used the Coastal Zone Color Scanner (CZCS) product:

Scarla and Frank (1994), Arrigo et al. (1998), Yoder et al. (2001) and Yoder et al.

(2002). With the success of CZCS, a number of missions were approved by various space

agencies, some of which were meant for technology development and others for research.

Among these missions are Sea-viewing Wide Field-of-view Sensor (SeaWiFS)(1997-
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2009) and Moderate Resolution Imaging Spectroradiometer (MODIS) (2002 to present)

sensors, which were designed for quantitative global research purposes and have been

used in a significant number of studies, being their quality similar (Franz et al., 2007).

The first studies with SeaWiFS appeared to evaluate trends in primary production,

through comparison with CZCS (Gregg and Conkright, 2002; Gregg et al., 2003;

Antoine et al., 2005). The results obtained underscore the importance of the

international science community converging on processing algorithms and collaborating

on product validation. A few global comparisons between in situ data and SeaWiFS

products were then performed, such as Gregg and Casey (2004) and Bailey and Werdell

(2006) and satisfactory results were achieved.

More recently, a number of studies were carried out in order to investigate Chl-a

concentration distribution all over the world, using SeaWiFS product. For instance,

Brickley and Thomas (2004) used this ocean-color satellite data to present a synoptic

quantification of Chl-a variability on seasonal and interannual time scales over the

Northeast Pacific and Coastal Gulf of Alaska, Navarro and Ruiz (2006) applied the

Empirical Orthogonal Functions (EOF) technique to the weakly Chl-a composite

images in Gulf of Cádiz, Krezel et al. (2005) investigated the influence of coastal

upwelling on primary production in the Polish coast of the Baltic Sea and Gao et al.

(2013) studied the temporal and spatial distribution of Chl-a and its responses to

changes in SST and wind patterns along the western South China Sea. Most of

these studies also used remote sensed SST from the Advanced Very High Resolution

Radiometer (AVHRR) to infer about the Chl-a dependence on SST. Many other works

have been conducted in the last decade using SeaWiFS data to improve global and

regional knowledge about Chl-a variability (Gregg et al., 2005; Ho et al., 2004; Venegas

et al., 2008; Demarcq, 2009).

MODIS products have also been used to study the Chl-a and SST variability along

several coastal regions worldwide. Examples can be found in the South China Sea

(Liu et al., 2014), in the Gulf of Finland (Uiboupin et al., 2012), in the Gulf of Alaska

(Waite and Mueter, 2013), in South Atlantic Bight (Miles and He, 2010) and in the

Gulf of Maine (Li and He, 2014).

Several studies have also investigated the influence of river discharges on primary

production and Chl-a concentration distribution, in different regions over the world,
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like the Pacific northwest Coast (Hickey and Banas, 2003), the northeastern Gulf of

Mexico (Nababan et al., 2011), the coast off northern Japan (Lihan et al., 2011), the

La Plata continental shelf region (Garcia and Garcia, 2008) and the adjacent sea area

of Yangtze River Estuary (Wang et al., 2015). These studies were based on remote

sensed Chl-a data and in situ measurements and concluded that rivers runoff promote

phytoplankton blooms. However, near coastal waters, global algorithms usually show

an overestimation in Chl-a retrievals due to optical interference of both dissolved and

particulate material from continental influence (Gordon and Morel, 1983; Hu et al.,

2001; Darecki and Stramski, 2004).

Therefore, the advances of the last decades in satellite remote sensing have

significantly improved the understanding and clarified many aspects of ocean

biogeochemestry and ecosystem dynamics (Longhurst, 1998; Moore et al., 2002).

Comparing with in situ and remote sensing data, physical-biological coupled models

provide a much more complete description of ocean biogeochemistry, depending on

the complexity of the model. Indeed, oceanographic modelling has helped to further

understand the different EBUS that share high biological productivity as consequence

of the nutrients supply from upwelling.

The first physical-biological coupled model was developed by Fasham et al. (1990),

where plankton populations are aggregated into seven compartments (phytoplankton,

zooplankton, bacteria, nitrate, ammonium, dissolved organic nitrogen and detritus).

Fasham et al. (1993) applied this model to North Atlantic and, despite its simplicity,

results were encouraging. Since then, a huge effort has been performed to develop more

complete and robust biological models.

The California Current System (CCS) constitutes an important case study that

motivated the development of a large number of physical-biological coupled model

studies (Edwards et al., 2000; Powell et al., 2006; Gruber et al., 2006; DiLorenzo

et al., 2008). Powell et al. (2006) coupled a high resolution three-dimensional

circulation model of the CCS with a relatively simple (one component in each category)

lower trophic level ecosystem model for Nutrient-Phytoplankton-Zooplankton-Detritus

(NPZD). Authors compared the model temporal patterns with satellite observations

and found significant skill of the model. Recently, Siedlecki et al. (2015) studied the

oxygen seasonal and interannual variability on the Washington and Oregon continental
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shelves, that experiences seasonal decline over the summer upwelling season, using a

regional model. Authors found that model captures the observed seasonal decline as

well as spatial trends in bottom oxygen.

Echevin et al. (2008) coupled a biogeochemical and a physical model for the

Peruvian Upwelling System (PUS, part of the Humboldt system). Authors compared

the model outputs with satellite and in situ data, finding a good agreement. Therefore

the model was then used to investigate the mechanisms controlling Chl-a distribution

as a proxy of the productivity in the area. Lachkar and Gruber (2011) compared

California and Canary current systems using a physical-biological coupled model and

concluded that, although nutrient concentrations were higher in California, production

was almost half than in the Canary Current System (CanCS). At northern Gulf of

Mexico, Fennel et al. (2011) implemented a physical-biological coupled model to analyse

phytoplankton variability. After demonstrating that model realistically reproduces

many observed features of nitrate and phytoplankton dynamics, authors analysed

phytoplankton source and sink terms along the ecological gradient from high-nutrient

plume waters to low-nutrient waters far from the direct influence of the Mississippi

River. More recently, Montes et al. (2014) investigated the connection between the

equatorial mean circulation and the oxygen minimum zone in Eastern Tropical Pacific

with a high resolution coupled physical-biological model. Hernández-Carrasco et al.

(2014) analysed the impact of horizontal stirring on phytoplankton dynamics in the

Benguela Upwelling System (BUS) within an idealized two dimensional modelling

framework. Authors found that mesoscales eddies and filaments transport a significant

fraction of the recently upwelled waters towards the open ocean before being efficiently

used by the pelagic food web.

1.3.2 Northwestern coast of Iberian Peninsula

The northwestern coast of IP is characterized by high biological activity due to

phytoplankton blooms associated with the enrichment of surface waters with nutrients

from below. The upwelling events that occur in the Iberian Upwelling System (IUS)

have been characterized, either in terms of their physical processes (Fiúza et al., 1982;

Alvarez-Salgado et al., 1993; Peliz et al., 2002), either of its associated biological

processes (Santos et al., 2001; Queiroga et al., 2007; Aŕıstegui et al., 2009). Indeed, the
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region is one of the main spawning and recruitment areas for sardine (Ré et al., 1990;

Carrera and Porteiro, 2003; Marques et al., 2005), horse mackerel (Murta et al., 2008)

and several marine invertebrates (dos Santos et al., 2008) and therefore has attracted

large interest in the scientific community.

In the last decades, several studies regarding Chl-a concentration variability along

the IP coast have been carried out, mainly during spring and summer. Bode et al.

(1994) have summarized data from several cruises along the Galician shelf, showing

differences in primary production and biomass between the rich areas south of Cape

Finisterre and the northern shelf. Additional information on Chl-a and phytoplankton

concentration along the region was described in oceanographic surveys (Tenore et al.,

1995; Casas et al., 1997; Castro et al., 2000; Bode et al., 2002; Varela et al., 2005).

In most of these studies, the coastal upwelling and continental runoff appeared as the

main driving forces of pelagic primary productivity and phytoplankton composition.

However, they were focused on data measured at stations located in different regions

of the coast and therefore provide localized knowledge of Chl-a patterns in space. The

development of remote sensing technology allows making high resolution measurements

of ocean color over the world’s oceans. Accordingly, several studies using remote sensed

Chl-a concentration were published in the region. For instance, McClain et al. (1986)

have studied an upwelling event along the Galician coast during April 1982, through

SST data (AVHRR), Chl-a concentration (CZCS), in situ measurements and numerical

simulations. Moreover, Peliz and Fiúza (1999) presented a complete study on the

spatio-temporal variability of surface phytoplankton pigment concentrations derived

from CZCS off western IP coast. Ribeiro et al. (2005) studied the response of Chl-a to

a winter upwelling event off western Iberia, while Alvarez et al. (2012) have investigated

the seasonal variability of Chl-a concentration along the Galician coast and its response

to upwelling and river discharges. Focused on the southern part of IP, Navarro and

Ruiz (2006) studied the temporal and spatial variability of phytoplankton in the Gulf

of Cádiz and Cravo et al. (2010) analysed an upwelling filament off southwest Iberia.

Changes in coastal upwelling frequency and intensity are one of the most studied

processes influencing phytoplankton and fish distribution all over the world (Narayan

et al., 2010; Barton et al., 2013; Patti et al., 2010; Aravena et al., 2014; Garcia-Reys

and Largier, 2010; Seo et al., 2012). One of the most important works regarding this
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matter was published by Bakun (1990), where the four EBUS were analysed, based

on observations for the period 1946-1988. This author showed an alongshore wind

stress intensification trend during summer in all systems, which implicate an upwelling

intensification. Several studies focused on different upwelling regions have investigated

the Bakun hypothesis worldwide. Along the IP coast, Lemos and Pires (2004) found

a weakening trend in the last 60 years of the 20th century, through the analysis of

both meriodional wind component and SST datasets. Also, Alvarez et al. (2008b)

confirmed this negative trend for the period 1967-2006 for March, April and July-

December, however for the remaining months, no clear seasonal trend in upwelling

intensity was found. In a more recent study Alvarez et al. (2011) noticed that the

number of upwelling favourable days off western Galician coast decreased in the period

of 1967-2008. Otherwise, Santos et al. (2005) reported an intensification of the coastal

upwelling off western Iberian coast from 1992 onwards. This result is in accordance

with Relvas et al. (2009) that, through satellite SST data, reported an intensification

of coastal upwelling in the Portuguese southwest region since 1985. Moreover, Miranda

et al. (2012) have published a study that also supports the Bakun (1990) hypothesis,

that upwelling intensity is likely to increase with global warming. Those authors found

the increase in upwelling intensity more prominent in the northern limit of the region,

near Cape Finisterre. This study was performed using ocean modelling, that allow to

perform long simulations (30 years) and to design future scenarios.

In the last decades, numerical modelling was broadly used to simulate the

hydrodynamic and circulation features of the Atlantic Iberian margin (northern part

of the CanCS) (Coelho et al., 2002; Peliz et al., 2003; Marta-Almeida and Dubert,

2006; Nolasco et al., 2013; Peliz et al., 2013), however only in the last years a

strong effort has been performed to simulate its biogeochemistry, from which resulted

several studies. For instance, Marta-Almeida et al. (2012) presented an operational

biogeochemical forecast system for the Portuguese and Galician regions, using the

Regional Ocean Modeling System (ROMS), integrating the atmospheric, hydrodynamic

and biogeochemical variables. An extreme upwelling event along the Galician coast

was also studied through numerical modelling by Rocha et al. (2013). Those authors

coupled the NPZD biogeochemical model to an oceanic circulation model (ROMS)

and studied the behaviour and evolution of a phytoplankton bloom generated by a
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large upwelling core. Authors highlighted the importance of ocean circulation in Chl-

a distribution and found an inverse relation between SST and Chl-a concentration.

Reboreda et al. (2014, 2015) also used ROMS to study the seasonal and interannual

variability (2001-2010) of Chl-a and oxygen along the Iberian margin. Focused in

the southern part of IP coast, Macias et al. (2014) coupled a newly biogeochemical

model to the circulation model developed by Peliz et al. (2013), specially designed to

represent the Gulf of Cadiz and Alboran region pelagic ecosystem. Model performance

was assessed against data and results revealed its accuracy to represent seasonal and

climatological distribution of primary and secondary producers, with some mismatches

that are mainly attributed to the missing of tidal forcing.

Using a different model (MOHID), Mateus et al. (2012b) developed a regional

scale operational modelling tool for the west Iberian coast, discussing its potential for

products and services for both scientific and coastal management activities. Recently,

Vaz et al. (2015) analysed the SST and Chl-a patterns in a coupled estuary-coastal

system off Portugal using the MOHID numerical model. The model was evaluated

during a very dynamic and biologic productive period of the year and under the

influence of strong freshwater inflow. Authors concluded that the general trends

of surface Chl-a and water temperature are satisfactorily reproduced by the model,

however some differences were found between model predictions and measurements of

the vertical profiles of Chl-a concentration.

Despite these works provided many insights in the study of circulation and

biogeochemistry of the region, in this work a step forward is intended in order to further

understand the main physical processes that influence the primary production along

the northwestern coast of IP, through remote sensing imagery analysis and numerical

modelling. Most of the studies described are focused at local stations or particular

coastal regions and usually for a specific period, only contributing to localized and

limited knowledge. Therefore, in the present thesis the relationship between SST,

Chl-a, wind patterns, freshwater input and meteorological conditions is assessed and

quantified during a ten year period along the northwestern coast of IP.

Furthermore, most of the physical-biological coupled models applied in the region

are based on climatological initial and open boundary conditions, which can be a

limitation, once they represent an average of the ocean state. Moreover, tidal forcing



12 Introduction

is usually missing and therefore model predictions may be unrealistic. Otherwise,

the model developed in this study relies in MyOcean global solution of physical and

biological variables that includes tidal forcing, which lead to more accurate results.

1.4 Structure of the work

This dissertation is divided in 7 chapters. Chapter 1 presents the Introduction,

where motivation, main objectives, literature review, thesis structure and publications

in the context of the thesis are described. In Chapter 2 a general description of the study

area (IP coast) is performed in terms of its main physical characteristics, circulation

patterns and water masses. Next, a seasonal analysis of Chl-a concentration, SST,

upwelling conditions, rivers discharge and nutrients is carried out. In Chapter 3 the

influence of atmosphere-ocean-land conditions that drive phytoplankton growth and

generation are evaluated, and in Chapter 4 the influence of changes in meteorological

conditions on upwelling and Chl-a concentration are researched along the northwestern

coast of IP. Chapter 5 presents a general overview of the MOHID model along

with details about its implementation in the study area. The model validation is

also presented in this chapter, being the hydrodynamic and biogeochemical model

predictions extensively compared with observations. In Chapter 6 the numerical tools

developed are used to explore the phytoplankton patterns during two upwelling events:

a strong that occurred during July 2014 and a weak during August 2013. Finally, in

Chapter 7, the final conclusions of the dissertation and future work are drawn.

1.5 Publications and communications in the context of this

dissertation

Several publications in peer reviewed journals and presentations at international

and national conferences resulted from the research developed in this thesis. The

publications were used as basis for several chapters of this thesis (marked in bold in

the list below).
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Chapter 2

Characterization of the

northwestern Iberian margin

2.1 Introduction

The northwestern Iberian shelf is the habitat of important fish and shellfish

resources with commercial interest, like octopus (Otero et al., 2009), pelagic fish species,

such as sardine and horse mackerel (Santos et al., 2001, 2004), anchovy (Allain et al.,

2001), or albacore (Lav́ın et al., 2007).

The area under study (Figure 2.1) includes the western (from 40 ◦N and 44 ◦30’N)

and the northern (from 11 ◦W to 5 ◦W) shelves of IP, being characterized by an abrupt

change of coastline geometry (Cape Finisterre and Cape Ortegal). Several recent

works (Alvarez et al., 2008b; Torres et al., 2003) have shown that the wind field is

not homogeneous along northwestern IP, which influences upwelling and biological

productivity. Consequently, in this work, three coastal segments are considered

taking into account the coastline direction: western (from 40 ◦N to 43 ◦N, north-south

direction), intermediate (from Cape Finisterre to Cape Ortegal, northeast-southwest

direction) and northern (from Cape Ortegal to 5 ◦W, west-east direction) coastal

segments (Figure 2.1).

At western coastal segment are located the most important freshwater sources of

the northwestern coast of IP: Minho, Douro and Mondego Rivers (Figure 2.1), which

during winter are responsible for the formation of low salinity plumes, still traceable

in summer. These buoyant plumes respond rapidly to wind changes and have strong
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Figure 2.1: Circulation features of the northwestern IP and 200 and 1000 m isobaths.

impact on the inner-shelf dynamics, due to the increased density gradients, and on

biological fields due to their efficiency in providing a mean for organic matter retention

(Santos et al., 2004; Ribeiro et al., 2005; Otero et al., 2008) and therefore survival of

early life stages of several marine species (Aŕıstegui et al., 2009).

North of Minho River are located several estuaries locally named as Rias Baixas

(Figure 2.1), which are similar from a morphological point of view and share several

common features (Alvarez et al., 2005). Freshwater contribution into Rias Baixas comes

from four small rivers, enhancing water dynamics and biogeochemistry of the coastal

adjacent region (Alvarez-Salgado et al., 1996). The freshwater discharge from these

four rivers are not considered in this work once they have low fluxes when compared to

Mondego, Douro and Minho Rivers. Moreover, Rias Baixas are V shaped, presenting

strong mixing, being the river flow diluted with oceanic waters and therefore hard to

identify. Additionally, these small freshwater inputs may be masked by Minho and

Douro plumes, which reach Rias Baixas during specific atmospheric and circulation

conditions (Mendes et al., 2016).

Upwelling has important biological implications at western coastal segment due
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to high input of nutrients that trigger a great primary productivity, supporting an

intense mussel raft culture at Rias Baixas (Blanton et al., 1987; Figueiras et al.,

2002). Otherwise, upwelling can have negative impact on the survival of pelagic fish

first developmental stages through increased offshore transport to unfavourable areas

(oligotrophic oceanic waters). Indeed, sardine spawn occur off IP, predominantly in

winter (Ré et al., 1990; Marques et al., 2005) and therefore upwelling winter events

may generate fluctuations in its productivity leading to problems of sustainability and

of fishery management and policies.

At intermediate coastal segment, immediately north of Cape Finisterre is located

the Artabro Gulf that receives small inputs of freshwater from Eume River (Figure

2.1). This region supports a significant number of mussel rafts and local fisheries,

although with a total yield lower than from Rias Baixas. At intermediate coastal

region phytoplankton dynamics show a seasonal cycle, determined by alternating

periods of mixing and stratification in water column (Bode et al., 2002). These

typical patterns are largely modified by spring-summer upwelling, which fertilize

surface waters resulting in an increase in primary production, supporting important

fisheries. Nevertheless, these phytoplankton productive events are less important than

those observed south of Cape Finisterre (Varela et al., 2005). Cape Finisterre and

Cape Ortegal are frequently a place of upwelling maximum and recurrent upwelling

filaments are observed (Haynes et al., 1993; Torres et al., 2003). These filaments are

associated with topographic features and wind stress caused by orographic effects,

however they may result from the coastal jet when upwelling occurs along the northern

coast (Narimousa and Maxworthy, 1989).

The northern coastal segment is characterized by a narrow continental shelf (7−20

km wide) (deCastro et al., 2009) and presents a complex topography and a wide range

of substrates that results in many different types of habitats (Sánchez et al., 2005).

Near Cape Peñas is located the Nalon River (Figure 2.1) that is the most important

source of nutrients to the sea in this region (Prego and Vergara, 1998). Here upwelling

is also present enhancing primary production, although is not a common event and

is generally restricted to a narrow band near the coast (Dickson and Hughes, 1981;

Botas et al., 1990). The production of the area is also influenced by hydrographic

mesoscale structures along the shelf break, which is a consequence of winter fluxes
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from the warm poleward current that determines the coastal distribution of plankton,

fish eggs, and larvae in Cantabrian Sea (González-Quirós et al., 2003; Villamor et al.,

2004). These produce a regular pattern of hydrographic conditions throughout the year

characterized by winter mixing and summer stratification, with phytoplankton blooms

occurring during the transition periods.

In this chapter it is intended to perform a characterization of the main features of

the study region, in terms of the main circulation patterns and water masses, Chl-a

concentration, SST, Ekman transport, river discharges and nutrients variability along

the three coastal segments of the IP, for the period of 1998-2007.

2.2 Circulation patterns and water masses

Oceanic circulation patterns are crucial for the definition of nutrients and heat

distribution, and therefore are important for primary production processes. The

adjacent region of IP is under the direct influence of two large scale currents that

are originated from the Gulf Stream and splits into two branches, the northern branch

becoming the North Atlantic Current (NAC) and the southern branch the Azores

Current (AC).

The surface circulation off IP (Figure 2.1) is dominated by the Portugal Current

System (PCS) that includes the Portugal Current (PC) and the Portugal Coastal

Current (PCC) (Ambar and Fiúza, 1994). Off western and intermediate coastal

segments, in the open ocean, the PC dominates, flowing equatorward during all the

year from 10 to 20 ◦W, at the interface between the NAC and AC (Krauss, 1986).

The PC is somewhat weak (1.6 cm s-1) (Pollard and Pu, 1985) with maximum speed

reaching up to 5.7 cm s-1 (Martins et al., 2002).

The circulation pattern is more complex at the ocean margin and is defined by the

wind regime at the western (Huthnance et al., 2002), intermediate and northern (van

Aken, 2002) coastal segments.

Approximately parallel to PC, but closer to the shelf break, develops the seasonally

reversing PCC (Ambar and Fiúza, 1994; Fiúza, 1983, 1984). During summer, the

PCC is 30 − 40 km wide and 50 − 100 m deep and flows southward (with maximum

velocity of about 40 cm s-1 (Peliz et al., 2002)) in the vicinity of western segment shelf
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break, being driven by northerly winds. It then transports the Eastern North Atlantic

Central Water (ENACW) that is the main responsible for the fertility of the coast

during upwelling processes. Two subtypes of this water mass were identified according

to their origin, temperature and salinity (Fraga et al., 1982): a warmer and saltier

of subtropical origin (ENACWst, 12.2 − 18.5 ◦C and 35.66 − 36.75) and a colder and

less saline of subpolar origin (ENACWsp, 4 − 12 ◦C and 34.96 − 35.66) (Fiúza, 1984;

Rios et al., 1992; Fiúza et al., 1998). These two subtypes are separated in summer

by a subsurface front at 42 ◦N near Cape Finisterre (Fraga et al., 1982) and therefore

PCC transports cold and nutrient rich upwelled ENACWsp water in intermediate and

northern segments, and warmer and nutrient poor ENACWst formed along the Azores

Front in western segment, while during September to April the PCC piratically vanishes

(Alvarez-Salgado et al., 2003).

A northward salty surface current (about 200 m deep), called Iberian Poleward

Current (IPC) (Peliz et al., 2002, 2003; Frouin et al., 1990), is geographically trapped

by the bathymetric discontinuity at the shelf break upper slope zone. The IPC is a

narrow (25 − 40 km) slope-trapped tongue and is present almost yearlong, including

in summer months, when it is close to the shelf-break (deCastro et al., 2011; Aŕıstegui

et al., 2006). Moderately strong upwelling and downwelling favourable winds, can

modify the poleward flow but do not significantly change the density-driven current

structure at the slope. The alongshore transport within the slope region is reduced by

0.2-0.3 Sv (from 1.2 Sv), under influence of either downwelling or upwelling winds (Peliz

et al., 2003). After September, the IPC intensifies, flowing over the upper slope and

outer shelf of the Western Iberian margin and extending all along to the intermediate

and northern segments of IP (Frouin et al., 1990; Garcia-Soto et al., 2002). Due to

the inability of the poleward flow to follow the abrupt changes of topography, such

as Cape Ortegal, the IPC exhibits a turbulent nature, producing unstable structures

and eddies in the Cantabrian Sea (Pingree and Cann, 1990; Garcia-Soto et al., 2002)

(Figure 2.1). This current have been extensively described in several studies (Frouin

et al., 1990; Pingree and Cann, 1990; Martins et al., 2002; Peliz et al., 2005; Torres and

Barton, 2006).

At western coastal segment the ocean circulation is also influenced by freshwater

plumes resulting from rivers discharge. Their estuarine outflow originates a low salinity
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water lens that extends along the coast. The freshwater input is more intense during

the winter, but low salinity values persist during all year as a buoyant plume, called

Western Iberian Buoyant Plume (WIBP) (Peliz et al., 2002). During typical non-

upwelling winter conditions, the plume is confined to the inner-shelf from the Mondego

river mouth with a preferential propagation northward and salinity values less than

35.7–35.8 (Peliz et al., 2002), while during upwelling favourable winds stretches offshore

(Peliz et al., 2002; Mendes et al., 2016).

2.3 Data and methods

Chl-a concentration, SST and Ekman transport seasonal distributions were analysed

over the northwestern coast of IP from 1998 to 2007, considering four seasons: winter

(JFM), spring (AMJ), summer (JAS) and autumn (OND). The time evolution of the

spatially averaged Chl-a concentration, SST and wind derived upwelling index (UI) and

their monthly average were also determined at 40, 18 and 20 points in case of Chl-a and

SST and at 10, 8 and 9 triangles in case of UI, located at western, intermediate and

northern coastal segments, respectively (Figure 2.2). Points are approximately 16.5

km offshore and triangles at 60 km (Figure 2.2). Maxima levels of Chl-a concentration

and the timing of these maxima were also analysed for the period 1998-2007, for the

entire study region.

Chl-a data were obtained for the period 1998-2007, from SeaWiFS through NASA’s

Goddard Space Flight Center (http://oceancolor.gsfc.nasa.gov/SeaWiFS/) with a

spatial resolution of 9 km and a temporal resolution of 7 days. Chl-a data from

SeaWIFS have been extensively used over the last decade in the world’s oceans to

analyse its spatial and temporal variability (Brickley and Thomas, 2004; Navarro and

Ruiz, 2006; Patti et al., 2010; Gao et al., 2013). A global comparison between SeaWiFS

and in situ Chl-a data from NASA and NOAA was performed by Gregg and Casey

(2004) using 4168 coincident data points. From the analysis carried out along the

eastern North Atlantic, they found a root mean square error (RMSE) of 19.7% and

a correlation of 0.65 between both data sets. Moreover, Ribeiro et al. (2005) have

analysed the response of Chl-a to a winter upwelling event using SeaWIFS and in

situ data along the western coast of the IP and found relative errors lower than 35%.
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Figure 2.2: Map of the northwestern IP coast. Near coast dots and asterisks represent the
locations where Chl-a and SST were retrieved and offshore triangles where upwelling index
was computed. Three coastal segments are delimited: WCS, western coastal segment; ICS,
intermediate coastal segment and NCS, northern coastal segment.

Therefore, SeaWiFS products can be considered reliable for the study of Chl-a along

the northwestern coast of IP.

SST data measured by the AVHRR on board NOAA series satellites

(http://poet.jpl.nasa.gov) were also analysed. Data are available since 1985 with a

high spatial resolution of 4 km. A temporal average of 8 days from 1998 to 2007

was considered. Data from this sensor is the most used in the estimation of SST

for scientific and operational applications in oceanography and fisheries (Torres et al.,

2003; Williams et al., 2010) and therefore is considered a valuable tool for the study of

SST patterns along the study area.

The Ekman transport was computed through surface wind fields obtained from

the National Centers for Environmental Prediction (NCEP) Climate Forecast System

Reanalysis (CFSR) (http://rda.ucar.edu/pub/cfsr.html). Data were retrieved from

NOAA National Operational Model Archive and Distribution System (NOMADS)

which is maintained by the NOAA National Climatic Data Center (NCDC). Detailed

information about CFSR database can be obtained from Saha et al. (2010). This
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database presents a high spatial resolution (0.3◦), which is adequate to accurately

resolve conditions at the scale of coastal upwelling in intense and localized upwelling

zones. It has a temporal resolution of 6 hours from January 1982 to December 2010 and

the reference height of wind data is 10 m. This database allows the analysis of wind

behaviour at small scales, which is essential when considering coastal mesoscale effects

as upwelling. Recent studies have compared wind from this database and from other

sources with wind measured by several buoys along the IP coast (Alvarez et al., 2014;

Carvalho et al., 2014a,b), showing that datasets with finer spatial resolution, such as

CFSR, give better results, especially near the coast. Thus, CFSR data are considered

reliable and used to study Ekman transport variability over the study area.

Ekman transport was computed in terms of CFSR wind speed at the 10 m level,

W , the seawater density, ρw = 1025 kg m-3, a dimensionless drag coefficient Cd = 1.4

× 10−3 and the air density, ρa = 1.22 kg m-3, through

Qx =
ρaCd
ρwf

(W 2
x +W 2

y )1/2Wy (2.1)

Qy = −ρaCd
ρwf

(W 2
x +W 2

y )1/2Wx (2.2)

where f is the Coriolis parameter, defined as twice the vertical component of the Earth’s

angular velocity, Ω, about the local vertical given by f = 2Ωsin(θ) at latitude θ. The

subcript x corresponds to the zonal component and the y to the meridional one.

As previously referred the time evolution of the spatially averaged wind derived

UI was also computed. UI can be considered as the Ekman Transport component

in the direction perpendicular to the shoreline by means of UI = −Qx sin(θ − π
2
) +

Qycos(θ − π
2
), where θ is the angle defined by an unitary vector normal to the shoreline

pointing seaward (Gomez-Gesteira et al., 2006). The shoreline angle is different along

each coastal segment, presenting 180 ◦ relative to the equator for western coastal

segment, 135 ◦ for intermediate coastal segment and 90 ◦ (parallel to the equator) for

northern coastal segment. Positive (negative) UI values mean upwelling favourable

(unfavourable) conditions.

Monthly mean freshwater inflows of the main rivers discharging at each coastal
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segment were computed and analysed for the period 1998-2007. At western coastal

segment the freshwater input from Rias Baixas was not considered due to its minor

importance when compared with Minho, Douro and Mondego Rivers discharge. The

Minho discharge data were provided by the Confederación Hidrográfica del Miño-Sil

(http://www.chminosil.es/) and the Douro and Mondego discharges by the Instituto

Nacional da Água (http://www.snirh.pt/). Both datasets have a daily temporal

resolution. At intermediate and northern coastal segments Eume and Nalon Rivers were

considered for analysis. Given the absence of in situ data for Nalon and Eume Rivers

during this period, discharges were obtained from estimations presented in Otero et al.

(2010) for Nalon River and provided by the Swedish Meteorological and Hydrological

Institute (SMHI - http://www.smhi.se/en) for Eume River.

Nutrients (phosphate and nitrate) monthly mean concentration and loads were also

computed for the period 1999-2009 for Mondego, Douro, Minho, Eume and Nalon

Rivers. Nutrient load is the mass of nutrient transported by flow over time, and is

estimated as the product of nutrient concentration and flow. Nutrients concentration

data were provided by SMHI that used the E-Hype model to compute hydrological

variables (e.g. runoff, discharge, snow depth, groundwater level) and nutrient variables

(e.g. concentrations and loads) for over 35000 sub-basins across all of Europe (Donnelly

et al., 2013).

2.4 Results and discussion

2.4.1 Chl-a concentration variability

2.4.1.1 Seasonal analysis

In this section is discussed the seasonal evolution and the spatio-temporal variability

of Chl-a concentration along the northwestern coast of IP, from 1998 to 2007.

From Figure 2.3 is found that Chl-a concentration presents a cross-shelf gradient,

with higher values near coastal areas (between 2 and 6 mg m-3).

High Chl-a concentrations are detected at western coastal segment, off Rias Baixas

and at the southern region off the Portuguese coast (between Mondego and Minho

Rivers). These maxima are more noticeable during summer months (JAS) with values
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Figure 2.3: Seasonal (JFM, AMJ, JAS and OND) distributions of Chl-a concentration (mg
m-3) along the northwestern coast of IP.

exceeding 6 mg m-3. This pattern may be related to the frequent upwelling events

occurring south of Cape Finisterre during this period (Alvarez et al., 2008b; Gomez-

Gesteira et al., 2006; Relvas et al., 2007), which bring nutrient-rich water to surface

layers. Nutrients are used by phytoplankton together with dissolved CO2 and solar

energy to produce organic compounds through photosynthesis, generating high primary

production which supports the large biological diversity in this region (Huthnance et al.,

2002; Santos et al., 2004; Tenore et al., 1995; Torres and Barton, 2006).

For the remaining seasons (JFM, AMJ and OND), Chl-a concentration is lower

than in summer, however values are still considered significant, between 2 and 4 mg

m-3. These conditions may be related not only to the occurrence of winter upwelling

events (Alvarez et al., 2003; Borges et al., 2003; deCastro et al., 2006; Prego et al.,

2007; Santos et al., 2004), but also to the effect of the river discharge, which promotes
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the input of nutrients onto the coastal waters. One additional point that should be

considered is that high concentrations of coloured dissolved organic matter (CDOM),

associated with river runoff, are present in the ocean surface in winter, leading to an

erroneous strong signal of the satellite (Carder et al., 1999).

Near Douro River (approximately at 41 ◦N), which has the strongest outflow of

IP western coastal segment, a strong signal of Chl-a (between 3.5 and 4.5 mg m-3)

was observed during autumn (OND) and winter (JFM). Also, off Mondego and Minho

Rivers regions of influence were found higher concentrations than at the surroundings

(between 2 and 3 mg m-3), revealing the importance of these rivers for the local

ecosystems.

At intermediate coastal segment the highest productivity is observed in the vicinity

of Artabro Gulf during summer season (between 2.5 and 4 mg m-3) therefore related

with upwelling events. Here upwelling is discontinuous and distant from the coast,

being near to the edge of the continental shelf (Prego and Bao, 1997; Prego and Varela,

1998), and strong Chl-a levels are observed. Winter Chl-a concentrations higher than

2 mg m-3 are detected here and can be associated with Eume River influence, which

discharges nutrients into the Artabro Gulf. During AMJ, phytoplankton blooms are

detected near the coast and offshore, with values between 2 and 3.5 mg m-3. Indeed,

during spring, the rising of surface water temperatures associated with longer daylight

hours stimulate phytoplankton activity levels, after slow or dormant periods during

winter.

The northern coastal segment of IP is the least productive, being the Chl-a

concentrations more significant during JFM and OND, with values ranging from 1 to

2 mg m-3 near Cape Peñas (Figure 2.3). The JFM peaks are a situation characteristic

of the planktonic cycle along the Cantabrian coast: winter mixing followed by summer

stratification, favouring phytoplankton blooms (Varela et al., 2008, 2010; Alvarez et al.,

2011). Moreover, high Chl-a concentrations during OND may be associated with the

input of nutrients by Nalon River, which is the most important freshwater source in

this region (Prego and Vergara, 1998).

The time evolution of the spatially averaged Chl-a concentration was also analysed

for the period 1998-2007, considering the red dots represented in Figure 2.2 for each

coastal segment. A 1-year running average (i.e. the value of a month is the average of
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this month with the same month of the previous year) was applied to smooth out the

short terms fluctuations (Figure 2.4).

As previously observed, western coastal segment is characterized by higher Chl-a

levels than intermediate and northern segments. Strong Chl-a concentrations between

June and October were observed at western coastal segment, being the years of 2006

and 2007 the most productive, with values higher than 5 mg m-3. High Chl-a levels

were also observed in winter, mainly during JFM of 1998, 1999 and 2001. During the

year of 2007, high Chl-a concentration (more than 3 mg m-3) was also detected from

November to December. The summer season of the years 2004 and 2005 was the least

productive along the western coastal segment (Figure 2.4a).

The annual cycle of Chl-a concentration (Figure 2.4b) shows that, on average, the

highest values occurred in August and September (more than 3 mg m-3) and the lowest

values in December and January (2 mg m-3).

Figure 2.4: Time evolution of the spatially averaged Chl-a concentration (mg m-3) (left
column) and monthly average (right column) from 1998-2007, for western (a and b),
intermediate (c and d) and northern (e and f) coastal segments of IP.
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At intermediate coastal segment should be highlighted the strong Chl-a

concentration observed during 2005 and 2007 for June and July, with values higher

than 3 mg m-3. Also in August and September high Chl-a concentrations are observed,

however with lower values (2 mg m-3). For monthly average of Chl-a concentration

was not found a clear seasonal cycle, like at western segment. In fact, April, May and

September are the most productive months, with values ranging from 1 to 1.5 mg m-3

(Figure 2.4d).

Regarding the northern coastal segment, primary production is weak during summer

season, with Chl-a concentrations close to 0 mg m-3. During February and March,

Chl-a levels were generally higher than for summer months, being the highest Chl-a

concentrations found for the end of the period under analysis (between 2005 and 2007,

with values of approximately 2 mg m-3). Here, the monthly average shows a clear

seasonal cycle, with low values (approximately 0.2 mg m-3) in summer (for July and

August) and high values during winter and spring (0.5 and 0.8 mg m-3, respectively)

(Figure 2.4f).

2.4.1.2 Maxima levels

Maxima Chl-a concentrations, the period of occurrence of these maxima and its

percentage of occurrence were also computed over the ten year period under analysis

for every pixel (Figure 2.5).

From Figure 2.5 is found that approximately 85% of the study region total area

has maxima values of Chl-a concentration ranging from 1 to 4 mg m-3. This area

corresponds mainly to the open ocean waters and peaks occur essentially during March

and April (Figure 2.5c), with percentages of 18 and 50%, respectively (Figure 2.5d).

The highest concentrations occur south of Cape Finisterre, with maxima values

higher than 7 mg m-3, representing 4.4% of the study region area. These peaks are

essentially visible in August (see Figure 2.5c), and are thus associated with upwelling

events that are mainly a spring-summer process (Alvarez et al., 2008a).

Regarding the coastal region, at western coastal segment, summer (August) Chl-a

peaks overlap autumn (October) peaks (Figure 2.5c), with exception south of Douro

River mouth, where maxima Chl-a concentrations occur in October (higher than 10

mg m-3).
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Figure 2.5: a) Maximum Chl-a concentration (mg m-3) and c) correspondent period of
occurrence during 1998-2007. b) and d) represent the percentage of occurrence of a) and
c), respectively.

At intermediate coastal segment maxima Chl-a concentrations, which are mainly

observed in Artabro Gulf, with values between 7 and 9 mg m-3, occur during August

and September (Figure 2.5c). Immediately north of Cape Finisterre maxima values

are lower than 7 mg m-3, and occur mainly during August.

Finally, at northern coastal segment, maxima Chl-a concentrations occur in

September and December near Cape Peñas (less than 4 mg m-3), and may be associated

with the input of nutrients through Nalon River. Moreover, eastward to Cape Peñas,

maxima Chl-a concentrations were observed (4.5 mg m-3, Figure 2.5a), occurring mainly

during March (Figure 2.5c), revealing that in this region the phytoplankton blooms
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generated during the transition phases (in this case mixing to stratification) overlap

those originated by periodic episodes of coastal upwelling.

In summary, according to the statistics of Figure 2.5, at western coastal segment

Chl-a maxima occur mainly during August, at intermediate during August and

September and at northern during September and December, while in open ocean

it occurs in April and reveals high temporal variability.

2.4.2 SST variability

Seasonal averages of SST are also analysed along the northwestern coast of IP, and

are presented in Figure 2.6, showing that SST is highly variable throughout the year.

Indeed, from January to March (JFM, Figure 2.6) maximum SST observed in the

study area is 14.5 ◦C in the southern part of western coastal segment. Moreover, JFM

surface temperatures evidence a filament of water warmer than at surrounding coastal

and oceanic waters, turning east of Cape Finisterre. This warm water is associated

with the IPC jet that usually arrives to the north coastal segment at the beginning of

each winter (Garcia-Soto et al., 2002; Peliz et al., 2005; deCastro et al., 2011). This

surface temperature signature is usually sharper during January, being masked herein

due to the JFM average performed. The band of colder water (13 ◦C) observed between

the warm water filament and nearshore region may be related to the net heat loss from

surface during the preceding months (Alvarez et al., 2012; Fiúza, 1983).

From April to June (AMJ), temperatures higher than for JFM are observed along

the study area. A band of coastal cold water is also observed along the western coastal

segment, which is explained by the upwelling favourable conditions observed during this

period (Figure 2.6). Also, a band of warm water, originated in southern latitudes, was

detected along the western coastal segment. Along the intermediate coastal segment

a SST minimum (14 ◦C) is evident from the nearshore to open-ocean latitudes and at

northern, surface temperature increases, ranging from 15 to 15.5 ◦C.

For JAS at western and intermediate coastal segments, a nearshore band of water

colder than offshore is evident and wider than for AMJ, generating a longitudinal

temperature gradient. This pattern is related to upwelling events that occur mainly in

summer months, which is corroborated by the Ekman Transport patterns represented

in Figure 2.8 during JAS. Otherwise, the highest surface temperatures were observed at



30 Characterization of the northwestern Iberian margin

Figure 2.6: Seasonal (JFM, AMJ, JAS and OND) distributions of SST (◦C) along the
northwestern coast of IP.

northern coastal segment, increasing eastward (between 19.5 and 21 ◦C). In fact, this

pattern is an effect of the warming observed during the summer at the southeastern

corner of the Bay of Biscay (Pingree and Cann, 1989; Koutsikopoulos and Cann, 1996;

Gomez-Gesteira et al., 2008).

The time SST evolution computed at the red dots represented in Figure 2.2 for each

coastal segment is presented in Figure 2.7. In this case a 1-year running average was

also considered. In general, the results show a clear seasonal cycle for all the coastal

segments, with higher temperatures during summer (between June and September)

and at northern coastal segment.

Different modulations in SST are observed. In particular, at western coastal

segment the width of the summer band (16 < SST < 19 ◦C) is thinner during the year

of 2002 and thicker in 2007. The same characteristics are observed at intermediate and
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Figure 2.7: Time evolution of the spatially averaged SST (◦C) (left column) and monthly
average (right column) from 1998-2007, for western (a and b), intermediate (c and d) and
northern (e and f) coastal segments of IP.

northern coastal segments, although less pronounced.

At western and intermediate coastal segments the thermal amplitude is

approximately 5 ◦C (Figure 2.7a, b, c and d), with a minimum of 13.5 ◦C in February

and a maximum of 18.5 ◦C in August, while for northern coastal segment the thermal

amplitude is much higher, 7 ◦C (Figure 2.7e and f). Similar results were obtained

by Gómez-Gesteira et al. (2011), where SST patterns for more than 150 years were

evaluated in the study region.

2.4.3 Ekman transport and UI variability

In order to characterize the spatio-temporal variability of upwelling events along the

northerwestern coast of IP, the Ekman transport was computed through the Equations

2.1 and 2.2 and is represented in Figure 2.8, considering the seasons previously referred.

Generally, the seasons JFM and OND show identical patterns of Ekman transport,
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as well as AMJ and JAS. Indeed, from April to September (AMJ and JAS), the

strongest Ekman transport occurred along the western coastal segment, while from

October to March (OND and JFM) maxima values were observed at intermediate and

northern coastal segments (Figure 2.8).

During AMJ and JAS, Ekman transport is directed south-westward at western

coastal segment (upwelling favourable), with values between 400 and 600 m3 s-1 km-1,

being the near shore transport weaker than the offshore (between 100 and 200 m3

s-1 km-1). Otherwise, at intermediate and northern coastal segments a weak south-

westward (upwelling unfavourable) transport is observed (100 m3 s-1 km-1) during AMJ,

while between July and September (JAS), Ekman transport is directed north-westward

(upwelling favourable). The magnitude of the transport ranges from 100 to 200 m3 s-1

km-1 at intermediate coastal segment and is less than 100 m3 s-1 km-1 at northern,

during JAS. Therefore, on average, during JAS transport is upwelling favourable at

Figure 2.8: Seasonal (JFM, AMJ, JAS and OND) distributions of Ekman Transport (m3 s-1

km-1) along the northwestern coast of IP.



2.4 Results and discussion 33

the three coastal segments, while during AMJ is only favourable at the western coastal

segment.

For JFM and OND are found differences in the transport pattern, which shows an

important southward component, unfavourable to the occurrence of coastal upwelling

events. The strongest values were observed at intermediate (350 m3 s-1 km-1 on average)

and at northern (250 to 350 m3 s-1 km-1) coastal segments, while at western the

transport was weak (150 m3 s-1 km-1).

In order to better identify the upwelling favourable months along each coastal

segment, the time evolution of the spatially averaged UI (computed at triangles

represented in Figure 2.2) was also analysed from 1998–2007 (Figure 2.9). A 3-year

running average was considered to smooth out the short term fluctuations.

Highest upwelling favourable conditions at western and intermediate coastal

segments were found from February to October, while at northern segment occurred

between May and September, presenting differences among years.

Regarding the western coastal segment (Figure 2.9a), the highest UI values (between

800 and 900 m3 s-1 km-1) correspond to the begin of the period under analysis from

June to September. At this time Chl-a concentration is high and therefore related

to upwelling events. During March, from 2001 until the end of 2007, UI is upwelling

unfavourable with values approximately −200 m3 s-1 km-1. The same pattern was

observed in November from 2002 until the end of the period under analysis. It is

noteworthy that Chl-a concentration is high for these two periods, suggesting that

primary production is not related with upwelling events, for this period. During

February positive values of UI (upwelling favourable) were observed for the whole

period, except in the late 2003 and in 2004. Moreover, during the years of 2006

and 2007, positive values were observed during winter (December-January), indicating

the possibility of winter upwelling events. The monthly average of UI (Figure 2.9b)

shows a clear seasonal cycle, with the most favourable conditions observed in summer

(maximum of 700 m3 s-1 km-1 in July) and the least in winter (minimum of −200 m3 s-1

km-1 in December). However, in February and November are also observed favourable

conditions to upwelling, with UI values reaching 200 m3 s-1 km-1 (Figure 2.9b).

Along the intermediate coastal segment (Figure 2.9c) UI patterns are similar to

those observed at western, however with lower values. The most intense upwelling
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Figure 2.9: Time evolution of the spatially averaged UI (m3 s-1 km-1) (left column) and
monthly average (right column) from 1998-2007, for western (a and b), intermediate (c and
d) and northern (e and f) coastal segments of IP.

events occurred in April during the period between 1998 (1000 m3 s-1 km-1) and 2001

(500 m3 s-1 km-1). From 2001 to 2007, UI is still upwelling favourable, however with

less pronounced values (400 m3 s-1 km-1). Here, as showed through the Chl-a monthly

distribution, the seasonal pattern is not so pronounced as in western coastal segment.

The most favourable condition occurred in April (250 m3 s-1 km-1) and consequently

high Chl-a values are observed (more than 1.5 mg m-3). Otherwise, unfavourable

upwelling conditions occurred in March (−100 m3 s-1 km-1) (Figure 2.9d).

At northern coastal segment, the strongest upwelling favourable conditions were

observed at the end of nineties, during February and August and during September

2004 and 2005, however Ekman transport never exceed 500 m3 s−1 km−1. On average,

favourable conditions to the occurrence of upwelling are observed during three months:

June, August and September, with values of 100 m3 s-1 km-1 (Figure 2.9f).

In summary, both Ekman transport and UI suggest that the most favourable
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upwelling conditions occur at western coastal segment of IP between April and

September, generating high primary production. These results are in agreement with

several previous studies (Wooster et al., 1976; Fraga, 1981; Blanton et al., 1987; Torres

et al., 2003; Gomez-Gesteira et al., 2006; Alvarez et al., 2008b, 2011).

2.4.4 River runoff and nutrients variability

Monthly mean discharges, nutrients concentration and loads of the main freshwater

sources flowing into western (Mondego, Douro and Minho Rivers), intermediate (Eume

River) and northern (Nalon River) coastal segments of the IP are represented in Figures

2.10 and 2.11, respectively. Generally, results show a typical pattern, with high values

during winter and low values during summer, being the Douro River the most important

freshwater source into the ocean. Western coastal segment main rivers generate an

alongshore low salinity water lens (< 35.8) (Relvas et al., 2007), the WIBP (Peliz

et al., 2002). Plume waters in the vicinity of rivers are identified in winter through

SST imagery from its low temperature signature compared to the shelf waters. On the

other hand, during summer, plume waters are warmer than those from surrounding

(Torres and Barton, 2006).

Douro river basin is the largest hydrographic basin in the northwestern coast of IP,

with an area of 97682 km2 (Mendes et al., 2014). The mean freshwater discharge ranges

from 100 m3 s-1 in August to 1100 m3 s-1 in January, with an annual average discharge of

530 m3 s-1 for the period 1998-2007 (Figure 2.10). The Douro estuarine turbid plume

has a particular relevance in the modulation of the biogeochemical features of the

Figure 2.10: Monthly mean discharges (m3 s-1) from 1998 to 2007.
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Figure 2.11: a) Nitrate and b) phosphate monthly mean concentration (mg l-1) and c) nitrate
and d) phosphate loads (mg s-1) from 1999 to 2009.

northwestern Iberian coast (Ribeiro et al., 2005) due to the large amount of terrestrial

nutrients present in the plume. Indeed, according to Figure 2.11, during winter nitrate

(phosphate) concentration is approximately 2 (0.2) mg l-1 and an average of 1800 (160)

mg s-1 is transported to the coast.

Minho River is approximately 300 km long, having a south-east direction alignment

in the boundary between Portugal and Spain (see Figure 2.2). The river has a

catchment area of 17080 km2 (Sousa et al., 2014b) and an annual average discharge of

360 m3 s-1 computed for the period 1998-2007. Its monthly average discharge oscillates

between 600 m3 s-1 in January and 100 m3 s-1 in August (Figure 2.10). Nutrients

concentrations are higher during summer months, reaching the maximum value during

August (6 mg l-1 for the 1999-2009 average), however due to the low flow (110 m3 s-1),

only 600 mg s-1 are loaded into the coast.

Mondego River has a catchment area of 6700 km2 and it runs along 234 km.

Comparatively to Minho and Douro rivers, Mondego has a low flow, with discharges

ranging from 15 m3 s-1 in August to 180 m3 s-1 in January, and an annual average

of 70 m3 s-1 for the 1998-2007 period. Mondego is an important source of nutrients,

reaching concentrations of 10 mg l-1 of nitrate and phosphate in August and 2.2 of

nitrate and 0.3 mg l-1 of phosphate in November. Indeed, Mondego estuary is under
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severe environmental stress, namely an ongoing euthrophication process, induced by

human activities: industries, aquaculture farms and nutrients from agricultural lands

of low Mondego River valley (Duarte et al., 2002). Regarding the nutrient load, during

summer Mondego transports approximately 150 mg s-1 of nitrate and phosphate, while

during winter transports 350 and 50 mg s-1 of nitrate and phosphate, respectively.

According to Saraiva et al. (2007), Mondego, Douro and Minho are estuaries with

short residence times and therefore phytoplankton and nutrients are flushed out of the

system, and the uptake of nutrients occurs in coastal zone.

Eume River, located at intermediate coastal segment has a catchment area of 470

km2. The ten years mean discharges range from 1.5 m3 s-1 in June to 26 m3 s-1 in

November, with an annual average discharge of approximately 12 m3 s-1 (Figure 2.10).

Nutrients concentration from Eume River are highly influenced by an upstream dam

that controls fluvial inflow nutrients and retains in sediments as organic matter (Prego

et al., 2015). The annual average concentration and loads of nitrate are 2 mg l-1 and

21 mg s-1 for the period of 1999-2009, respectively. Phosphate concentration and loads

are negligible (Figure 2.11).

Finally, at northern coastal segment is located the Nalon River with 153 km long

and a basin area of 4866 km2 (Prego and Vergara, 1998). It is an important source of

nutrients in the region, with the highest concentration of nitrate found in September

(3 mg l-1) and the highest load in March (250 mg s-1). Its monthly mean discharge

oscillates between 50 m3 s-1 in August and 170 m3 s-1 in January (Figure 2.10) and the

annual average discharge is approximately 120 m3 s-1.

The interannual evolution of freshwater runoff from the five rivers was also computed

(Figure 2.12), revealing peculiar differences among years. For instance, it is noteworthy

that the strongest discharges are observed during winter of 2001 for all the rivers

analysed. Maximum discharge for Douro, Minho, Mondego, Nalon and Eume Rivers

were 4500, 2000, 700, 400 and 70 m3 s-1, respectively. Indeed, during 2001 winter high

rainfall events were observed along the northwestern coast of IP (Alvarez et al., 2005).

The second highest discharge occurred in winter 2003, with values of 2500, 1500, 500,

300 and 50 m3 s-1 for Douro, Minho, Mondego, Nalon and Eume Rivers, respectively.

For Nalon River similar values occurred in 1998 and from 2004 to 2007, mainly during

March.
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Figure 2.12: Interannual evolution of discharges (m3 s-1) for 1998-2007, for the Douro, Minho,
Mondego, Eume and Nalon Rivers.

For western coastal segment rivers, strong discharges were also detected in January

1998. Besides the already mentioned periods, also for the late 2006 and early 2007 high

discharges were observed, with values of 1400 m3 s-1 for Douro and Minho Rivers and

300 m3 s-1 for Mondego River.

Most of the strong discharges highlighted are concurrent with the strong signal of

Chl-a concentration (Figure 2.4), suggesting that they may be related.

2.5 Conclusions

The variability of Ekman Transport, UI, SST, Chl-a concentration, river discharges

and nutrients over the northwestern coast of IP were characterized through in situ

and remote sensing data, from 1998 to 2007. The analysis was carried out in terms of

annual and monthly averages, showing the following:

• Ekman transport, SST and Chl-a concentration had different annual cycles within

each coastal segment, with high seasonal variability;

• At western and intermediate coastal segments, maxima Chl-a levels (10 mg m-3)

occur in August and September, suggesting that upwelling is the main responsible

for phytoplankton growth. At northern coastal segment it occurs in September

and December (4 mg m-3) and in the open ocean phytoplankton blooms occur in

April (2 mg m-3);

• The seasonality of Chl-a concentration is mainly related to the upwelling events,

which are more frequent along the western and intermediate coastal segments;

• During AMJ and JAS the strongest Ekman transport occurs along the western
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coastal segment directed westward, inducing the displacement of deep and

nutrient-rich water to surface. Consequently, during this period a band of cold

water and high levels of Chl-a are observed near the coast. At intermediate coastal

segment, upwelling favourable conditions also occur during summer, however with

lower intensity than at western segment. A band of cold water and high Chl-

a concentration is also observed near coast. At northern coastal segment the

Ekman transport is weak, and high temperatures related to the summer warming

at the southeastern corner of the Bay of Biscay are observed. Furthermore, Chl-a

concentrations are low;

• During OND and JFM unfavourable upwelling conditions were observed for all

the study region. At western and intermediate coastal segments high levels of Chl-

a are also observed, however lower than during summer months. This may be

associated with the input of nutrients from rivers, which can induce phytoplankton

growth in the coast and consequently primary production increases. At northern

coastal segment Chl-a levels are higher than in summer and stronger near Nalon

River;

• High discharges were found during winter and therefore high nutrient loads, being

Douro river the most important freshwater source into the ocean.
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Chapter 3

Chl-a concentration dependence on

upwelling and rivers runoff

3.1 Introduction

Along the northwestern coast of IP, coastal upwelling is usually considered the main

responsible for the high primary production that characterizes this region (Huthnance

et al., 2002; Tenore et al., 1995) supporting a high biological diversity. The upwelling

phenomenon occurs due to a combination of three factors: the existence of a persistent

wind, the presence of a solid boundary, and the apparent deviation of a moving object

from its straight path in a rotating reference system (Coriolis effect). In the northern

hemisphere, when the winds blow toward the Equator, leaving the coast on the left,

surface waters moves offshore due to the effect of Ekman transport and are replaced

by deep colder nutrient-rich waters. The influence of coastal upwelling on primary

production and Chl-a concentration was studied along the northwestern coast of the

IP, mainly during summer (Casas et al., 1997; Castro et al., 2000; Bode et al., 2002;

Cravo et al., 2010; Cardeira et al., 2013; Oliveira et al., 2009; Ribeiro et al., 2005).

However, most of these studies focused on data at isolated locations along the coast

and during short periods of time, providing a localized knowledge.

Otherwise, freshwater input from rivers has also an important implication on

phytoplankton growth, once river plumes are generally rich in nutrients and remains

near surface and thereby supports high primary production. Along the northwestern

coast of IP, Alvarez et al. (2012) referred the importance of Minho River plume in
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phytoplankton generation during winter, however were not found studies examining

the influence of other freshwater sources discharging in region.

Although some results regarding the Chl-a concentration variability along the

northwestern coast of IP have been presented in Chapter 2, it is important to further

investigate the effect of external factors to phytoplankton blooms development and

highlight localized changes, once phytoplankton is the base of trophic web and therefore

its variability affects the dynamics of the whole ecosystem. Therefore, the main

objective of this chapter is to investigate the Chl-a concentration dependence on coastal

upwelling and rivers runoff along the northwestern coast of IP. In this context, the

Empirical Orthogonal Functions (EOF) technique was used to examine the temporal

and spatial variability of Chl-a concentration and infer about the main physical forcings

that influence its generation and growth. Additionally, SST imagery complemented by

wind information and river discharges will be used to analyse atmosphere-ocean-land

conditions that drive phytoplankton generation. Correlations between these variables

were also computed in order to quantify the relation between them.

3.2 Data and Methods

3.2.1 SST, Ekman transport and Chl-a analysis

Upwelling along the northwestern coast of IP is a seasonal phenomenon, mainly

occurring during spring-summer months. Otherwise, freshwater input is more intense

during winter. Moreover, in temperate areas seasonality accounts for most of the

temporal phytoplankton biomass variability. Consequently, the monthly evolution of

Chl-a, SST and Ekman transport was analysed between 1998 and 2007 to further

investigate the Chl-a variability and its response to external forcing, along the three

coastal segments: western, intermediate and northern. Chl-a concentration and SST

annual cycles were calculated at the points and UI at the triangles located at each

coastal segment represented in Figure 2.2 (Chapter 2). SST and Chl-a concentration

data were obtained from AVHRR and SeaWiFS, respectively, as described in detail in

Chapter 2. The monthly evolution of Chl-a concentration and SST were also computed

in five sections (Figure 2.2) to assess its zonal (I, II and III) and meridional (IV and V)

variability near the most important freshwater sources discharging in the study area.
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To better characterize the influence of upwelling events and river discharges on

Chl-a variability along the three coastal segments, the interannual evolution of Chl-a

concentration, SST, UI and discharges of the main rivers at each coastal segment were

analysed for summer and winter between 1998 and 2007. SST and Chl-a concentration

interannual evolution was computed considering meridional and zonal interpolation of

these variables at the points located at each coastal segment (Figure 2.2), while the

mean UI interannual evolution was computed considering the triangles of Figure 2.2.

Positive (negative) UI values means upwelling favourable (unfavourable) conditions.

3.2.2 Fluvial and mixed layer depth data

River discharges (Mondego, Douro, Minho, Nalon and Eume) were also analysed

in order to understand its implications in the Chl-a blooms for the period 1998-

2007. The Minho data were provided by the Confederación Hidrográfica del Miño-Sil

(http://www.chminosil.es/), Douro and Mondego discharges by the Instituto Nacional

da Água (http://www.snirh.pt/), Nalon discharges were obtained from estimations

presented in Otero et al. (2010) and Eume from SMHI, as described in Chapter 2.

Mixed layer depth (MLD) data was also analysed, and was obtained from

operational data sets produced routinely by the Global Ocean Data Assimilation

System (GODAS) developed at NCEP. MLD data has a monthly temporal resolution

and a spatial resolution of 0.3◦ in latitude and 1◦ in longitude.

3.2.3 EOF analysis

EOF analysis was used to examine the spatio-temporal Chl-a variability in the

study region using SeaWiFS weekly images of Chl-a concentration. There are several

studies using EOF analysis of Chl-a images concerning ocean-colour data (Brickley and

Thomas, 2004; Ho et al., 2004; Navarro and Ruiz, 2006).

There are two different ways of computing EOF, which depends on the technique to

build data matrix (Parada and Canton, 1998). One technique subtracts the temporal

mean (the mean of each pixel in all images) of each data pixel and the other subtracts

the spatial mean (each image mean) of each pixel.

In this work the first method was chosen to study the spatio-temporal variability

of 450 images of SeaWiFS Chl-a concentration, once, according to Parada and
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Canton (1998), it is the most appropriate to analyse structures associated with

the seasonal temperature variability in a specific area. Therefore, Chl-a temporal

mean was subtracted from each pixel data. Afterwards, the covariance matrix was

computed and its eigenvectors and singular values were found through the singular

value decomposition (SVD) method. This method requires complete matrices and

cannot skip over any missing data. Consequently, pixels without Chl-a data were

replaced by the average of the surrounding pixels (Navarro and Ruiz, 2006; Gao et al.,

2013; Xu et al., 2011). Land has been masked in all images to ensure that the EOF

results obtained correspond only to sea. This methodology was followed by several

authors to analyse ocean colour images (Navarro and Ruiz, 2006; Yoder et al., 2002).

Regarding EOF analysis the sampling errors of the eigenvalues were estimated using

the following approximation (North et al., 1982):

δλ ≈ λ

(
2

ni

)1/2

(3.1)

where λ is the eigenvalue and ni is the number of images used in the EOF analysis. If no

overlap is found between the confidence intervals (i.e. λ±δλ) of successive eigenvalues,

then the EOF modes are not degenerated (Anderson, 1963). A diagram of the first five

eigenvalues is presented in Figure 3.1. Degeneracy is found from the third mode and

therefore only the first two modes will be interpreted.

Figure 3.1: Eigenvalues of the first five EOF modes with error bars.
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3.2.4 Correlation analysis

To better quantify the dependence of Chl-a formation along the northwestern coast

of IP with upwelling phenomena, SST and river discharges, correlations between these

variables were computed. Chl-a and SST time series considered to compute correlations

correspond to time series average of the nearest four points of each river mouth, while

for UI corresponds to the time series of the nearest triangle of each river mouth. Based

on results, and considering that Chl-a concentration has different annual cycles at each

coastal segment, correlation analysis was only considered for winter (JFM for Mondego,

Douro and Minho and FMA for Nalon and Eume Rivers) and summer (JAS). The

correlation coefficients were computed through the equation:

rx,y =
cov(x, y)

σxσy
(3.2)

where cov(x, y) is the covariance between data and σ the standard deviation. The

significance level (p < 0.05) was also computed through a matrix of p-values. P -value

is the probability of getting a correlation as large as the observed value random chance,

assuming that the null hypothesis is true. If p-value is small (less than 0.05) then the

correlation will be significant.

3.3 Results and discussion

3.3.1 Chl-a EOF analysis

As previously referred, EOF analysis was computed to study the temporal and

spatial variability of Chl-a concentration along the northwestern coast of IP. According

to the results of the eigenvalues errors (Figure 3.1), only the first two modes were

considered significant and studied herein.

The first two modes of the EOF analysis explained 29.5% of the total Chl-a variance

(Figure 3.2), containing the first mode 21.5% of the data total variance. These results

were similar to those obtained by Navarro and Ruiz (2006) for the Gulf of Cadiz and

by Brickley and Thomas (2004) for the Coastal Gulf of Alaska, nevertheless higher

percentages were obtained along the south coast of Madagascar (Ho et al., 2004).

The EOF spatial coefficients of the two first modes represent the spatial extension
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Figure 3.2: Percentage of explained Chl-a variance of the first five EOF modes.

and the dynamic importance of the processes in the study region, while the temporal

EOF mode indicates the importance of the phenomenon (Navarro and Ruiz, 2006).

All spatial coefficients corresponding to the first mode were positive (Figure 3.3) with

maxima found nearshore and decreasing offshore. Two main areas were identified: one

near coast with positive coefficients and comprising the IP upwelling area, and other

offshore with values close to zero. At northern coastal segment the spatial coefficients

near coast were very low, close to zero, while at western and intermediate coastal

segments they are higher than 0.10. These results showed that the dynamics of the

first mode was only related to the dynamics of the nearshore region, mainly at western

Figure 3.3: Spatial coefficients maps of the first two EOF modes for Chl-a: a) Mode 1 and
b) Mode 2.
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and intermediate coastal regions.

The spatial coefficients of the first mode were maxima in a coastal fringe that

spatially coincides with maxima values of Chl-a concentration (Figure 2.3). Therefore,

the first spatial mode suggest that high Chl-a concentration always exist along western

and intermediate coastal segments of IP, extending essentially to 60 km off the coast

(Figure 3.3), with values ranging from 0.05 to 0.15 mg m-3.

When the spatial patterns and its associated time amplitude have the same sign

this means a positive deviation at that time, in relation to climatology. Conversely,

when signs are opposite it means negative deviation from the mean. Thus, according

to the EOF analysis, the Chl-a concentration has a positive deviation relatively to the

climatology in summer season (JAS) for all years, occurring the highest concentration

(more than 6 mg m-3) in August 2006 (Figure 3.3a and 3.4a). However, some negative

deviations were also found for this season. For instance, for 2003 and 2004 the temporal

coefficients were mostly negative with mean amplitudes of 1 mg m-3.

Temporal amplitudes (Figure 3.4a) also indicate that the occurrence of these high

Chl-a concentrations (with positive deviation from the climatology) during summer

were modulated by the general seasonal cycle. Seasonal analysis of Chl-a concentration

for the whole area (Figure 2.3) confirms the previous results, showing the same pattern.

The interannual variability is highlighted as differences in both amplitude and time

Figure 3.4: Temporal amplitudes of the first two EOF modes for Chl-a: a) Mode 1 and b)
Mode 2. Gray bars indicate summer months (July, August and September).
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occurrence of maximum values (peaks) (Figure 3.4a). For instance, in 1998 and 2001,

temporal coefficients were positive during the first months of the year (with mean values

of 2 mg m-3), while for the remaining years, they were negative (with mean values of

−1 mg m-3). Moreover, between April and June and between October and December

negative temporal amplitudes were detected for all years, except for 2006 and 2007.

The second EOF mode explains 8% of the total Chl-a variance (Figure 3.2) and

its spatial variability allows the identification of different zones. Spatial distributions

(Figure 3.3b) were low over the open ocean and more intense near the coast, as in

the first mode. Two opposite patterns were observed near the coast (Figure 3.3b),

showing that main forcing mechanisms of Chl-a concentration in these two regions

were different. Spatial coefficients were high and negative above Minho River (42 ◦N)

and in the surroundings of Artabro Gulf, with values between −0.10 and −0.15 mg m-3,

and lower along the northern coastal segment, with values of −0.05 mg m-3. Otherwise,

in Portuguese coast the spatial coefficients are positive (between 0.05 and 0.15 mg m-3,

Figure 3.3b) and highest southward of Douro River. This result indicates a dynamical

response of different phases south Minho River compared to the northern area. Indeed,

by analysing both spatial and temporal coefficients of the second EOF mode, it is

recognized that positive (negative) temporal amplitude indicates high (low) chlorophyll

concentration south of Minho River and low (high) chlorophyll concentration north of

it.

Generally, the highest Chl-a concentration occurred between July and September,

the most favourable upwelling season. Moreover, on average, between December and

February of each year the temporal amplitudes of the second mode were positive,

followed by a period of negative amplitudes (between March and June/July). This

means that Chl-a concentrations were stronger below 42 ◦N than above this latitude,

for winter months. Otherwise, during spring months primary production is enhanced

above 42 ◦N and attenuated southward. This variability can be associated with the

winter vertical mixing cycle, which is strong in February (Figure 3.5), and tends to

decrease the Chl-a concentration north of 42 ◦N by dilution/light limitation effects

(also known as phyto-convection mechanism) (Perez et al., 2005). Actually, in late

winter (February), the MLD was deeper north of 42 ◦N (Figure 3.5), being the ten year

(1998-2007) average depth equal to 350 m, while south of this latitude the average
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Figure 3.5: a) Mixed Layer Depth (MLD) from GODAS (m) and b) monthly mean
distribution of Chl-a concentration (mg m-3) at two distinct latitudes: 41 ◦N and 45 ◦N.

MLD is about 250 m.

South of 42 ◦N the deepening of the mixed layer to shallow depths during February

seemed to favour Chl-a concentration increase, by providing new nutrients to the

surface after the summer depletion. At the same time, north of 42 ◦N the MLD is

deepest and Chl-a concentration low, occurring maxima concentrations one month

after (Figure 3.5), and thus corroborating the second mode of EOF spatial coefficient.

3.3.2 Monthly distribution of Chl-a, SST and UI

The monthly distribution of Chl-a, SST and Ekman transport are presented in

Figure 3.6, for the three coastal segments. Generally, these parameters showed seasonal

and spatial variability along the northwestern coast of the IP.

The highest Chl-a concentrations were noticed along the western coastal segment

during summer months, reaching maximum values (4 − 5 mg m-3) between 40 and

41 ◦N, around 41.5 ◦N and in front of Rias Baixas (42.5 ◦N). These maxima values

are related with the upwelling events occurring at this season (Alvarez et al., 2008a;

Gomez-Gesteira et al., 2006; Relvas et al., 2007) that bring nutrient rich water to

surface. Indeed, from Figure 3.6g, during summer UI is stronger than for the rest of

the year and upwelling favourable, with values reaching 800 m3 s-1 km-1. In addition,
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the upwelling intensity was observed to increase southward.

Also in winter and spring, high values of Chl-a concentration were observed in

IP western coastal segment, although lower than in summer (between 2 and 3.5 mg

m-3). Actually, in winter phytoplankton development is light limited due to the short

day light periods. These winter maxima Chl-a concentrations were observed during

February (between 3 and 3.5 mg m-3) and may be related to nutrients input from land

through river discharge or to strong winter vertical mixing. However, the SeaWiFS

algorithm can lead to an erroneous overestimation of Chl-a concentration in turbid

coastal areas, mainly during winter and in the vicinity of the river mouths, due to the

input of large quantities of organic matter, suspended sediments and pollutants.

Nevertheless, from Figure 3.6g and according to previous studies (Alvarez et al.,

2003; Borges et al., 2003; Santos et al., 2004; deCastro et al., 2006; Prego et al.,

2007), upwelling favourable conditions occur during winter, with an average Ekman

transport of 250 m3 s-1 km-1 for February and November. These winter upwelling events

contribute to enhance primary production in coastal region, but in lower extent when

compared to those generated by summer upwelling events (Alvarez et al., 2003; Santos

et al., 2004; Prego et al., 2007). Indeed, during winter, the IPC transports ENACW of

subtropical origin that has lower concentration of nutrients when compared to subpolar

ENACW that only reach surface during strong summer upwelling events.

During spring, maxima values were observed mainly around Rias Baixas (between

42 and 42.5 ◦N,) and between Mondego and Douro Rivers (41 ◦N), with the highest

values in May. This high productivity is related with the known spring blooms that

usually overlap with upwelling blooms from May to October. The annual cycle of Chl-a

described coincides with the results obtained by Bode et al. (2009) in a station located

in front of the Rias Baixas using data series collected from 1989 to 2006. Those authors

concluded that summer blooms have increased over the years.

Chl-a concentration shows a similar pattern along the intermediate coastal segment,

however with lower intensity than at western. Spring blooms were also present

during April and May (mainly near Cape Finisterre), as well as upwelling favourable

conditions, with UI values between 100 and 200 m3 s-1 km-1. In summer, essentially in

August, Chl-a concentration reaches values higher than 2 mg m-3 northward Cape

Finisterre and near Artabro Gulf, which are associated with upwelling favourable
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conditions, corroborated by UI represented in Figure 3.6h (approximately 400 m3 s-1

km-1). In February and November positive UI values were detected in both western

and intermediate coastal segments, reflecting the existence of upwelling favourable

conditions in winter that can turn the water more productive, although to a lower

extent than during summer events (Prego et al., 2007).

Northern coastal segment is the least productive, with Chl-a concentration more

significant between February and April with values around 1.2 mg m-3. During this

period unfavourable upwelling conditions are observed in this region, with UI values

between −100 in February and −300 m3 s-1 km-1 in April (Figure 3.6i). Between

May and September upwelling favourable conditions were observed at northern coastal

segment, with the highest UI values found at the westerly region (approximately 200 m3

s-1 km-1). However, during this period Chl-a concentration values are weak or null. In

December, Chl-a concentration reach values of 0.8 mg m-3, around 6 ◦W (Cape Peñas),

which are probably attributed to the input of nutrients through Nalon River, which

is the most important freshwater source in the region (Alvarez et al., 2012; Prego and

Vergara, 1998).

The annual cycle of SST showed a clear seasonal pattern for three coastal segments

(Figure 3.6d, e and f). At western coastal segment minima values were found from

January to April and maxima from July to October. The thermal amplitude was

on the order of 6 ◦C, with the minimum in February (13 ◦C) and the maximum in

August (19 ◦C). A thermal gradient associated with latitude was also identified. The

amplitude of seasonal variability was approximately 2 ◦C, and higher summer and

winter temperatures are reached at south (18.5 and 14 ◦C, respectively) and lower

summer and winter at north (16 and 13 ◦C, respectively).

At intermediate coastal segment, summer season also presents higher SST, that

increase eastward, from 18 ◦C near Cape Finisterre to more than 19 ◦C at 8 ◦W. During

winter, between December and April, SST is homogeneous and about 13 ◦C.

Finally, at northern coastal segment maxima values occurred between July and

September. A thermal gradient in longitude was detected in summer, with higher

temperatures reached at east (approximately 21 ◦C) and lower at west (approximately

19 ◦C). During winter, SST was zonally uniform with values of approximately 13 ◦C.

In order to study the cross-shelf variability of SST and Chl-a concentration along
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the three coastal segments near the main rivers mouth, their monthly evolution along

sections I, II, III, IV and V (Figure 2.2) were computed and results are depicted in

Figure 3.7.

Regarding the sections located at western coastal segment (I, II and III, Figure

3.7), it is observed that spring-summer Chl-a maxima were confined near coastal region

(approximately 6 km), while winter maxima spread offshore. Indeed, spring-summer

high Chl-a concentrations were related to upwelling events, that were evident through

SST pattern (colder coastal waters than offshore) (Figure 3.7 bottom panel).

Otherwise, during winter, primary production was related to WIPB (Peliz et al.,

2002) that have lower temperatures than surrounding offshore waters and may even

be colder than waters beneath (Santos et al., 2004). Actually, for sections II and III

that correspond to the mouth of the rivers with more significant discharges, a lens of

cold water (approximately 13 ◦C) is noticeable at least to 10 ◦W of longitude. This

fast cooling is due to plume high buoyancy, which allow heat exchange between surface

and atmosphere in a different way from the surrounding waters as the thermally driven

convection is limited to a thinner layer (Santos et al., 2004).

At intermediate coastal segment (section IV, Figure 3.7), results show a pattern

similar to that found at western segment, either for Chl-a and SST. Between August

and October, Chl-a concentrations higher than 4 mg m-3 are observed near the coast,

as well as SST values between 17 and 18 ◦C. In winter Chl-a maxima concentrations

were lower than in summer, with values between 1 and 1.5 mg m-3, spreading further

offshore. SST reaches its minimum during the months of February and March (12 ◦C).

Concerning to section V (Figure 3.7), located at northern coastal segment, SST

pattern is similar to that observed for other sections, however Chl-a concentration

pattern is opposite. Between February and April, high primary production (higher

than 1 mg m-3) occurs over 60 km and a lens of cold water (approximately 12 ◦C)

was detected, while during summer, Chl-a levels were low and water temperatures rise

reaching more than 20 ◦C.
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3.3.3 Interannual variability of Chl-a and its response to SST, Ekman

transport and rivers runoff

According to previous results, phytoplankton blooms occurred mainly during

summer and winter along the northwestern coast of IP. Consequently, in this section

the interannual variability of Chl-a concentration, SST, UI and river discharges are

analysed during these two seasons. Therefore, for western coastal segment JFM

and JAS were considered to represent winter and summer, respectively, while for

intermediate and northern coastal segments were considered FMA and JAS. Winter and

summer months were chosen taking into account the period of high primary production

at each coastal segment.

The interannual variability for Chl-a concentration is significant showing important

differences among years and coastal segment. At western coastal segment, 1998,

2001, 2003 and 2007 were the most productive years during winter (Figure 3.8). It

is noteworthy that, particularly for 1998, the Chl-a concentration peaks were found

slightly upstream the main rivers mouth, with the most significant values (7 mg

m-3) occurring at 41.5 ◦N (Figure 3.8a). Nearby latitudes where Chl-a maxima occur,

SST was lower than for surrounding waters (Figure 3.8b), and upwelling unfavourable

conditions (Figure 3.8c) were detected. Therefore, high productivity observed during

winter 1998 was related to rivers runoff that exhibited high discharges: 1500, 800 and

240 m3 s-1 for Douro, Minho and Mondego Rivers, respectively, for January. A similar

pattern is observed for 2001, 2003 and 2007. Chl-a concentration during these years

showed high values (from 2.5 to 6 mg m-3) under upwelling unfavourable conditions,

and temperature minima are found approximately at the same latitudes as Chl-a

maxima. The winter of 2001 was characterized by intense southerly winds which favour

downwelling conditions over the shelf (Alvarez-Salgado et al., 2003), originating adverse

weather conditions with high rainfall events (Alvarez et al., 2005) and consequently high

river discharges. Indeed, strong negative values of UI are observed for this year (Figure

3.8c), as well as the highest discharges (Douro discharge reached values of 4000 m3 s-1).

Although these high discharges may influence the estimation of Chl-a by SeaWiFS,

generating a very strong signal in the satellite product due to high concentrations of

CDOM, it seems that river discharges has a direct relation with Chl-a concentration.
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Figure 3.8: JFM interannual distributions for western coastal segment of: a) Chl-a
concentration (mg m-3), b) SST (◦C), c) UI (m3 s-1 km-1) and d) rivers discharge (m3 s-1).

The 2005 winter was the least productive, although upwelling favourable conditions

were observed. In fact, when strong winter winds occur (upwelling favourable or not)

the water column stability decreases and may inhibit phytoplankton blooms.

Relatively to the summer season (Figure 3.9), the years of 2005, 2006 and 2007

revealed some evidences of being the most productive along the western coastal

segment. Maxima values were mainly evident for 2006 summer, with concentrations

higher than 9 mg m-3 between the latitudes 41 and 42 ◦N, while for 2007, the maximum

Chl-a concentration was 8 mg m-3, around 40.5 ◦N (Figure 3.9a). Moreover, between

July and September minima values of SST were registered approximately at the same

latitude as the Chl-a maxima (Figure 3.9b). Therefore, results suggest that these high

Chl-a concentrations are explained by upwelling processes that occur in this zone during

the summer period (Alvarez et al., 2008b; Gomez-Gesteira et al., 2006; Relvas et al.,
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Figure 3.9: JAS interannual distributions for western coastal segment of: a) Chl-a
concentration (mg m-3), b) SST (◦C), c) UI (m3 s-1 km-1) and d) rivers discharge (m3 s-1).

2007). Indeed, upwelling favourable conditions were observed (Figure 3.9c), i.e. the

transport was directed westward, with average values of 500 m3 s-1 km-1. The westward

transport during upwelling season generates water depletion in the upper layers and

colder nutrient rich water from below (ENACW) is upwelled in order to re-establish

the equilibrium near the coast. For 2005, the highest primary production was found

off Rias Baixas, with values of approximately 8 mg m-3.

Similar patterns have occurred during 1999, 2000 and 2001, however less significant

and affecting a smaller area. The relation between upwelling processes (decrease of

water temperature) and increased Chl-a concentration was evident for most of the

years indicating that the variability of Chl-a mainly depends on these phenomena

during the summer season. Figure 3.9a also indicates that 2003 and 2004 were the

least productive years during summer, with the lowest values of Chl-a concentration
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(2 − 4 mg m-3) along the coast. For these years, UI also showed upwelling favourable

conditions (200 m3 s-1 km-1), although with less intensity than for the period 2005-

2007. Moreover, the SST decrease near the more productive regions was low (Figure

3.9c). Additionally, from Figure 3.9d was found that river discharges during summer

are low, with mean values of 120 and 150 m3 s-1 for Minho and Douro rivers and 16

m3 s-1 for Mondego, revealing that primary production peaks were mainly originated

by the fertilization of surface waters through upwelling events.

The interannual analysis was also performed along the intermediate and northern

coastal segments during FMA and JAS. At intermediate coastal segment, for FMA

high Chl-a levels are observed, mainly in the surroundings of Artabro Gulf, where

Eume River discharges (Figure 3.10a). Particularly, for the years of 2004 and 2007

Chl-a concentration reach values of more than 2 mg m-3. These high concentrations

Figure 3.10: FMA interannual distributions for intermediate coastal segment of: a) Chl-a
concentration (mg m-3), b) SST (◦C), c) UI (m3 s-1 km-1) and d) river discharge (m3 s-1).
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may be related with weak upwelling events, which were identified through the low SST

observed in this region (Figure 3.10b) and through the positive low UI (between 100

in February and 400 m3 s-1 km-1 in March 2007) (Figure 3.10c). Otherwise, spring

blooms produced by a transient stratification in the winter mixed surface layer may

also generate high primary production, as predicted by the Sverdrup model (Sverdrup,

1953). In this case, discharges are weak (between 20 in February and 5 m3 s-1 in April

2007) and probably not responsible for the high Chl-a levels detected. Also in 2001,

mainly northward Cape Finisterre and Artabro Gulf, high levels of Chl-a concentration

were observed in March, which may be associated with the highest discharges of Eume

River found for period analysed (40 m3 s-1).

During JAS (Figure 3.11), the most productive years were 1998, 2001 and from

2005 to 2007, reaching values higher than 3 mg m-3. The least productive were 1999

and 2004. The strong levels of Chl-a were probably related with upwelling events,

that, despite weak (on average UI is 200 m3 s-1 km-1), contribute to the upwell cold

and nutrient rich water to surface. These assumption is corroborated by SST patterns

observed for this specific years. Moreover, during JAS, Eume discharge is negligible

(less than 4 m3 s-1) and therefore may not promote primary production in the region

(Figure 3.11d).

Northern coastal segment results suggest that, generally, it is the least productive,

presenting an average Chl-a concentration of approximately 1 mg m-3 for winter (Figure

3.12). Nonetheless, high phytoplankton biomass is found for most of the years during

March, being 2005 and 2006 the most productive years. Indeed, values of 3.0 mg

m-3 are found near Cape Peñas (5.5◦W) in March 2006 (Figure 3.12a), while during

2005 high Chl-a levels (1.5 − 2.5 mg m-3) occur in March and April between 5.5 and

6◦W. Moreover, the winter of 2005 and 2006 were characterized by an extreme mixed

layer deepening (Figure 3.5), resulting in a nutrient content increase in the upper

layer (Somavilla et al., 2009). This extreme mixed layer deepening is caused by an

anomalous atmospheric pattern characterized by a strong anticyclonic anomaly located

west of British Isles during all the 2004-2005 winter (Somavilla et al., 2009; Cabrillo

et al., 2011). Indeed, surface mixing resulting from air-sea exchanges provides one

of the main mechanisms of nutrient supply from the rich deep water to the euphotic

layer, and consequently high levels of Chl-a were observed (Figure 3.12a). Favourable
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Figure 3.11: JAS interannual distributions for intermediate coastal segment of: a) Chl-a
concentration (mg m-3), b) SST (◦C), c) UI (m3 s-1 km-1) and d) river discharge (m3 s-1).

upwelling conditions were detected in March 2005 and April 2006, with UI values of

250 m3 s-1 km-1 and 400 m3 s-1 km-1, respectively. The Sverdrup effect (Sverdrup, 1953)

explains the seasonal cycles and interanual variability of primary production (Varela

et al., 2008, 2010; Alvarez et al., 2011).

Also, for these two years, Nalon discharges are significant (250 and 300 m-3 s-1

for 2005 and 2006, respectively) in March and may have contributed to the transport

of cold water (12 ◦C, Figure 3.12c) and nutrients, that consequently enhance primary

production near coast (Figure 3.12d).

Despite the high Nalon discharges observed during the winter of 1998 and 2001,

these were the least productive years at northern coastal segment, with values of

Chl-a concentration lower than 0.5 mg m-3 (Figure 3.12). These two years were also

characterized by the highest SST, between 13 and 14 ◦C.
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Figure 3.12: FMA interannual distributions for northern coastal segment of: a) Chl-a
concentration (mg m-3), b) SST (◦C), c) UI (m3 s-1 km-1) and d) Nalon discharge (m3

s-1).

Between July and September (Figure 3.13), primary production along the northern

coastal segment was generally low, with mean Chl-a concentrations of approximately

0.5 mg m-3. September 2007 was the most productive month, showing the strongest

upwelling favourable conditions (800 m-3 s-1 km-1) and therefore lower temperatures

(16 − 17 ◦C) than surrounding waters. Otherwise, the preceding months showed low

levels of Chl-a concentrations and unfavourable upwelling conditions. Also, for July

2007 the highest flow from Nalon (75 m3 s-1) during summer season was detected,

however was not enough to promote high primary production. During JAS 2003, high

levels of Chl-a concentration are detected in the surroundings of Cape Ortegal, reaching

values of 2 mg m-3. This happens under weak upwelling favourable conditions (between

100 and 200 m-3 s-1 km-1).
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Figure 3.13: JAS interannual distributions for northern coastal segment of: a) Chl-a
concentration (mg m-3), b) SST (◦C), c) UI (m3 s-1 km-1) and d) Nalon discharge (m3

s-1).

3.3.4 Correlation analysis

Pearson’s correlations between Chl-a concentration, UI, river discharge and SST

were computed (Table 3.1) for the points near each river mouth, considering two

seasons: winter (JFM for the western and FMA for the intermediate and northern

coastal segments) and summer (JAS).

During the JFM (FMA), positive correlations were found between Chl-a

concentration and rivers discharge, with Minho and Douro showing the highest values

(0.51 and 0.43, respectively), with the exception of Eume discharge, which is negatively

correlated with Chl-a concentration (-0.11). Indeed, Eume River flow is very low

compared to the other rivers and probably the influence of its plume is restricted to

the near coast region. No significant correlations were found between UI and Chl-a
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Table 3.1: Correlation coefficients between Chl-a and river discharges, UI and SST. All the
correlations have a significance level higher than 97% (p-value < 0.03) except the value
marked with an asterisk (∗) that have a significance level of 70%.

Chl-a vs. Discharges Chl-a vs. UI Chl-a vs. SST

JFM (FMA) JAS JAS

Mondego 0.29 0.40 −0.52

Minho 0.51 0.35 −0.26

Douro 0.43 0.33 −0.36

Eume −0.11∗ 0.43 −0.30

Nalon 0.25 0.22 −0.28

concentration for this season and therefore high Chl-a levels at intermediate coastal

segment may be explained by spring blooms produced by the transition of mixing

to stratification and at western and northern coastal segments mainly by the river

discharges.

Moreover, Chl-a concentration and UI showed significant positive correlations

during summer (JAS) at the points located at the three coastal segments, with

the highest correlation found at intermediate coastal segment (0.43). Also no

significant correlations were found for this period between Chl-a and discharges. These

results suggest that for summer Chl-a was mostly generated by upwelling favourable

conditions. This assumption is corroborated by the correlations between Chl-a and

SST, which are negative for all points analysed (between -0.28 and -0.52). Indeed,

when upwelling conditions were observed, cold water rises to surface carrying nutrients

and therefore generating high primary production.

3.4 Conclusions

The influence of coastal upwelling and rivers runoff on Chl-a concentration over

the northwestern coast of IP was analysed through remote sensing data and in situ

observations of the main rivers discharging into the study area, from 1998-2007. This

study has shown the following:

• The EOF analysis revealed that the dynamics of the first mode is only related

with the dynamics of the nearshore region of western and intermediate coastal
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segments, once positive spatial coefficients were found here, while at northern

coastal segment coefficients are close to zero. Therefore, through the associated

time amplitude of Mode 1, it was found that Chl-a concentration had a positive

deviation relatively to the climatology in summer season (JAS) for all the years

along the western and intermediate coastal segment. From the second mode

coefficients, two patterns near coastal region were identified: positive values

along south of Minho River mouth and negative north of it, showing that

the main forcing mechanisms of Chl-a concentration in these two regions were

different. The analyses of both spatial and temporal coefficients of the second

EOF mode reveals that positive (negative) temporal amplitude indicates high

(low) chlorophyll concentration south of Minho River mouth and low (high)

chlorophyll concentration north of this region;

• The annual cycle of SST and UI shows that spring-summer months are the

most favourable season to the occurrence of upwelling events, which generate

water depletion in the upper layers and upwelling of colder nutrient rich water

from below. Therefore, high productivity occurs and high Chl-a concentration

was detected at the surface in the western and intermediate coastal segments.

At northern segment, despite the upwelling favourable conditions observed

during these season, Chl-a levels were low. Here the highest Chl-a levels were

observed between February and May, when unfavourable upwelling conditions

were generally observed;

• The interannual variability of UI, river discharges, SST and Chl-a concentration

was also analysed during the summer and winter seasons, for the three coastal

segments. At western and intermediate coastal segments 2005, 2006 and 2007

seemed to be the most productive years for the JAS with high Chl-a values along

most of the coast occurring under strong upwelling favourable conditions. In

winter, Chl-a concentration seemed to be mainly affected by the input of nutrients

in the zone through rivers discharge at western coastal segment. The most

productive year was 1998 with the most significant Chl-a levels around 41.5 ◦N,

SST colder than the surrounding waters, upwelling unfavourable conditions and

high discharges. At intermediate coastal segment, the most productive years



3.4 Conclusions 65

in winter were 2004 and 2007, which may be related with the weak upwelling

favourable conditions or with the spring blooms, once Eume River discharge is

too weak to promote high primary production. At northern coastal segment high

phytoplankton biomass was found mainly during March, being 2005 and 2006 the

most productive years, which is related with the winter vertical mixing cycle and

high discharges from Nalon River;

• From the correlation analysis it was found that the phytoplankton biomass is

mainly associated with upwelling during JAS for the three coastal segments and

with river runoff in JFM (FMA).

Due to the importance of coastal upwelling in the maintenance of marine

ecosystems, its intensity and frequency have been researched in several works, with

contradictory results. Accordingly, along IP coast, several studies argue an increase

of upwelling intensity over time, while other works report a decrease. In both cases,

changes in phytoplankton biomass are expected mainly in upwelling regions, which have

high levels of biological activity. However, the ecosystem response to upwelling changes

in these regions will depend on a complex balance of several physical factors, such as

water temperature, water column stratification and light availability. Consequently, the

study of forcing mechanisms of phytoplankton development in such productive areas

is of extreme importance, as well as their dependence on meteorological conditions.

Therefore, in next chapter the influence of meteorological conditions in Chl-a levels

and upwelling occurrence will be assessed.
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Chapter 4

Upwelling and Chl-a: dependence

on weather types

4.1 Introduction

Owing to its ecological and economic importance, changes in coastal upwelling are

one of the most studied processes influencing fish production and distribution all over

the world. Over the last decades, changes in upwelling have been mainly studied in

terms of the variability of atmospheric conditions focusing on wind patterns (Garcia-

Reys and Largier, 2010; Narayan et al., 2010; Patti et al., 2010; Seo et al., 2012;

Barton et al., 2013; Aravena et al., 2014). The alongshore winds could be intensified in

future due to global warming and consequently accelerate coastal upwelling circulation

(Bakun, 1990; McGregor et al., 2007; Relvas et al., 2009; Bakun et al., 2010) leading to

an increase in primary production. Moreover, changes in upwelling off western Iberia

have recently been connected to the occurrence of different CWTs (Ramos et al., 2013),

which describe different meteorological conditios in terms of atmospheric variables.

These authors found that upwelling activity was mostly driven by wind flow from the

northern quadrant (northerly or northeasterly).

In recent years, several natural processes were investigated pertaining to the impact

of changes in the frequency of occurrence of CWTs around Iberia: i) changes in climate

variables (Trigo and DaCamara, 2000; Paredes et al., 2006; Lorenzo et al., 2008; Ramos

et al., 2010; Lorenzo et al., 2011; Cortesi et al., 2014); ii) avalanches (Esteban et al.,

2005); iii) related health issues (McGregor et al., 1999; dePablo et al., 2009) and iv)
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lightning activity (Ramos et al., 2011). However, no studies examining the relationship

between the variability of CWTs and primary production have been carried out.

The main objective of this chapter is to evaluate and quantify the influence

of meteorological conditions on upwelling variability and Chl-a concentration along

the northwestern coast of IP, through a probability analysis. Once meteorological

conditions (CWTs) can be accurately predicted (Ramos et al., 2013; Lorenzo et al.,

2011), upwelling and primary production changes can be also anticipated. These

provide the conditions for the identification of the most nutrient rich regions and

therefore to improve fisheries and aquaculture productivity along the northerwestern

coast of IP.

4.2 Data and methods

CWTs were computed using the procedure specified by Lamb (1972) and Jones

et al. (1993). They were computed using daily mean sea level pressure (SLP)

data from NCEP/NCAR reanalysis (2.5 ◦ × 2.5 ◦) between 1998 and 2007 at 16

points (Figure 4.1) located between 35 ◦N − 55 ◦N and 25 ◦W − 5 ◦E. In total,

26 weather types were computed, however in this work only ten are considered to

define the meteorological conditions, eight directional indices: NE (northeasterly),

E (easterly), SE (southeasterly), S (southerly), SW (southwesterly), W (westerly),

NW (northwesterly), N(northerly) and two vorticity indices: C (cyclonic) and A

(anticyclonic). A description of the meteorological conditions under each weather

type is performed for the period 1998-2007. The monthly mean frequency of each

weather type considered was also computed for this period, in order to characterized

its variability.

Weekly Chl-a concentration from SeaWiFS was used at the points represented in

Figure 2.2, described in Chapter 2, covering the period of 1998-2007. Wind data were

acquired from NCEP CFSR database, for the same period, and was used to compute the

UI at the triangles of Figure 2.2. A detailed description of these datasets is presented

in Chapter 2.

Three coastal segments were considered for analysis: western, intermediate and

northern, as defined in previous chapters.
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Figure 4.1: Location of the 16 grid points used to compute the geostrophic (vorticity and
directional flow) indices.

A conditional probability was computed to further infer about the dependence of

upwelling occurrence and Chl-a concentration on meteorological conditions. In this

case, the conditional probability is interpreted as the probability that UI or Chl-a

exceeds a certain value given the occurrence of a specified weather type. In the case

of UI, the threshold value considered was the 75th percentile of the maximum annual

mean, computed for the period 1998-2007 and for each coastal segment (western: 464

m3 s-1 km-1, intermediate: 267 m3 s-1 km-1 and northern: 107 m3 s-1 km-1). For Chl-

a, the threshold value was considered as the mean value plus the standard deviation

calculated for the same period and also along each coastal segment. Consequently, the

threshold values considered are 3.5, 1.6 and 0.8 mg m-3, for western, intermediate and

northern coastal segments, respectively.

Results are discussed for the three coastal segments separately and considering two

seasons: the spring-summer season corresponding to April-September and autumn-

winter season corresponding to October-March.
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4.3 Results and discussion

4.3.1 Circulation weather types

The weather circulation affecting Western Iberia was characterized through the use

of a set of indices associated with the direction and vorticity of geostrophic flow for

the period 1998 to 2007. As previously referred, the directional indices used herein

are: NE, E, SE, S, SW, W, NW, N and the vorticity indices are: C and A. In general,

the conditions of wind direction correspond to the respective weather type, i.e., for

instance, NW weather type corresponds to the number of days with northwesterly

winds. However, as the CWTs are directly related with geostrophic flow, the real flow

is slightly oriented a few degrees towards lower pressure systems (counter clockwise in

Northern Hemisphere) due to the effect of surface friction (Wallace and Hobbs, 2006),

therefore a NW CWT pattern originates WNW winds.

The use of CWTs allows to distinguish different meteorological conditions by

describing them in terms of circulation parameters or local weather elements. A brief

description of the meteorological conditions associated with each weather type, between

1998 and 2007, around IP coast is given here (Figure 4.2):

• North-Easterly (NE) days are characterized by an extended Azores high-pressure

towards the British Islands and by low-pressure values over the Mediterranean

region;

• Easterly (E) days are characterized by an anticyclone centered over the British

Isles;

• South-Easterly (SE) and Southerly (S) days showed a similar pattern. They

are characterized, on average, by a high-pressure system located over British Isles

and a low pressure in the Atlantic. Therefore, both weather types promote south-

easterly winds over the study region;

• South-westerly (SW) days are characterized by a weakening of the Azores high-

pressure and by a strong low pressure located between Iceland and the Azores

Islands;

• Westerly (W) represented situations characterized by the establishment of the
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Figure 4.2: Composite maps of SLP fields for 8 directional weather types (NE, E, SE, S, SW,
W, NW and N) and 2 vorticity weather types (C and A), for 1998-2007.
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Azores high-pressure around 30 ◦N and by the presence of deep low-pressure

centered south of Iceland;

• North-Westerly (NW) days were characterized by the presence of the Azores high-

pressure centered over the Azores Islands and a low-pressure centered off northern

France;

• Northerly (N) represents a situation characterized by the Azores high-pressure

centered north of the Azores Islands;

• Cyclonic (C) days correspond to relatively strong low-pressure systems located

close or over the northwestern Portuguese coast. The wind direction depends

on the position of the low-pressure, but on the overall, westerly winds tend

to dominate towards southern Portugal. These days are often characterized by

strong winds;

• Anticyclonic (A) days are characterized by an extended high-pressure center

between the IP and the Azores Islands. Conditions along the IP coast are

generally characterized by south-westerly winds in western Iberia, while easterlies

winds can be found in the northern IP coast. Nevertheless, this type is generally

characterized by lighter winds, resulting from small pressure gradients associated

with the close position of the high pressure system.

In order to understand the monthly variability of the CWTs, the monthly mean

relative frequency of each synoptic weather type was computed for the period 1998-

2007 (Figure 4.3). Results show that weather types NE and N have maxima frequencies

in spring and summer, with values above the annual average (0.34 and 0.25%). During

autumn and winter frequencies are below the annual average. NW weather type tends

to appear with a similar frequency in all months (close to the annual average 0.46%),

except for January, February and March, that have frequencies of 0.25%. E, SE and

S types occur with a low frequency throughout the year, being the annual averages

0.21, 0.13 and 0.24%, respectively. Maxima frequencies occur in May, December

and May/September for the E, SE and S types, respectively. SW and W weather

types present maxima frequencies for winter, showing a seasonal behaviour opposite to

NE type. Finally, A weather type is the most frequent for all months, with maxima
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Figure 4.3: Monthly mean frequency (%) of the synoptic weather types for the period 1998-
2007. The dashed line represents the annual average.

occurring in summer months (June, July and August) and February, with values above

the annual average (2.3%). Otherwise, C type reaches its maximum in March, April,

May and October, meaning that this weather type tends to appear in spring and

autumn. These results are in accordance with Lorenzo et al. (2008).

Once the probability analysis will be performed considering two seasons (April-

September and October-March), CWTs frequency (%) is also computed for these two

seasons, with results showed in Figure 4.4.

Vorticity weather types (C and A) were the most frequent for both seasons analysed,

showing frequency values of approximately 27% for anticyclonic type and 6-7% for

cyclonic type. dePablo et al. (2009) obtained a higher frequency (34%) for A type
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Figure 4.4: Circulation weather types frequency (%) during the April-September (left) and
October to March (right) months for the period 1998-2007.

during winter season for the period 1995-2005 over the whole IP. Differences are due

to the fact that those authors considered only two months as representative of winter

(November and December), while in this study a period of six months (October to

March) was considered. Regarding the directional CWTs, the most frequent is W for

both seasons, with a percentage of occurrence of approximately 9% for April-September

season and higher than 12% for October-March. Lorenzo et al. (2008) also found that

W type is significant in autumn and winter, considering a different period. The least

frequent weather types are SE (1.1%) along with E (2.5%) for summer and N (1.6%)

and SE (2.1%) for winter season. Relative to CWTs with a north component, the

most frequent is NW with a percentage of approximately 6.7% and higher than 4.0%

for April-September and October-March, respectively. NE and N weather types also

present high frequency of occurrence during summer (5.5% and 4.3%, respectively).

Finally, for weather types with a south component it is observed that the SW is the

most frequent occurring 6.8% of the days analysed between April and September and

11.5% between October and March. These results are similar to those obtained by

Lorenzo et al. (2008) and Ramos et al. (2013).
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4.3.2 UI and Chl-a concentration

Figure 4.5 illustrates the monthly mean evolution of UI and Chl-a concentration

spatial average for each coastal segment for the period 1998-2007. The UI and Chl-a

values tended to be higher along the western coastal segment (black line) than along

the intermediate (grey line) and northern (black dashed line) segments throughout the

whole period. Maximum UI values were observed in spring-summer and minimum

in autumn-winter along the three regions, however remarkable differences were found

among years (Figure 4.5a). Particularly, 2001 and 2003 were characterized by the

lowest UI values during winter along the three coastal segments, with values lower

than −1000 m3 s-1 km-1, which are related with the meteorological conditions (intense

southerly winds). In response to these adverse weather conditions and high rainfall

during the winter of these two years, Chl-a concentration is high at the three coastal

segments, with maxima values at western (between 3 and 4 mg m-3). Conversely,

for the majority of the period analysed high values of UI were found during summer,

occurring the highest (1200 m3 s-1 km-1) at western coastal segment in 1998. These high

UI values are associated with high Chl-a concentrations (Figure 4.5b), with values of

approximately 4 mg m-3, at the western coastal segment. Differences were also observed

on the UI signal amplitude. Thus, 2004 and 2005 represented the lowest amplitudes

Figure 4.5: Mean evolution of the spatial average of a) UI (m3 s-1 km-1) and b) Chl-a
concentration (mg m-3) from 1998 to 2007, at western, intermediate and northern coastal
segments.
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(approximately 600 m3 s-1 km-1) with positive values for most of the years at western

and intermediate coastal segments. At northern coastal segment, the amplitude is

also low for these two years (approximately 400 m3 s-1 km-1), showing small variations

between winter and summer months (Figure 4.5a).

4.3.3 Weather types implications on upwelling and ecosystem productivity

Table 4.1 shows the probability of UI and Chl-a concentration to exceed the

threshold value, defined in Section 4.2, given a specific weather type, for the period

1998-2007 measured at each coastal segment.

When no values appear in Table 4.1 that means UI or Chl-a never exceed the

threshold value when the considered weather type occurred.

The conditional probability of UI to exceed the threshold value given the occurrence

of A type was important at the three coastal segments and for both seasons. Values

between 30-60% for spring-summer season and 30-50% for autumn-winter season were

identified. The probability of Chl-a concentration to exceed its mean value was lower

than 20% at the three coastal segments and both seasons. The CWT A was generally

characterized by an extended high pressure centred between the IP and Azores islands,

promoting light northeasterly winds at western coastal segment and easterly winds

at intermediate and northern coastal segments (Figure 4.2), and therefore generating

weak upwelling events.

Concerning C type, upwelling favourable conditions were only observed at northern

coastal segment, although with low probabilities (approximately 5% for summer). In

contrast, the probability of Chl-a concentration to exceed its mean value was 15 and

21% for summer and winter, respectively. Indeed, according to Figure 4.2, C type

was characterized by a relatively strong low pressure system located close or over the

western IP coast. The wind direction depends on the position of the low pressure,

but generally strong westerly winds (which are upwelling unfavourable) tended to

dominate at western and southwesterly at intermediate and northern coastal segments.

Therefore, phytoplankton presence at northern coastal segment may be due to the

rivers discharging in this area, once Lorenzo et al. (2008) associated the C weather

type with intense precipitation events along the Galician coast.

Between April and September, NE weather type presented high probability
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Table 4.1: Probability (%) of UI and Chl-a concentration to exceed the threshold value given
the occurrence of a specified weather type, between April-September and October-March
seasons, from 1998 to 2007, and for the three coastal segments: WCS - western coastal
segment, ICS - intermediate coastal segment and NCS - northern coastal segment.

April-September NE E SE S SW W NW N C A

WCS 81 28 75 57

ICS 100 100 100 75 48

NCS 90 100 100 5 32

October-March NE E SE S SW W NW N C A

WCS 100 50 43 100 33

ICS 67 100 55 100 51

U
I

NCS 33 100 90 100 50

April-September NE E SE S SW W NW N C A

WCS 28 26 17 13 14 44 13 20

ICS 20 50 33 4 3 7 24 9 11

NCS 8 13 50 21 4 8 15 6

October-March NE E SE S SW W NW N C A

WCS 20 19 8 34 10 18

ICS 26 26 40 19 12 18 15

C
h

l-
a

NCS 25 25 40 9 10 21 12

of UI (Chl-a) to exceed the threshold value: 81%, 100% and 90% (28%, 20% and

8%) for western, intermediate and northern coastal segments, respectively. Upwelling

probability at intermediate coastal segment was the highest because of its orientation,

leading to an offshore Ekman transport almost perpendicular to the coast which favours

the upwelling. From October to March upwelling favourable conditions under the NE

type were also observed at the three coastal segments with the highest conditional

probability values (100 %) for western coastal segment; nonetheless this weather type

presented a lower frequency during winter (about 3%) than during spring-summer. In

a study that aimed the use of CWTs to predict upwelling activity, it was found that

NE type presents the highest correlations with upwelling along the western coast of IP

(0.7 near Rias Baixas) (Ramos et al., 2013).

Under NW weather type, upwelling favourable conditions only occurred at western

coastal segment, with probabilities of 28% and 43% for spring-summer and autumn-

winter, respectively. Actually, due to the coast alignment, this weather type promotes a
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displacement of surface waters south-westward, which is upwelling unfavourable along

the intermediate and northern coastal segments. Along the western coastal segment

the south-westward transport may generate upwelling events. The probability of Chl-

a concentration to exceed its mean value at western coastal segment was 14% and

34%, for spring-summer and autumn-winter, respectively. Also, between April and

September a probability of 7% was found for Chl-a at intermediate coastal segment.

The probability of UI to exceed the threshold value given the occurrence of N

weather type, ranges from 75 to 100% (Table 4.1) at western and intermediate coastal

segments, being the highest probability between October and March and along the

western coastal segment. Ramos et al. (2013) concluded that the second CWT most

related to UI was the N type, with correlations frequently above 0.5 along the western

coastal segment. At the northern coastal segment UI never exceeded the threshold value

during the occurrence of N weather type. Moreover, Chl-a concentration only exceeded

its mean value for spring-summer season and along the western and intermediate coastal

segments, with high probabilities, 44 and 24%, respectively. This weather type induced

northerly winds all over the region (Figure 4.2), which due to coastal orientation, is

upwelling favourable along the western and intermediate coastal segments and therefore

increase primary production, and it is unfavourable along the northern.

During winter, besides the observed upwelling favourable conditions along the

western coastal segment when N and NE types occurred (Table 4.1), Chl-a

concentration never exceeded its mean value. This may happen because when strong

winter winds occur (upwelling favourable or not) the water column stability decreases

and may dilute phytoplankton blooms. Furthermore, in winter light availability also

limits the phytoplankton growth and consequently the Chl-a concentration at the

surface. It is also necessary to take into account that the frequency of occurrence

for N and NE types during autumn-winter is lower than for spring-summer.

The probability of UI to exceed the threshold value under E weather type is 100%,

at intermediate and northern coastal segments and for both seasons considered (Table

4.1). Also, Chl-a probability to exceed the mean value is 50% at intermediate coastal

segment and 13% at northern, during summer season, indicating that upwelling events

are the main responsible for high Chl-a levels. At western coastal segment UI never

exceeds its threshold value between April and September, however between October
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and March, for 50% of the occurrences, UI exceeds the threshold value. Indeed,

although E type is related to offshore flow and upwelling occurrence at western coastal

segment, Ramos et al. (2013) also found low correlations between them in summer

season. Actually, this type of synoptic conditions generally does not originate intense

winds.

S and SE types could generate upwelling favourable conditions at intermediate and

northern coastal segments. According to Figure 4.2, S weather type was characterized,

on average, by a high pressure system located over central Europe and a low pressure

in the Atlantic, showing a similar pattern to the SE type. Therefore, both weather

types promote southeasterly winds over the region. Between April and September,

when the SE type occurs (that was only 1% of the analysed period) neither UI nor

Chl-a exceed the threshold value. On the other hand, high probabilities of upwelling

favourable conditions under this weather type were observed at intermediate (55%)

and northern (90%) coastal segments from October to March. Also, for this period

it was observed that Chl-a concentration exceeded its mean value at both coastal

segments, with a probability of approximately 25%. Owing to the orientation of the

northern coastal segment (parallel to the equator), southeasterly winds are favourable

to upwelling conditions along this region producing an offshore movement of surface

waters. Along the intermediate coastal segment, SE type was related to a displacement

of surface water along this coast, generating upwelling conditions at some places due

to the jagged coastline. Taking into account that wind conditions under S type were

similar to SE (Figure 4.2), upwelling favourable conditions should also occur along

the intermediate and northern coastal segments under S type. In fact, the conditional

probability of UI to exceed the threshold value during the occurrence of S type was

high for both seasons and coastal segments with maximum values (100%) at northern

region.

Finally, for SW and W weather types, UI never exceed the threshold value, however,

probabilities of Chl-a between 10 and 20% were found for October to March, for the

whole region. Chl-a detected during this period was related to river outflow that

transports nutrient rich water from land, increasing phytoplankton biomass. Intense

southerly and westerly winds originate adverse weather conditions with high rainfall

events increasing the rivers discharge into the coast (Alvarez et al., 2005). In fact,
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Lorenzo et al. (2008) concluded that SW and W regimes are responsible for the vast

majority of very intense precipitation events.

4.3.4 Adverse weather conditions influence on Chl-a concentration

patterns

Several Chl-a images were analysed during periods in which the meteorological

conditions are similar to that observed when SW and W CWTS occur (strong

precipitation and therefore high rivers discharge), to further understand the influence

of adverse weather conditions on Chl-a concentration patterns at the river’s mouth

adjacent areas. Five rivers were considered for analysis: Mondego, Douro, Minho,

Eume and Nalon.

Therefore, for Minho and Nalon rivers, an image from late October 2002 was chosen

as representative of strong discharge (Figure 4.6). The days before to the image were

characterized by a strong low pressure located over the British Isles and a weak high

pressure system located over the IP. This results in southwesterly winds at western

Figure 4.6: a) Chl-a concentration (mg m-3) along Galician coast after a period of high
discharge (late October 2002). b) and c) Zoom of the regions II and I and d) discharges
(m3 s-1) for Minho and Nalon rivers. The arrow indicates the timing of Chl-a concentration
images.
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coastal segment of IP and westerlies at northern. Therefore, meteorological conditions

for this period may be, on average, characterized by SW or W weather types that were

associated with high precipitation by Lorenzo et al. (2008). The image corresponds to

a date after high river discharge for both Nalon (176 m3 s-1) and Minho (816 m3 s-1)

rivers (Figure 4.6).

Results reveal that Chl-a concentration was locally related with river discharges,

which affect Chl-a signal in areas under the influence of riverine plumes. For Nalon,

the highest Chl-a concentrations (> 2 mg m-3) were observed near its mouth, being

diluted with distance. Its influence was detected within a radius of approximately 35

km along the coast. The signal of Minho discharge was observed within a radius of

approximately 30 km along the coast, being the maximum Chl-a concentration detected

near its mouth, with values higher than 3 mg m-3. Indeed, according to a recent study

the Minho estuarine plume reaches Rias Baixas when wind blows eastward and favours

the accumulation of freshwater outside its mouth (Sousa et al., 2014a).

For Eume, Mondego and Douro rivers another period was chosen (February 2001)

because there are missing values in their adjacent area for October 2002. The weather

conditions for February 2001 are similar to those observed at October 2002, with a

strong low pressure located south of Iceland and high pressure over the IP, resulting

in southwesterly winds at both northern and western coastal segments of IP. 2001

winter was characterized by intense southerly winds which favour downwelling over the

shelf (Alvarez-Salgado et al., 2003), originating adverse weather conditions with high

rainfall events (Alvarez et al., 2005). For February 2001, Eume discharges reached a

maximum of 45 m3 s-1, Douro of 8600 m3 s-1 and Mondego of 600 m3s-1, being the

Chl-a images analysed after these high discharges (Figure 4.7). As a result of these

strong discharges, values from 7 mg m-3 near coast to 1 mg m-3 at 10 ◦W are observed

in the region (Figure 4.7a).

Regarding Eume River adjacent zone, Chl-a concentrations of 4 mg m-3 were found

near its mouth, decreasing to values lower than 2 mg m-3 with distance. The influence of

its plume is detected only within a radius of approximately 12 km. Indeed, Eume River

has a very low discharge (Figure 4.7b). Chl-a concentrations between 4 and 6 mg m-3

were observed in the adjacent area of Mondego river, with the maximum Chl-a located

upstream its mouth. Its influence could be detected up to 50 km northward. Chl-a
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Figure 4.7: a) Chl-a concentration (mg m-3) along the western and intermediate coastal
segments of IP after a period of high discharge (middle February 2001). b) Discharges (m3

s-1) for Douro and Mondego and Eume rivers. The arrow indicates the timing of Chl-a
concentration images. c), d) and e) Zoom of the regions V, IV and III.

concentration in the adjacent area of Douro River ranges from 7 mg m-3 upstream its

mouth and less than 4 mg m-3 westward. The highest Chl-a concentrations are confined

to coast, expanding in the alongshore directions and interacting with Minho plume,

which is in agreement with the results reported by Mendes et al. (2014).

4.4 Conclusions

The main aim of this study was to evaluate and quantify the influence of

meteorological conditions (through atmospheric conditions identified, CWTs) on

upwelling variability and Chl-a concentration along the IP coast.

The study began by identifying the main CWT along the IP and its monthly

frequency of occurrence during the period of 1998-2007. Afterwards, the frequencies
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for spring and summer seasons were computed and the link between the atmospheric

conditions identified (CWTs) and upwelling and Chl-a conditions were established for

the period 1998-2007. Results has shown the following:

• The weather types most favourable to the occurrence of upwelling and primary

production were different for each coastal segment under analysis, depending

on the coastline orientation. For western coastal segment north component

circulation weather types (N, NE and NW) induced most of the times upwelling

and phytoplankton generation. It is noteworthy that during winter, when SW

and W weather types occur (recurrent, considering a frequency higher than 10%),

upwelling was never observed; however Chl-a concentrations higher than it mean

value occurs with probabilities between 5 and 17%. Therefore, in this case, the

existing Chl-a in ocean surface is related with the rivers outflow that transports

CDOM;

• At intermediate coastal segment, upwelling occurred essentially under NE, E, S

and N circulation weather types during spring and summer. A probability of 75%

for N and 100% for the other three CWTs was found as well as an offshore surface

transport almost perpendicular to coast, favouring upwelling and generating high

rates of phytoplankton at the surface;

• Finally, at northern coastal segment and for both seasons, south circulation

weather type (S) induced significant upwelling generation (probability of 100%).

Indeed, due to the coastline orientation (parallel to the equator) S type can

generate upwelling favourable conditions transporting nutrient-rich water from

lower depths to the surface and thus generating high primary production. The

probabilities of upwelling occurrence under NE and E circulation weather types

were also high (90-100%) for summer season, being the probability of Chl-a to

exceed its mean value under these conditions between 13% and 20%.

These novel results are of major relevance for this region considering that changes

in future CWTs frequency along the northwestern coast of IP for the end of the 21st

century were predicted by Lorenzo et al. (2011). Results showed an increase in NE and

a decrease in C, W and SW circulation types in spring and summer months. Moreover,

as changes in future circulation weather types are being accurately predicted (Lorenzo
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et al., 2011), and taking into account the probabilities obtained in this work, changes

in the probability of upwelling and primary production occurrence can be inferred from

them. Therefore, the new results obtained in this study provide valuable information

about the local relationship among CWTs, upwelling occurrence and Chl-a over the last

decades, which may facilitate the prediction of future changes on primary production

along the northwestern coast of IP.



Chapter 5

Numerical model

5.1 Introduction

To study the biogeochemical processes along the northwestern coast of IP, a coupled

circulation and biogeochemical model was implemented. This model constitutes a

valuable tool, allowing to complement observational gaps and provide continuously

estimates and forecasts of coastal ocean state. However, modelling ocean/coastal

biogeochemistry is a challenging task, due to the frequent lack of all the necessary

data, high spatial and temporal variability of properties and the enormous number

of processes that are involved. Moreover, biogeochemical properties are strongly

dependent from hydrodynamics, and therefore an ocean circulation model able to

accurately reproduce the variability of currents, salinity and water temperature is also

required.

The numerical model used in this work is MOHID (www.mohid.com) (Martins et al.,

2001). This model has been applied to several different coastal and estuarine areas,

showing ability to simulate flows in shallow systems as well as to study the western

Iberian coastal circulation. Recently, Sousa et al. (2014a,b) implemented MOHID to

simulate the Minho River plume intrusion as well as its influence on Rias Baixas.

Along the Portuguese coast, MOHID has been applied to coastal lagoons: Ria de

Aveiro (Vaz et al., 2005; Picado et al., 2013) and Ria Formosa (Martins et al., 2004)

and estuaries: Tagus (Vaz and Dias, 2014) and Sado (Martins et al., 2001). Regarding

the biogeochemical processes, a few works have been carried out with MOHID. For

instance, Vaz et al. (2015) used MOHID to simulate SST and chlorophyll patterns in an
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estuary-coastal system adjacent to Tagus estuary, and Mateus et al. (2012b) studied the

influence of physical, chemical and environmental parameters on the biogeochemistry

of the Tagus estuary. Moreover, Mateus et al. (2012a) developed an operational model

for the west Iberian coast (MOHID-PCOMS), where physical and biogeochemical

properties are available, and may be used as model forcing or boundary conditions.

Here, the main objective is the implementation and validation of a coupled

circulation and biogeochemical configuration with MOHID along the northwestern

coast of IP, using a downscalling methodology with two nested domains. The first

domain is a 2D (two dimensional) barotropic tidal model, while the second domain is

3D (three dimensional) baroclinic and simulates hydrodynamic, water properties and

biogeochemical variables along the region under study. The main differences between

this configuration and that presented by Mateus et al. (2012a) are the resolution of the

baroclinic domain, which is higher herein, and the boundary conditions source, which

in Mateus et al. (2012a) is from Mercator-Océan and here is from MyOcean solution. In

addition, in the present work biogeochemical properties are imposed as initial and open

boundary conditions. Thus, in this chapter a general overview of the model, regarding

the hydrodynamic, lagrangian and biogeochemical models is performed, presenting

their main formulations. The nesting modelling methodology developed to reproduce

the biogeochemical dynamics of the study area is also described, as well as the validation

of the hydrodynamic and biogeochemical models.

5.2 Hydrodynamic model

MOHID is a free-surface, baroclinic model, which adopts the hydrostatic and

Boussinesq approximations. It solves horizontal momentum (ρu and ρv) and the

advection-diffusion of water temperature (T ) and salinity (S), expressed in the following

equations:

∂

∂t

∫
V

−→v dV +

∮
A

(−→n · −→v )−→v dS +

∫
V

2
−→
Ω ×−→v dV =

∮
A

(
(−→n ·

−−→
vT∇)−→v

−g(η − z)−→n − c(t)
∫ η

z

ρ− ρ0

ρ0

dz−→n − patm
ρ0

−→n + Φ−→n
)
dS (5.1)
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∂

∂t

∫
V

TdV +

∮
A

(−→n · −→v )TdT =

∮
A

(−→n ·
−−−→
KT∇)TdT + SST (5.2)

∂

∂t

∫
V

SdV +

∮
A

(−→n · −→v )SdS =

∮
A

(−→n ·
−−−→
KS∇)SdS (5.3)

where V is an orientable control volume fixed relative to the reference frame origin,

A is its surface and −→n is its outwards normal vector. SST is the source and sink

terms of water temperature. KT and KS are the water temperature and salinity

turbulent diffusion vectors. patm is the atmospheric pressure, Φ is the gravitational

potential, which is the sum of the Earth gravitational potential with the astronomical

tide potential. g is the vertical component of the gravitational pull near the Earth’s

surface, where it is considered constant. ∂
∂t

is the explicit time derivative, z is the

vertical coordinate and
−→
∇ is the gradient operator.

−−→
vT∇ ≡

(
vH

∂
∂x
, vH

∂
∂y
, vV

∂
∂z

)
is a

vector expressing the combination of the turbulent viscosity vector −→vT = (vH , vH , vV )

with the gradient operator.

It also solves the equation of continuity, ∂xu + ∂yv + ∂zw = 0, to determine the

vertical velocity W and the water elevation η. The vertical velocity is obtained by

integrating the equation of continuity between the bottom (−h) and the depth z:

w(z)− w(−h) = −
(
∂x

∫ z

−h
udz + ∂y

∫ z

−h
vdz
)

(5.4)

assuming that w(−h) = 0.

The water elevation is obtained by integrating the equation of continuity over the

water column (between free surface elevation η(x, y) and the bottom (–h)):

∂tη = −
(
∂x

∫ η

−h
udz + ∂y

∫ η

−h
vdz
)

(5.5)

The density (ρ) is solved as function of T , S and pressure (p) through the United

Nations Educational, Scientific and Cultural Organization (UNESCO) state equation

(Fofonoff and Millard, 1983).

The equations for the vertical turbulent kinetic energy and the eddy dissipation

rate due to viscosity are solved using the General Ocean Turbulence Model (GOTM)

solver (Burchard, 2002), embedded in the MOHID code (Ruiz-Villareal et al., 2005).
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5.3 Lagrangian model

The Lagrangian model is a subset of the MOHID modelling system, that derives

from the hydrodynamic information determined by the system and updates the

calculations without having the need to solve all the variables at the same time. It uses

the concept of passive tracers, characterized by their spatial coordinates (x, y, z). The

major factor responsible for particle movement (up) is generally the mean velocity (uM)

provided by the model and a small scale random fluctuation (uF ) so that up = uM +uF .

The spatial coordinates are given by the definition of velocity:

dxi
dt

= up(xi, t) (5.6)

where x stands for particle position. This equation is solved using an explicit method:

xt+∆t
i = xti + ∆tutp (5.7)

The random movement is calculated following the procedure of Allen (1982) and is

calculated using the mixing length and the standard deviation of the turbulent velocity

component, as given by the turbulence closure of the hydrodynamic model. Particles

retain velocity during the necessary time to perform the random movement, which is

dependent on the local turbulent mixing length.

5.4 Biogeochemical model

The biogeochemical model uses parameterizations adapted from EPA (1985),

including the nitrogen, oxygen, phosphorus and silica cycles.

Nitrogen and phosphorus biogeochemical cycles are simulated explicitly, and

constant Carbon:Nitrogen:Phosphorous (C:N:P) ratios were assumed for organic

matter and plankton. Model includes as state variables nutrients (nitrate, ammonia,

and phosphate), phytoplankton, zooplankton, dissolved and particulate organic matter.

The evolution over time of each state variable can be described by the general
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advection–diffusion equation:

∂P

∂t
+ uj

∂P

∂xj
=

∂

∂xj

(
K
∂P

∂xj

)
+ FP (5.8)

where, P is the concentration, j the index for the correspondent Cartesian axis (x, y, z),

K the turbulent mass diffusion coefficient (horizontal/vertical) and FP is the source

or sink term.

The growth and decay of phytoplankton is developed with the following

considerations (Figure 5.1):

• Phytoplankton consumes inorganic nutrients (ammonia and nitrate from the

nitrogen cycle and inorganic phosphorus from the phosphorus cycle) depending

on their availability.

• Light availability (as a source of energy for photosynthesis) influences the growth

of phytoplankton.

• Dissolved oxygen is produced during photosynthesis.

• Respiration process consumes oxygen and produces ammonia.

• Excretion of phytoplankton produces dissolved organic material (DOM:

Refractory Dissolved Organic Nitrogen, Non-Refractory Dissolved Organic

Nitrogen, Refractory Dissolved Organic Phosphorus and Non-Refractory

Dissolved Organic Phosphorus).

• By mortality, phytoplankton increases DOM and particulate organic material

(POM: Particulate Organic Nitrogen and Particulate Organic Phosphorus).

• Through mineralization, DOM and POM are converted into inorganic nutrients

that are available again for primary production.

• Phytoplankton concentration decreases by the grazing of phytoplankton by

zooplankton.

Primary production of phytoplankton follows an exponential growth model, where

temporal variation of biomass depends on available biomass, nutrients and light
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Figure 5.1: Phytoplankton cycle.

(Gotelli, 1995). This process is governed by equation:

∂φX
∂t

= (µX − rX − eXX −mX −GX)φX (5.9)

where t is the time (day), φX is the biomass (gC m-3 for phytoplankton) and other

terms can be seen as net production rate, composed by: µX gross growth rate (day-1);

rX total respiration rate (day-1); eXX excretion rate (day-1); mX natural mortality

rate (non-predatory) (day-1); and GX grazing rate (day-1). Respiration, excretion and

mortality formulations can be found in EPA (1985). Growth rates are determined

by external concentration of available nutrients, and they are linearly dependent on

nutrient uptake rates. Thus, the redfield ratio is assumed for C:N:P ratio (106:16:1,

average in marine environment) for phytoplankton, zooplankton and organic matter.

Model uses a fixed stoichiometry approach, where elemental composition of algal cells

remains constant.

Photosynthetic organisms only exists where light is available and able to reach their

cells. Therefore, phytoplankton is limited to the upper layers of the water column

(photic zone). The model assumes that the light extinction in depth follows the decay

given by Lambert-Beer’s Law:

I(z) = I0e
−kLz (5.10)
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where I (W m-2) is the light intensity at a given depth z (m), I0 the light intensity at

the surface and kL the light extinction coefficient (m-1).

5.5 Discretization

5.5.1 Spatial discretization

MOHID uses a finite volume approach (Chippada et al., 1998; Martins et al., 2001)

to discretize the equations in a structured grid, allowing the application of the model in

areas with diverse geometries and horizontal spatial resolutions, and the easy expansion

to eventually more adequate coordinate systems (Martins et al., 2001; Mateus et al.,

2012a; Vaz, 2007). The geometries supported by MOHID include the sigma, cartesian,

lagrangian and fixed depth. All types of vertical coordinates have a wet/dry cell scheme.

In the horizontal, the model uses a staggered Arakawa C grid (Arakwa and Lamb, 1977),

i.e. the horizontal velocities are located in the center of the cell faces and elevation,

turbulent magnitudes and any tracer are placed in the element center. In the vertical, a

staggered grid is also used, with the vertical velocity, tracers and turbulent magnitudes

placed in the top and bottom faces and horizontal velocities and elevation in the center.

5.5.2 Temporal discretization

The model solves a semi-implicit ADI (Alternating Direction Implicit) algorithm

to compute the sea level evolution with two time levels per iteration, following the

method proposed by Leendertse (1967). The two components of the horizontal velocity

are globally centred in time, t+dt/2, leading to a second order time accuracy (Martins

et al., 2001). Advection and diffusion of tracer properties such as water temperature

and salinity are computed explicitly in the horizontal and implicitly in the vertical,

using a Total Variation Diminishing (TVD) Superbee method (Roe, 1985).

For baroclinic force, MOHID uses a z-level approach for any type of vertical

coordinate. This methodology integrates the horizontal density gradient always in

the cartesian space.
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5.6 Initial conditions

In the present study a downscaling methodology with two nested domains was

developed, being the first domain 2D and the second 3D. At first domain an initial

elevation equal to the mean water level of the study region was used as well as a null

velocity. At second domain 3D fields of salinity, water temperature and concentration

of biogeochemical variables are provided as initial conditions, which were interpolated

from an external 3D solution (in this case from MyOcean). A null velocity field is

assumed as well as a sea surface height field with null gradient.

5.7 Boundary conditions

MOHID uses five types of boundaries: surface, bottom, lateral closed, lateral opened

and moving boundaries.

5.7.1 Surface boundary

At free surface boundary, all advective fluxes across the surface are assumed to be

null. This condition is imposed by assuming a null vertical flux (Wflux) at the surface:

Wflux|surface = 0 (5.11)

Diffusive flux of momentum is imposed explicitly by means of wind surface stress,

−→τW :

ν
∂−→vH
∂z
|surface = −→τW (5.12)

where ν is the vertical eddy viscosity. Wind stress is calculated following a quadratic

friction law:

−→τW = C10ρa
−→
W |
−→
W | (5.13)

where C10 is a drag coefficient function of wind speed (W ) measured at a height of 10

m over the sea surface and ρa is the air density. C10 is computed through the following
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equations (Large and Pond, 1981):

C10 = 1.14e−3 W< 10 m s-1

C10 = 4.4e−4 + 6.5e−5−→W |
−→
W | 10 < W < 26 m s-1

(5.14)

Solar radiation flux of short wavelength is given by Brock (1981) formulation:

Q = Q0At(1− 0.65C2
n)(1−Rs) (5.15)

where Q0 is the solar radiation flux at the top of atmosphere, At is the coefficient

for atmospheric transmission, Cn the cloud cover percentage and Rs stands for albedo

(0.055).

The net long-wave radiation Ra is calculated using (Swinbank, 1963):

Ra = 0.937× 10−5σ(273.15 + Ta)
6(1 + 0.17C2

n)(1−Rs) (5.16)

where σ is the Stefan-Boltzman constant (5.6697 × 10−8 W m-2 K-4) and Ta the air

temperature.

The infrared radiation Rbr is calculated applying the Stefan-Boltzman law:

Rbr = εσ(273.15 + T )4 (5.17)

where ε is the water emissivity (∼0.97).

The latent HL and sensible HS heat fluxes are calculated using the Dalton and

Bowen laws:

HL = (19 + 0.95W 2)(es,w − rhes,a) (5.18)

HS = Cb(19 + 0.95W 2)(T − Ta) (5.19)

where es,w is the saturated water pressure, rh is the relative humidity, es,a is the air

saturation pressure, Cb is the Bowen coefficient (0.47 mmHg K-1).

The velocity of oxygen transfer is given by:

OL = αW β (5.20)
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where OL represents the oxygen transfer velocity, α and β are coefficients dependent

on the wind velocity:

α = 0.2 and β = 1 W< 3.5 m s-1

α = 0.057 and β = 2 W > 3.5 m s-1
(5.21)

Surface boundary conditions are computed by the model from meteorological

data/conditions provided by the user, such as wind intensity and direction, air

temperature, atmospheric pressure, relative humidity and solar radiation.

5.7.2 Bottom boundary

At bottom, advective fluxes are imposed as null, while diffusive flux of momentum is

estimated by means of bottom stress calculated by a non-slip method with a quadratic

law that depends on the near-bottom velocity. The diffusive term at bottom is written

as:

ν
∂−→vH
∂z
|bottom = CD

−→vH |−→vH | (5.22)

where CD is the bottom drag coefficient which is computed through:

CD =

(
kc

log
(
z+zb0
zb0

))2

(5.23)

where kc is von Karman constant and zb0 is the bottom roughness length. In the present

implementation a constant bottom roughness length is used and was set to 0.0025 m.

For numerical stability reasons, the bottom stress is calculated semi-implicitly. No

fluxes of salinity and water temperature are considered at the bottom.

5.7.3 Lateral closed boundaries

Closed boundaries of the domain correspond to land. In this case, an impermeable

free slip condition was adopted:
∂−→vH
∂η

= 0 (5.24)

−→v · −→n = 0 (5.25)
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Using the finite volume approach, these conditions are implemented specifying zero

water fluxes and zero momentum diffusive fluxes for the cell faces in contact with land.

5.7.4 Lateral open boundaries

Two types of lateral open boundaries are considered: ocean and landward

boundaries. At the first domain, amplitude and phase of fourteen tidal constituents,

from a global solution (Finite Element Solution (FES2004)) are imposed in the oceanic

open boundary to simulate the barotropic tidal motion.

The hydrodynamic variables (water levels and velocities) are imposed in the second

domain combining the solution from the first domain with an external solution

(MyOcean). Specifically, a mathematical sum of both solutions is applied to the second

domain using a Flather (1976) radiation scheme. This methodology is adopted due to

the low temporal resolution of MyOcean variables. Water temperature, salinity and

concentration of phytoplankton, nitrate, inorganic phosphorus and oxygen, provided

by an external solution (MyOcean), are also imposed in the second domain. A

Flow Relaxation Scheme (FRS) (Martinsen and Engedahl, 1987) is applied to the

hydrodynamic composite and to water properties at second domain. The FRS adds

small corrections to model predictions by diminishing deviations from the reference

solution.

As landward boundary condition, rivers discharge, water temperature, salinity and

concentrations of biogeochemical variables are imposed at the second domain for each

local estuarine/riverine input.

5.7.5 Moving boundaries

Moving boundaries are closed boundaries whose position changes with time. This

type of situation arises in domains with inter-tidal areas, where some points can be

alternatively covered or uncovered depending on tidal elevation. Based on the study

region characteristics moving boundaries are not used in this study.
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5.8 Model setup

5.8.1 Circulation model

As previously referred a coupled circulation and biogeochemical model was

implemented in northwestern coast of IP, using a downscalling methodology with two

nested domains (Figure 5.2). The first domain (D1) (Figure 5.2a) includes the whole

IP, from 33 to 50 ◦N and 0 to 13 ◦W, and has a horizontal resolution of 0.06 ◦. In this

domain is used a 2D barotropic tidal model forced by FES2004 global solution (Lyard

et al., 2006) using a time step of 120 s and a horizontal eddy viscosity of 60 m2 s-1.

This domain is necessary due to the low temporal resolution (daily) of water levels and

velocities available from the adopted external solution (MyOcean), which is insufficient

to accurately propagate tide along the study area. Moreover, the first domain is large

enough to correct eventual instabilities of the tidal signal in its boundaries.

The second domain (D2) (Figure 5.2b) is a 3D baroclinic model, with a horizontal

resolution of 0.03 ◦, which includes the northwestern coast of IP, from 39.5 to 44.5 ◦N

and 5 to 11 ◦W. Bathymetry was constructed based on General Bathymetric Chart

of the Oceans (GEBCO), with some corrections at the continental shelf. A z -level

Figure 5.2: MOHID downscalling system with the location of the freshwater sources
considered in the model.



5.8 Model setup 97

vertical discretization was adopted, with 45 vertical layers, being the first seven sigma

coordinate layers (near surface) and the remaining 38 cartesian coordinate layers. The

time step is set to 30 s and the turbulent horizontal eddy viscosity inside the domain

is set to 30 m2 s-1.

At lateral open boundary D2 is forced using tidal levels computed by D1 along

with hydrodynamic and water properties provided by MyOcean Global circulation

model (http://marine.copernicus.eu/). MyOcean solution has a horizontal resolution

of 0.08 ◦ and 50 vertical layers, including daily mean fields of water temperature, salinity

and currents from the top to the bottom and sea level at surface over the Global Ocean.

MyOcean 3D fields were interpolated for D2 grid, using triangulation interpolation in

space and linear in the vertical and in time.

The surface boundary condition is imposed using results from Weather Research

and Forecasting model (WRF) (http://www.wrf-model.org), provided by the Regional

Forecast Agency Meteogalicia (www.meteogalicia.es). WRF solution used herein has a

spatial resolution of 0.12 ◦, and hourly fields of air temperature, atmospheric pressure,

wind, solar radiation, relative humidity and mean sea level pressure were interpolated

for D2 grid using a triangulation interpolation in space and linear in time.

As landward boundary condition, freshwater input from Mondego, Douro, Minho,

Verdugo, Lerez, Ulla, Tambre, Eume and Nalon Rivers was considered (Figure 5.2b).

Discharge, water temperature and salinity data for Minho River were provided by

Confederacion Hidrográfica del Miño-Sil and for Douro and Mondego by Instituto

Nacional da Água. Both datasets have a daily temporal resolution. Given the absence

of in situ discharges for the remaining rivers during the simulation period (2013 and

2014), predicted data provided by SMHI (E-Hype model) for the period 1980-2009 was

monthly averaged and imposed in coastal model (D2).

5.8.2 Biogeochemical model

To simulate the trophic levels and biogeochemical components of the system, the

biogeochemical model was implemented coupled to the hydrodynamic. Parametrization

of sink and source terms used in the model are listed in Table 5.1.
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Table 5.1: Values of the parameters used in the biogeochemical model.

Parameter Units Value Reference

Light extinction water coefficient None 0.08 (EPA, 1985)

P
h
y
to

p
la

n
k
to

n

Maximum gross growth rate at 20 ◦C day-1 1.0 Calibrated

Optimum light intensity for photosynthesis W m-2 100 (EPA, 1985)

Endogenous respiration constant day-1 0.0175 (Portela, 1996)

Excretion rate None 0.07 (Portela, 1996)

Maximum mortality rate at 20oC day-1 0.02 (Portela, 1996)

Growth limitation by P half-saturation coefficient mg P l-1 0.001 (Valiela, 1995)

Growth limitation by N half-saturation coefficient mg N l-1 0.014 (Valiela, 1995)

Carbon to chlorophyll ratio None 30 Calibrated

Z
o
op

la
n
k
to

n

Grazing rate on phytoplankton day-1 0.3 Calibrated

Half saturation constant for zooplankton grazing mg C l-1 0.85 (Pina, 2001)

Minimum prey concentration for zooplankton grazing mg C l-1 0.045 Calibrated

Assimilation efficiency coefficient None 0.80 (Pina, 2001)

Mortality rate day-1 0.09 (EPA, 1985)

O
x
y
ge

n

Oxygen/Carbon ratio in CO2 None 1.28 (Pina, 2001)

Oxygen/nitrogen ratio in nitrate None 3.43 (Pina, 2001)

Oxygen/nitrogen ratio in phosphate None 2.06 (Pina, 2001)

Organic matter nitrogen/carbon ratio (redfield) None 0.18 (Pina, 2001)

Organic matter phosphorus/carbon ratio (redfield) None 0.024 (Pina, 2001)

Photosynthesis oxygen/carbon ratio None 2.67 (Valiela, 1995)

N
it

ro
ge

n

Nitritication rate at 20 ◦C day-1 0.06 (Portela, 1996)

Nitrification rate temperature coefficient None 1.08 (EPA, 1985)

Denitrification rate at 20 ◦C day-1 0.125 (EPA, 1985)

Denitrification rate temperature coefficient None 1.045 (EPA, 1985)

Half saturation constant for nitrification oxygen limitation mg O2 l-1 2.0 (EPA, 1985)

Half saturation constant for denitrification oxygen limitation mg O2 l-1 0.1 Calibrated

P
h
os

p
h
or

u
s

Mineralization rate of dissolved organic phosphorus at 20 ◦C day-1 0.1 Calibrated

Temperature coefficient for mineralization rate of
None 1.06 (Valiela, 1995)

dissolved organic phosphorus



5.8 Model setup 99

Initial and boundary conditions for the ecological model were supplied by MyOcean

solution: weekly 3D fields (50 vertical layers) of nitrate, inorganic phosphorus, oxygen

and phytoplankton with a horizontal resolution of 0.5 ◦ are used in the coastal model

(D2).

For landward boundary, nitrate and phosphate concentrations were provided by

SMHI for the period 1999-2009 for all rivers considered. Once simulation period (2013

and 2014) is not included in the data provided, a statistical analysis was performed

for Mondego, Minho and Douro Rivers, using the information of discharges for the

simulation period as well as nutrients concentration and discharges for 1999-2009. For

Eume, Ulla, Tambre, Verdugo, Lerez and Nalon Rivers no discharges are available for

the simulation period (2013 and 2014), and therefore this statistical analysis was not

performed. Instead, monthly mean nitrate and inorganic phosphorus concentrations

computed for 1999-2009 were imposed in the model.

For Mondego, Minho and Douro Rivers, nutrients and discharges for the period

between 1999 and 2009 were adjusted to probability distributions. The empirical

cumulative distribution function was computed according to Kaplan and Meier (1958),

while the theoretical distributions were determined by calculating the location, scale

and shape parameters of each annual mean series. Distributions considered were:

Generalized Extreme Value (GEV), Gamma, Log-normal, Exponential and Weibull.

The best distribution was then selected by testing the quality of the fit using two

statistical tests (Chi-squared and the Kolmogorov-Smirnov tests) at 95% confidence

level and by computing errors between discharges (nutrients) empirical cumulative

distribution and each probability cumulative distributions. The best distribution was

then selected for each nutrient and discharge for the period 1999-2009. Therefore,

monthly mean discharges for the simulation period (2013 or 2014) were computed and,

the probability (P) of the 1999-2009 discharge being equal to the 2013/2014 monthly

mean was found. Finally, the nutrients concentration imposed in the model corresponds

to the concentration with a probability of occurrence P.
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5.9 Model validation

5.9.1 Methodology

The vertical structure and thereby the vertical fluxes of organic matter and primary

production within estuaries and coastal regions are largely controlled by the vertical

mixing and therefore the vertical distribution of turbulence in the water column

(Denman and Gargett, 1995). Consequently, before model validation process it is

important to test turbulence schemes in the region under study. Thus, in order to

choose the best turbulent kinetic energy (TKE) method, the length scale equation and

the stability function to be used by the model four simulations were performed (Table

5.2). For these simulations the biogeochemical model is off, i.e. only the hydrodynamic,

heat and salt transport were considered. Results were then compared with in situ data

from Argo floats, described later, being an example represented in Figure 5.3.

According to the profiles represented in Figure 5.3 it is observed that both Runs #1

and #3 describe better the thermohaline and pycnocline features than Runs #2 and

#4. However, the mean values of water temperature and salinity of Run #1 are closest

to the measured values. Therefore, Run #1 parameters gives better agreement with in

situ (Argo) water temperature and salinity data than other runs. Thus, according to

these results and with results from other implementations for the study region (Mateus

et al., 2012a; Sousa et al., 2014a,b; Vaz et al., 2015), the parameters of Run #1 will

be used hereafter.

Once the best set of parameters was chosen, a fifth simulation was performed

covering the years of 2013 and 2014 and considering the biogeochemical model.

Therefore, a quantitative validation was performed comparing time series of sea surface

elevation (SSE), synthesized from local tidal constituents, for Vigo (V), Leixões (L)

Table 5.2: Simulations characteristics.

TKE method Length Scale Equation Stability function

Run #1 k − ε Dynamic dissipation rate Canuto et al. (2001) A

Run #2 Mellor and Yamada (1982) KL equation Canuto et al. (2001) A

Run #3 k − ε Dynamic dissipation rate Canuto et al. (2001) B

Run #4 Mellor and Yamada (1982) KL equation Canuto et al. (2001) B
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Figure 5.3: Profiles of predicted and in situ (Argo # 2) water temperature (◦C) and salinity
for the runs presented in Table 5.2.

and Aveiro (A) (triangles in Figure 5.4) with model results. Harmonic analysis for the

model predictions was also performed and predicted and observed harmonic constants

were compared.

Water temperature, salinity and currents from oceanographic moored buoys

settled near the Galician shelf (P, B, VS and S - Figure 5.4) and provided by

Figure 5.4: Location of the stations used in model validation. Green triangles correspond
to buoys with time series of SSE data, red stars to time series of surface water temperature,
salinity and currents, orange squares and blue circles to Argo buoys profiles of water
temperature, salinity and oxygen.



102 Numerical model

the Spanish Agency Puertos del Estado (http://www.puertos.es/) were also used

to validate the model. Data are available every hour and measured at 3 m

depth. Predicted water temperature, currents and Chl-a concentration were also

compared with in situ data from a buoy located at the surface near Douro River

(R) (Figure 5.4). These data was collected and provided in the scope of RAIA project

(http://www.observatorioraia.org/mg-web-raia/index.action) and are of free access.

Afterwards, profiles from Argo floats of water temperature, salinity and occasionally

oxygen were compared with model predictions. Argo data is freely available in real time

downloading (http://www.ifremer.fr/co-argoFloats/).

Argo floats can alter its buoyancy by inflating or deflating a bladder from an

oil reservoir, allowing it to submerge to 1 − 2 km beneath the surface (phase 1 to

2 in Figure 5.5). It remains at that depth during several days, depending on the

buoy characteristics and then descends again a few meters (phase 2 to 4, Figure

5.5). Then, it rises rapidly to the surface (phase 4 to 5, Figure 5.5), measuring

physical/biogeochemical properties during its ascent that are stored on board the float.

Once it arrives to the surface these data are transmitted to a land station via satellite

(phase 5, Figure 5.5). Argo floats can repeat this cycle for many years without human

intervention.

During 2013 two floats travelled throughout the study area being their trajectories

Figure 5.5: Scheme of the Argo float cycle.
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represented in Figure 5.4 (Argo # 1 and Argo # 2). Fifty eight profiles for Argo #

1 and twenty one for Argo # 2 were compared with model results, being only twelve

profiles for each float analysed here (dots and squares in Figure 5.4).

In order to validate the current velocity at 1000 m depth, an attempt to reproduce

the trajectory of Argo # 1 during its drift (Figure 5.5) was performed. The only

available information is the position of float at the surface, total time of Argo float

cycle (descent + drifting + ascent + surface), which for Argo # 1 is 96.12 hours

(for Argo # 2 is 240 hours) and the depth of subsurface drift (1000 m for both floats).

With this information, 6 hours for float descent (phase 1 to 2) and 71 hours for the drift

(phase 2 to 3) was estimated. Therefore, using Lagrangian model, 100 particles were

released at 1000 m at the known position and simulations of 71 hours were performed.

The trajectories were averaged and then compared with Argo floats positions.

Finally, SST and Chl-a satellite imagery are also used to validate model (D2).

Maps of SST and Chl-a concentrations for winter and summer were compared for the

year 2013 and 2014. Differences between predictions and observations were computed

along with linear regression parameters, RMSE, BIAS and Pearson correlation for

all study area, reshaping the matrices of predicted and observed data in two vectors.

8-days composite of SST and Chl-a concentration from the MODIS-AQUA satellite

with spatial resolution of 1 km were obtained from the NASA Ocean Colour web site

(http://oceancolor.gsfc.nasa.gov). MODIS is a key instrument comprising the Terra

(EOS AM) and Aqua (EOS PM) satellites. The orbit is sun-synchronous, meaning

that satellite always passes over a particular part of the Earth at about the same local

time each day. MODIS Aqua always crosses the equator from south to north at about

1:30 PM local time. One of the instruments on Aqua, measures 36 spectral frequencies

of light reflected off the Earth in a 2300 km wide swath along this orbit. Measurements

can only be taken in ocean regions that are cloud free.

For a quantitative comparison BIAS and RMSE reliability indices between data

and model predictions were computed. BIAS gives an indication of whether the model

predictions are systematically overestimating or underestimating observations, being

model predictions as better as BIAS is closest to zero. It gives a measure of the
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model’s accuracy and is expressed as:

BIAS =
1

n

n∑
i=1

(Mi −Di) (5.26)

The RMSE contributes to evaluate the model precision and is given by:

RMSE =

(
1

n

n∑
i=1

(Mi −Di)
2

) 1
2

(5.27)

A RMSE close to zero means a good fit between model predictions and observations.

M corresponds to the model predictions, D to data and n is the total number of

model-data matches.

5.9.2 Results and discussion

5.9.3 Near coast validation

Once the main objective of this implementation is to evaluate the biogeochemical

features related with wind induced coastal upwelling phenomenon along the IP coast,

the model predictions were compared with in situ data located near coast.

First, times series of SSE at Vigo (V), Leixões (L) and Aveiro (A) stations were

compared with model predictions and represented in Figure 5.6.

In general, a good agreement between predicted and synthesized SSE for the three

stations is achieved, revealing the model’s ability to reproduce data. RMSE between

predicted and synthesized SSE is 0.07, 0.09 and 0.13 m, for Vigo, Leixões and Aveiro,

respectively. BIAS are close to zero for all stations and therefore model reproduces

tide accurately along this coast.

Harmonic analysis was also applied to predict SSE, in order to compare with in situ

harmonics. Results for the main tidal constituents in the region (M2, S2, O1 and K1

(Marta-Almeida and Dubert, 2006; Herrera et al., 2008)) are presented in the Table

5.3.

Results reveal that both predicted amplitude and phase for all the constituents are in

agreement with observations. For M2 tidal constituent the major differences were found

for Aveiro station, being the amplitude difference of 0.12 m and the phase difference

of 4◦, which means a delay of 8 minutes between observed and predicted tide. These
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Figure 5.6: Observed and predicted SSE time series at a) Vigo (V), c) Leixões (L) and e)
Aveiro (A) stations. Right panel (b, d and f) represents a zoom of the selected area of the
respective station.

discrepancies may be due to the fact that station Aveiro is located in Ria de Aveiro

inlet and lagoon is not represented by the model grid. Therefore, the nearest model

cell, which is at 3 km distance, is chosen to represent Aveiro tide gauge. Moreover, in

a study dedicated to assess floods in Ria de Aveiro (Lopes et al., 2013), a RMSE of

0.07 m was obtained and therefore results obtained in this work are considered good.

Otherwise, for S2 constituent major differences between model and data occur at Vigo

station, where a delay of 28 minutes and an amplitude difference of 0.02 m is observed.

For diurnal constituents, the highest phase difference was observed in Leixões station

with a delay of 40 minutes for O1 and 75 minutes for K1 tidal constituent, while the

amplitude difference between predictions and data is low.

Therefore, results of SSE time series and respective harmonic analysis reveal that



106 Numerical model

Table 5.3: Harmonic analysis of observed and predicted SSE for Vigo, Leixões and Aveiro
stations.

Station
Amplitude (m) Phase (oC)

Data Model Difference Data Model Difference

M2

Vigo 1.12 1.13 -0.01 76.74 77.77 -1.03

Leixões 1.05 1.09 -0.04 76.47 74.60 1.87

Aveiro 0.96 1.08 -0.12 77.54 73.50 4.04

S2

Vigo 0.39 0.37 0.02 106.22 119.17 -12.95

Leixões 0.36 0.36 0.00 104.80 115.66 -10.86

Aveiro 0.35 0.36 -0.01 108.40 114.38 -5.98

O1

Vigo 0.07 0.06 0.01 318.66 321.99 -3.33

Leixões 0.06 0.06 0.00 318.51 309.08 9.43

Aveiro 0.05 0.05 0.00 318.76 311.50 7.26

K1

Vigo 0.07 0.09 -0.02 60.03 74.73 -14.70

Leixões 0.07 0.09 -0.02 60.59 79.39 -18.80

Aveiro 0.06 0.09 -0.03 62.98 74.30 -11.32

model is able to accurately reproduce tidal propagation in coastal area under research

in this study.

Predicted time series of water temperature, salinity and current velocity were also

compared with data from oceanographic buoys that are located in the coastal region

(stars in Figure 5.4). Results are presented for the whole year of 2013 in order to analyse

not only the diurnal, but also the seasonal variations. Results for only two stations are

shown for the entire year: Cape Peñas (P) and Villano-Sisargas (VS) (Figures 5.7 and

5.8, respectively), because data for the other three stations have too many gaps, and

therefore only a specific period is shown (Figures 5.9 and 5.10).

Generally, results suggest that model reproduces satisfactorily the seasonal

evolution of water temperature for both stations (Figures 5.7a and 5.8a), showing the

characteristic succession of winter minima and summer maxima. RMSE for the whole

year is 0.564 and 0.608 ◦C for Cape Peñas and Villano-Sisargas stations, respectively,

being the highest differences registered in summer. Indeed, for the first quarter of the

year (January to March), RMSE is 0.112 (0.144) ◦C, while for the third quarter (July
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Figure 5.7: Observed and predicted water temperature (◦C), salinity and velocity (m s-1) for
the Cape Peñas station (P) represented in Figure 5.4 for 2013. Statistical results are also
presented.

Figure 5.8: Observed and predicted water temperature (◦C), salinity and velocity (m s-1) for
the Villano-Sisargas station (VS) represented in Figure 5.4 for 2013. Statistical results are
also presented.
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to September) is 0.444 (0.416) ◦C, for Cape Peñas (Villano-Sisargas) station. These

differences may be attributed to the mixed layer that is thinner in summer than in

winter months and, therefore, model vertical resolution should be high to accurately

reproduce the summer water temperature (Mateus et al., 2012a).

Salinity time series (Figures 5.7b and 5.8b) show a RMSE of 0.20 and 0.17 for

Cape Peñas and Villano-Sisargas stations, respectively. In these cases, the highest

errors occur during winter and are due to low time resolution of the flow imposed in

model. Indeed, Cape Peñas buoy is very close to Nalon River mouth and, between

February and May, high discharges were observed, with salinity reaching 34. Although

model predictions showed the same trend, salinity minimum is not so low as observed

in data, and therefore, higher RMSE are found between February and May (0.19)

than for rest of the year (0.08).

For the Villano-Sisargas the major difference between predicted and measured

salinity was found for April and May, with a RMSE of 0.14, while for the rest of

the year the RMSE is 0.09.

Relatively to velocity time series (Figures 5.7c and 5.8c), data and model predictions

are represented every 12 hours, because velocity is a property with high variations

and therefore visualization is not easy. RMSE for the whole year, except gaps, is

0.098 m s-1 for Cape Peñas, being the model predictions higher than data (positive

BIAS). Otherwise, for Villano-Sisargas the model predictions are generally lower

than measurements, with a mean difference of −0.015 m s-1 and a RMSE of 0.133 m

s-1.

To make more visible the comparison between measured data and model predictions,

water temperature, salinity, velocity and Chl-a concentration are represented in Figures

5.9 and 5.10 during five days considering all stations (P, B, VS, S and R).

Results suggest a good agreement between data and model predictions, however,

several differences are detected. The highest water temperature and salinity RMSE

are found for Bares station, with errors of 0.6◦C and 0.2, respectively. Otherwise, water

temperature lowest RMSE was found for Raia buoy, with a value of 0.15◦C. Silleiro

and Bares stations present the best fit between data and predicted current velocity

(RMSE = 0.07 m s-1). The highest RMSE between predicted and measured velocity

is observed for the Cape Peñas, with an error higher than 0.12 m s-1, and an average
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Figure 5.9: Observed and predicted water temperature (◦C), salinity and velocity (m s-1) for
stations P, B, VS and S represented in Figure 5.4. Statistical results are also present.

Figure 5.10: Observed and predicted water temperature (◦C), Chl-a concentration (mg m-3)
and velocity (m s-1) for Raia station (R in Figure 5.4). Statistical results are also present.

difference of 0.096 m s-1. Chl-a concentration data is only available for R buoy and

model predictions are usually lower than data (BIAS = −0.193 mg m-3) with a RMSE

of 0.4 mg m-3.

To validate model predictions of current velocity at 1000 m depth, trajectories of

Argo # 1 during the drift phase (phase 2 to 3 in Figure 5.5) were simulated using

Lagrangian model. 100 particles were released at the known Argo float position (1

in Figure 5.5) and the average final positions were registered. This procedure was

performed for almost three months (between 05/02 and 20/05/2013) and results are

represented in Figure 5.11.

The analysis of Figure 5.11, show that both predicted and observed trajectories

are similar. The average distance between predicted and measured positions is

approximately 6 km, however in some specific locations the distance can reach 15 km

(Figure 5.11b). The highest differences were found for positions 6 and 22 (dots black
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Figure 5.11: a) Observed and predicted trajectories of Argo # 1 during the drift phase, b)
distance between Argo and model predicted positions (km).

delimited in Figure 5.11a), with values of 12 and 15 km, respectively. The differences

observed can be attributed to the uncertainty of the initial and final positions of

the drift phase (2 to 3 in Figure 5.5), that in simulations were approximated to the

positions 1 and 5 from Figure 5.5, respectively. Model spatial resolution (3 km) can

also contribute to the differences observed.

5.9.3.1 Vertical profiles validation

Model predictions were compared with Argo profiles, for the year of 2013, being

results presented in Figures 5.12 to 5.16. In addition to the visual comparison, a simple

statistical analysis (RMSE and BIAS) was performed, interpolating the model output

through the cubic interpolation method, i.e. using a third degree polynomial.

Argo # 1 float travelled through the study region between 2012 and 2013, entering

in the domain by the south boundary at the end of May 2012 and leaving it through the

north coast during September 2013. Once initial data from MyOcean is only available

from December 2012, validation was performed for 2013.

In general, results of Figure 5.12 show that model overestimates water temperature

values (with positive BIAS), nonetheless the upper layer thermodynamics and vertical

stratification of thermohaline are well reproduced by the model. Also, the model is

able to represent the temporal evolution of the seasonal thermocline. It often starts
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Figure 5.12: Predicted water temperature (◦C) profiles compared with Argo (Argo # 1), for
2013. Statistical results (RMSE and BIAS) are also presented in ◦C.

Figure 5.13: Predicted salinity profiles compared with Argo (Argo # 1), for 2013. Statistical
results (RMSE and BIAS) are also presented.
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to develop in spring above the permanent thermocline as surface temperature rise and

mixing by wind decreases (Figure 5.12 - April 2), reaching maximum development in

summer (Figure 5.12 - August 12).

RMSE between model predictions and measurements ranges from 0.25 ◦C on

March 9 to 0.94 ◦C on July 15, revealing a good agreement between data and model

predictions. These results are better than those achieved by Mateus et al. (2012a),

that obtained a RMSE of 1.25 ◦C in a point located at 42 ◦N and 11.5 ◦W.

Regarding salinity profiles (Figure 5.13), small differences were observed at surface,

increasing for depths higher than 600 m. Nonetheless, the highest RMSE is 0.14

which, relatively to mean salinity values, corresponds to an error of less than 0.5 %.

RMSE for salinity profiles are also lower than those achieved by Mateus et al. (2012a),

revealing the importance of the model spatial resolution. Therefore, results suggest that

model adequately reproduces the vertical structure of salinity, including the permanent

pycnocline features.

Another Argo float was identified in the study region during 2013, entering through

the west part of the domain during March and leaving it through the north coast

in November (Figure 5.4, Argo # 2). Water temperature, salinity and oxygen

concentration profiles are available for this float and then used to validate the model

predictions at different locations. Results are presented in Figures 5.14, 5.15 and 5.16.

Water temperature and salinity profiles (Figures 5.14 and 5.15) suggest that model

accurately reproduces the surface features, as well as the vertical stratification and

permanent pycnocline. In this case, the highest RMSE for water temperature and

salinity were found in August (1.10◦C) and May (0.19), respectively.

The distribution and variability of dissolved oxygen in the ocean is controlled

by physical and biological factors and by the complex interactions among them.

This includes the large scale and regional circulation, vertical mixing, air-sea

exchange, oxygen release by primary production and oxygen consumption by

respiration/mineralization. Therefore, in marine environments, is difficult to reproduce

oxygen concentration as well as other biogeochemical variables. Nonetheless, model

reproduces well oxygen distribution along water column (Figure 5.16). High levels

of oxygen (> 8 mg l-1), produced through photosynthesis, are observed at the surface

layers for both data and model predictions. Oxygen concentration decrease with depth,
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Figure 5.14: Predicted water temperature (◦C) profiles compared with Argo (Argo # 2), for
2013. Statistical results (RMSE and BIAS) are also presented in ◦C.

Figure 5.15: Predicted salinity profiles compared with Argo (Argo # 2), for 2013. Statistical
results (RMSE and BIAS) are also presented.
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Figure 5.16: Predicted dissolved oxygen (mg l-1) profiles compared with Argo (Argo # 2),
for 2013. Statistical results (RMSE and BIAS) are also present in mg l-1.

reaching a minimum at approximately 1000 m, where the oxygen is consumed through

respiration and photosynthesis does not occur due to absence of light. In deeper layers

(not shown here), the oxygen concentration increases again reaching the values observed

at the surface, due to the bottom currents that carry dense and oxygenated water.

Results suggest that model systematically overestimates data, with RMSE ranging

from 0.53 mg l-1 on October 31 to 0.71 mg l-1 on July 23.

5.9.4 Spatial validation

A spatial comparison between predicted and remote sensing SST and Chl-a

concentrations was also performed, by interpolating the satellite data grid (1 km) into

the model grid (3 km). Difference between predictions and satellite data was computed

as well as the regression equation parameters, RMSE, BIAS and Pearson correlation.

Results for SST are presented in Figures 5.17 and 5.18 and for Chl-a concentration

in Figures 5.19 and 5.20. The images date was chosen as representative of winter

(January 3, 2013) and summer seasons (June 2, 2013 for SST and July 11, 2014 for

Chl-a concentration).
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Figure 5.17: SST (◦C) on January 3, 2013 obtained from a) model predictions and b) satellite
data. c) Linear fit between predictions and satellite data (y = 0.73x+ 4.00) and d) difference
between measured and predicted SST (◦C). Results from statistical analysis are also shown.

When comparing satellite imagery and predicted SST, some considerations must

be taken into account. Satellite instruments that observe in the infra-red part of the

spectrum measure skin SST, i.e. a layer of a few millimetres thick which characteristics

are due to the exchange of heat and moisture to atmosphere as well as the emission of

infra-red radiation. Otherwise, the predicted SST corresponds to the bulk temperature

(average water temperature of surface layer). In this case, model surface layer has a

thickness of 0.98 m and therefore, skin SST can be significantly different from the bulk

SST, especially under weak winds and high incoming sunlight (Fairall et al., 1996; Wick

et al., 1996), and differences between model predictions and satellite data are expected.

From Figures 5.17 and 5.18 is observed a good agreement between predicted and
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Figure 5.18: SST (◦C) on June 2, 2013 from a) model predictions and b) satellite data. c)
Linear fit between predictions and satellite data (y = 0.62x+ 5.40) and d) difference between
measured and predicted SST (◦C). Results from statistical analysis are also shown.

satellite SST. For January 3, both simulated and observed SST patterns equally reflect

the main features of the water temperature field, namely the meridional gradient of

temperature, characterized by high temperatures at the south decreasing northward.

Also, both model predictions and data show lower water temperatures (14 ◦C) near

coast than offshore. Moreover, surface water temperatures (Figures 5.17a and b) reveal

evidence of a filament of warmer water than surrounding coastal and oceanic waters

turning east of Cape Finisterre, which is associated to the IPC that usually arrives to

the IP north coast at the beginning of winter (Garcia-Soto et al., 2002; Peliz et al.,

2005; deCastro et al., 2011) and is usually sharper during January.

Difference between satellite and predicted SST were computed for the whole study
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area, being the highest differences found at northern coastal segment, however never

exceeding 1.5 ◦C (Figure 5.17d). Statistical parameters (Figure 5.17c) show a BIAS

of 0.012 ◦C between two winter maps, suggesting that model predictions tend to

overestimate the satellite SST. Regarding the SST average for all domain, a difference

between MOHID and MODIS of 0.17 ◦C was found. Also a RMSE of 0.417 ◦C was

found between predicted and satellite SST as well as a correlation coefficient of 0.878

(Figure 5.17c), revealing that predicted and satellite data are strongly correlated.

For June 2 (Figure 5.18a and b) predicted and measured SST also show a meridional

gradient (warming southward). Moreover, the common wind induced upwelling

phenomenon can be identified in both model predictions and satellite imagery, through

the cold water mass (13− 14 ◦C) along the western coast of IP.

As in winter maps (Figure 5.17), the highest differences were found at northern

coastal segment, however never exceeding 1.5 ◦C (Figure 5.17d). In this case, from

statistics (Figure 5.18c), model predictions are in general lower than satellite data,

being BIAS equal to −0.004 ◦C and RMSE to 0.406 ◦C. Indeed, the average SST for

all the domain is higher 0.055 ◦C for MODIS sensor than for MOHID. A correlation

coefficient of 0.601 ◦C was found revealing a strong correlation between predicted and

satellite data. These results are similar to those obtained by Mateus et al. (2012a) for

2011, revealing that model adequately reproduces SST patterns for the study region.

Regarding Chl-a concentration, on January 3, both satellite and predictions show

a coastal fringe of high values, with the maximum found at western coastal segment

(Figure 5.19). Generally, a good agreement between predicted and measured Chl-a

concentration is found, however some differences were observed, with the highest near

the coastal region (Figure 5.19d). Indeed, between Mondego and Douro Rivers, the

predicted band of high Chl-a is larger than the observed. Otherwise, near Minho River,

Rias Baixas and Cape Peñas, predicted Chl-a concentration is lower than observed.

Actually, several works have reported that an overestimation of Chl-a concentration is

often observed when using MODIS sensor in coastal waters (Werdell, 2009; Darecki and

Stramski, 2004; Oliveira et al., 2007; Sá et al., 2008). In the outer shelf no significant

differences were found between model predictions and satellite data (lower than 0.5 mg

m-3). A BIAS of −0.047 mg m-3, a RMSE of 0.365 mg m-3 and a correlation coefficient

of 0.812 (Figure 5.19c), reflect the model ability to reproduce Chl-a concentration in
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Figure 5.19: Chl-a concentration (mg m-3) on January 3, 2013 from a) model predictions and
b) satellite data. c) Linear fit between predictions and satellite data (y = 0.81x+ 0.13) and
d) difference between measured and predicted Chl-a concentration (mg m-3). Results from
statistical analysis are also shown.

winter along the northwestern coast of IP. In addition, the average Chl-a concentration

for all domain is slightly higher (0.026 mg m-3) for MOHID than for MODIS sensor,

revealing a good agreement between predictions and observations.

For summer (Figure 5.20), differences between predicted and measured Chl-a

concentrations are higher than for winter, however the main spatial patterns are well

represented, mainly near coastal areas. Indeed, for both predicted and observed Chl-

a concentrations, high values were identified upstream Mondego River and near Rias

Baixas, as result of upwelling favourable winds, with the predictions underestimating

satellite data. Near Minho River and Cape Finisterre, low Chl-a concentrations (lower
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Figure 5.20: Chl-a concentration (mg m-3) on July 11, 2014 from a) model predictions and
b) satellite data. c) Linear fit between predictions and satellite data (y = 0.53x+ 1.13) and
d) difference between measured and predicted Chl-a concentration (mg m-3). Results from
statistical analysis are also shown.

than 1 mg m-3) are observed for both satellite data and predictions.

Outer shelf waters are usually less productive than coastal waters, which can be

observed in both predicted and satellite maps (Figure 5.20). However, at western

coastal segment, the predicted Chl-a concentration is higher than the measured by

the satellite (Figure 5.20). Statistical results show that the mean difference between

predictions and satellite data is 1.6 mg m-3, with a RMSE of approximately 1.0 mg m-3

(Figure 5.20c). The correlation between predicted and measured Chl-a concentration

is lower (0.60) than for winter, which may be due to differences observed in outer

shelf waters, however predictions and observations still strong correlated. At northern
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coastal segment no significant differences were found, however model predictions reveal

an overestimation of data.

5.10 Conclusions

The present chapter aimed to present the implementation and validation of the

coupled circulation and biogeochemical model for the northwestern coast of IP, which

was successfully achieved. Results indicate the following:

• A good agreement between predicted and synthesized SSE for the three

stations analysed was attained, revealing that model accurately reproduces tidal

components;

• Predicted water temperature, salinity, current velocity and Chl-a concentration

were also validated near the coast, using data of five buoys. Results suggest a

good agreement between predictions and observations. For water temperature,

the highest errors were found during summer, while for salinity they occur during

winter, due to the rivers impact in the coast. Observed Chl-a concentration show

a good agreement with the predicted and therefore reveals model accuracy;

• Vertical profiles show a good agreement between data and predicted water

temperature, salinity and oxygen, revealing the model’s accuracy to reproduce the

upper layer thermodynamics and vertical stratification, as well as the distribution

of oxygen in water column;

• Deep current velocity was also validated through trajectories of Argo # 1 during

the drift phase, at 1000 m depth. Results suggest that model accurately reproduce

the float trajectory during the selected months, despite some uncertainties in

determining float initial position. A mean difference of approximately 6 km was

found between Argo and lagrangian tracers final positions;

• Remote sensing images also show that model reproduces the main features of SST

and Chl-a concentration in the region under study, however some differences were

found, mainly for Chl-a during summer. Indeed, biogeochemical properties are

very difficult to reproduce, once they are controlled by the interactions between

several physical, chemical and biological factors.
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In summary, the accuracy of MOHID to reproduce physical and biogeochemical

properties in the study region was satisfactorily demonstrated. The model is able

to reproduce the main features of the water column as well as the surface patterns.

However, model presented some limitations that should be taken into account for future

applications, namely the overestimation of Chl-a concentration in the outer shelf of

western coastal segment of IP. To overcome this issues, the implementation of a third

domain with higher resolution should be tested, however the computational effort will

increase significantly. Also, initial and boundary conditions with higher resolution may

improve model predictions and surpass the issues pointed out in this chapter.

Notwithstanding, in next chapter this configuration will be used to study physical

and biological features of the study area during two summer upwelling events.
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Chapter 6

Phytoplankton generation under

coastal upwelling: a modelling

study

6.1 Introduction

At mid-latitudes, the phytoplankton development is strongly controlled by the

circulation in the upper layers of the ocean waters (Fraga, 1981) and is both light

and nutrients limited (Levy et al., 2005; Oliveira et al., 2009).

Coastal upwelling plays an important role in phytoplankton distribution over the

world ocean, being substantially researched. Some of this research includes the use

of physical-biological coupled models, which are valuable tools for the understanding

of physical and biogeochemical processes in coastal upwelling regions at seasonal

and event time scales. In recent years, a strong effort has been performed to

implement biophysical models along the Iberian margin, from which resulted several

studies: Marta-Almeida et al. (2012), Mateus et al. (2012a) and Reboreda et al.

(2014, 2015). These studies revealed the numerical models relevance in reproducing

the main circulation and biological features of the study region, highlighting the

importance of operational systems in providing biological variables for research or

coastal management. Focused in Galician coast (between Cape Finisterre and Cape

Ortegal), Rocha et al. (2013) analysed the Chl-a concentration response to an extreme

upwelling event of September 2007. Authors highlighted the importance of ocean
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circulation in the Chl-a distribution and an inverse relation with SST.

In this chapter, the physical-biological coupled model implemented and validated in

the previous chapter is used aiming to establish the link between circulation, SST and

phytoplankton generation during two summer upwelling events. Through the analysis

of wind velocities and SST imagery a strong upwelling event was identified, between

8 and 18 of July 2014. A weaker event was found between 9 and 17 of August 2013

and used for comparison purposes, in order to infer about implications of upwelling

intensity on Chl-a patterns.

6.2 Model and methods

In order to identify a strong upwelling event (with the N-S wind component higher

than 5 m s-1), two years (2013 and 2014) of WRF wind velocity data provided by

MeteoGalicia and remote sensed SST imagery from MODIS sensor were analysed along

the study area. Strong favourable upwelling winds were found from 8 to 18 July 2014

at western and intermediate coastal segments. The same databases were analysed

to identify a weaker upwelling event to further infer about the influence of upwelling

intensity on the circulation, SST and Chl-a patterns. Weaker upwelling favourable

winds were found between 9 and 17 of August 2013.

Therefore, in order to assess the phytoplankton patterns in northwestern IP waters

under these upwelling events, two simulations were performed, one for July 2014 and

other for August 2013, keeping all the setups described in previous chapter and applying

the circulation, biogeochemical and lagrangian models. Physical and biogeochemical

variables were validated in previous chapter with satisfactory results. The Lagrangian

model used herein was also previously validated (Chapter 5), through the analysis of

Argo buoys trajectory during their drift phase, with satisfactory results.

The wind time evolution during both simulations periods was analysed at the

stars represented in Figure 6.1, which locations are representative of the three coastal

segments. Also, N-S wind component inside boxes C, E and F for July 2014 event

will be analysed in the frame of results discussion, to understand the wind spatial

variability.

After, 8 days average and standard deviation of predicted SST, Chl-a concentration
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Figure 6.1: Bathymetry of the study area, with the black line representing the 200 m isobath.
The boxes (A, B, C, D, E and F) identify the areas where particles were released. The stars
marks the location of WRF wind at each coastal segment, squares the location of the time
series analysed (X, Y and W) and I and II the zonal sections.

and mean current velocity were analysed for the periods identified (8 to 18 July, 2014

and 9 to 17 August, 2013), in order to study the response of the coastal ocean upper

layer along all study region to upwelling favourable winds.

Daily average SST, Chl-a, nitrate and oxygen surface fields were computed and

analysed during July 2014 event for days 8, 10, 14, 16 and 18. Based on these results,

times series of these variables were also analysed at points X, Y and W (Figure 6.1),

located at the western coastal segment, between 8 and 18 of July. Vertical variability

of SST, Chl-a, oxygen and nutrients was analysed at three points at western coastal

segment (X, Y and W), one at intermediate (L) and one at northern (K), for the period

between 7 to 18 July, 2014 (Figure 6.1). Since all properties exhibit fluctuations at

tidal frequencies, these were removed by using a 33 hours low-pass filter (Sousa et al.,

2014b), for both, time series and vertical analysis.

Finally, was performed a comparison between both events previously identified

(July 2014 and August 2013) through the analysis of SST, Chl-a and currents at two

strategically located cross-sections (sections I and II of Figure 6.1). This analysis was

performed for three different instants: onset of upwelling (August 9 and July 8), peak
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of N-S wind component (August 13 and July 10) and beginning of relaxation period

(August 16 and July 16).

To provide insight on possible pathways of phytoplankton along the study area

during both upwelling events, a particle tracking model was used coupled to the

circulation model. Several particles were released inside the regions delimited by the

boxes depicted in Figure 6.1, in order to simulate phytoplankton trajectories, since they

are aquatic drifting organisms (Chen et al., 2015). Particles were released continuously

at surface during the onset of each upwelling event (July 8/August 9) every half-hour,

during two days. Particles location was analysed 48, 96 and 132 hours after release.

6.3 Results and discussion

6.3.1 Events characterization

In this section wind velocity for both upwelling events previously defined (July

2014 and August 2013) is analysed at the three stars represented in Figure 6.1. Spatio-

temporal variability of SST and Chl-a concentration along the entire study area is also

analysed in order to evaluate the response of coastal ocean upper layers to different

wind intensity.

6.3.1.1 Wind evolution

From 8 to 18 July a complete cycle of intensification and relaxation of upwelling

favourable winds (with a northerly component) occurred along western coastal segment

of the IP (Figure 6.2a). This was considered a strong upwelling event once N-S wind

component is higher than 5 m s-1 for a 8 day period (Figure 6.2, grey area). This

value was considered according to Oliveira et al. (2009), that studied the Chl-a and

SST patterns during an upwelling event off central Portugal (southern region of the

study area, between 38 and 40◦N) and to Rocha et al. (2013) that studied a strong

upwelling event at Galician coast. Peak velocities (N-S wind component) were achieved

on July 10, exceeding 13 m s-1, starting to relax after July 16. At July 18, the N-S

wind component reverses, reaching the maximum (8 m s-1) at July 19. It is noteworthy

the existence of strong upwelling favourable winds before this event, on July 3 (with a

N-S component of approximately 12.5 m s-1) and at the end of June (not shown here).
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Figure 6.2: Wind regime for July 2014, from WRF model at a) western (42◦N, 10.5◦W),
b) intermediate (44◦N, 9.3◦W) and c) northern (44◦N, 7◦W) coastal segments (red stars
in Figure 6.1). Red lines represents the a) and b) N-S wind component and c) W-E wind
component at each coastal segment. Grey area indicates the period when the N-S wind
component was higher than 5 m s-1 (July 8 – 17) at the western coastal segment.

At intermediate coastal segment, wind patterns are very similar to those observed

at western coast, however with lower intensity (Figure 6.2b). N-S wind component

peak velocities also occurred at July 10, exceeding 7 m s-1. On July 12, a decrease of

approximately 4 m s-1 in the N-S wind component is observed.

At northern coastal segment, during this period, winds are weaker than at

western and intermediate segments, and upwelling favourable winds (with a easterly

component) occur from July 9 to 11 and between July 15 and 17 (Figure 6.2b). In this

case peak velocities (W-E wind component) occurred at July 16, exceeding 5 m s-1.

For August 2013, wind patterns are depicted in Figure 6.3 for the three coastal

segments. At western coastal segment peak velocities (N-S wind component) were
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Figure 6.3: Wind regime for August 2013, from WRF model at a) western (42◦N, 10.5◦W),
b) intermediate (44◦N, 9.3◦W) and c) northern (44◦N, 7◦W)coastal segments (red stars in
Figure 6.1). Red lines represents the a) and b) N-S wind component and c) W-E wind
component at each coastal segment. Grey area indicates the period where the average and
standard deviation of Chl-a and SST where computed (August 9-17).

achieved on August 13, while at intermediate segment were found one day later, with

values of 7 m s-1 (Figure 6.3a and b, respectively). At northern coastal segment

favourable upwelling winds also occur, with the W-E component reaching 5 m s-1

on August 15 (Figure 6.3b).

Comparing the wind pattern that occurred for both events, two main differences are

visible along western and intermediate coastal segments (Figure 6.3a and b): intensity

of northerly winds is stronger in July 2014 event; wind pattern of the preceding period.

For July 2014, the preceding days were characterized by short periods (2− 3 days) of

strong northerly winds, with N-S wind component reaching 10 m s-1, alternated with

even shorter periods (1 day) of southerly winds. Otherwise, for August 2013 event,
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preceding days were characterized by strong southerly alternated with weak northerly

winds. For northern coastal segment, upwelling favourable winds (easterly winds) are

more intense and persistent for August 2013 than for July 2014.

6.3.1.2 Spatio-temporal variability patterns

Predicted SST and Chl-a concentration time averaged (8 days) and the

corresponding standard deviation were computed for the entire study region and

depicted in Figures 6.4 and 6.5, for July 2014 and August 2013 events, respectively.

Generally, for July 2014 event mean SST field, for western coastal segment, shows

a typical coastal upwelling pattern, with a band of cold surface water near the coast.

This pattern is stronger in the northern region (between Douro and Cape Finisterre),

Figure 6.4: Average (left) and standard deviation (SD) (right) of SST (a and b) and Chl-a
concentration (c and d), for the 8 days of intense northerly winds (July 8-16, 2014). Vectors
on SDSST standard deviation map are the 8 days average of the upper layer current velocity.
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reaching water temperatures close to 14◦C in front of Minho river mouth and 15.5◦C in

Cape Finisterre, while offshore waters temperature is approximately 19◦C. This pattern

is also clearly marked in the standard deviation field (Figure 6.4b), showing high

values in these regions (1◦C at Cape Finisterre and 1.5◦C at Minho). This feature is

common in other upwelling regions, such as the Benguela upwelling system (Hardman-

Mountford et al., 2003; Demarcq et al., 2007), being these regions often designated

upwelling cells. Therefore, from now on, the regions with the referred high standard

deviation will be designated Cape Finisterre and Minho upwelling cells (CFUC and

MUC), due to its proximity with Cape Finisterre and Minho River, respectively.

Surface Chl-a concentration field provides an informative view of the ecosystem

response to surface enrichment resulting from coastal upwelling. A preliminary visual

Figure 6.5: Average (left) and standard deviation (right) of SST (a and b) and Chl-a
concentration (c and d), for the 8 days of intense northerly winds (August 9-16, 2013).
Vectors on SST standard deviation map are the 8 days average of the upper layer current
velocity.
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analysis reveals an inverse relationship between SST and Chl-a concentration, with high

concentrations near western (more than 3 mg m-3) and intermediate (approximately

2.5 mg m-3) coastal segments. A deeper analysis at the center of the CFUC and MUC

shows very low values of Chl-a concentration, with mean values of approximately 0.5

mg m-3, while surrounding waters present concentrations higher than 3 mg m-3. This

feature is also marked in the standard deviation field, with a deviation of 0.6 mg m-3

relative to mean values. Also, a strong standard deviation of approximately 1 mg m-3

was detected off Rias Baixas.

In a study that characterizes SST and Chl-a patterns during an upwelling event

in a southward region (Oliveira et al., 2009), it was found that upwelling is less

intense/persistent in southern regions, however mean Chl-a concentration is similar.

At western coastal segment, average surface current shows an important

southwestward component, usually associated with upwelling events (Otero et al.,

2008), which is more intense near CFUC and MUC, while at intermediate segment

the current is weak and directed westward.

Along the northern coastal segment the mean SST shows a longitudinal gradient,

characterized by water temperatures of 19◦C at 6◦W, decreasing to 18◦C westward.

Also, from the mean temperature field, no evidence of upwelled water in the northern

coastal segment was found. Indeed, the W-E wind component at this coastal segment

(Figure 6.2b) during this period is not intense (lower than 2.5 m s-1), neither persistent

(2 days). Chl-a concentrations are between 1 and 1.5 mg m-3, however with a low

standard deviation, meaning that these values are close to the region average. Here

the surface current is weak and directed westward.

For August 2013 event, the average and standard deviation SST and Chl-a

concentration were computed between 9 and 17 August and are represented in Figure

6.5. Comparing SST fields for both events (Figures 6.4 and 6.5), no significant

differences are observed. The average SST between 9 and 17 August of 2013 also

shows a typical coastal upwelling pattern at three coastal segments. At western coastal

segment this signature is also stronger in CFUC and MUC, suggesting that northerly

winds are stronger here. The standard deviation is high in all the coastal area under

analysis (higher than 0.5◦C), being strongest northward Cape Finisterre (1.5◦C). Mean

surface current is also directed westward, with the highest currents found at the Cape
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Finisterre adjacent region, however, weaker when compared to July 2014 event.

The main differences between these two upwelling events are observed in Chl-a

concentration patterns. Indeed, for August 2013 event, Chl-a distribution shows an

inverse relation with SST for the 8 days of upwelling favourable winds. Chl-a levels

are strongest between Douro and Minho Rivers (higher than 4 mg m-3) and near

Cape Finisterre (2 mg m-3), the regions of intense upwelling conditions (Figure 6.5),

conversely to the observed in July 2014 event, when a decay of Chl-a concentration

was observed. Also Chl-a concentration standard deviation is higher off Rias Baixas,

between Minho and Douro Rivers (higher than 1 mg m-3) and in Cape Finisterre (higher

than 0.5 mg m-3). It is also noteworthy a southwestward displacement of the rich Chl-a

surface water from Cape Finisterre region (Figure 6.5), during August 2013 event.

6.3.2 Surface time evolution: July 2014 event

As previously referred, daily average of SST, Chl-a, oxygen and nitrate

concentrations are analysed at coastal ocean surface layer for July 2014 event during

five days, between the onset (July 8) and cessation (July 18) of upwelling. Also, time

series of these properties are analysed at points X, Y and W of Figure 6.1.

6.3.2.1 Spatial variability

Time evolution of daily averaged predictions of SST, Chl-a, oxygen and nitrate

concentration, throughout July 2014 upwelling event, is presented in Figures 6.6 and

6.7, for the entire study region.

At the beginning of upwelling event (July 8 - Figure 6.6a), surface ocean at western

coastal segment is characterized by high temperatures (19◦C), with exception between

Douro and Minho Rivers where a band of cold water (17◦C) is detected. This pattern

is generated by the northerlies (upwelling favourable) observed at July 3 (before the

event, Figure 6.2), which induced the rise of cold water. The western coastal segment is

also characterized by high oxygen levels (between 8.2 and 8.8 mg l-1), with the highest

values found in the coastal fringe coincident with the location of low temperature band

(Figure 6.7a).

At intermediate coastal segment, SST is lower than at the western, presenting

values of approximately 17◦C and an average oxygen concentration of 8.2 mg l-1.
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Regarding the Chl-a distribution (Figure 6.6f), concentrations between 2 and 3 mg

m-3 are observed near the coastal region at both western and intermediate segments,

with current directed southward and southwestward, respectively.

Northern coastal segment is characterized by SST higher than 18◦C at the longitude

of 6◦W, decreasing westward. This region is the least productive, with Chl-a

concentrations lower than 1 mg m-3 and oxygen levels lower than 8 mg l-1. The average

nitrate concentration is low (less than 0.5 mg l-1) in the whole study region (three

coastal segments) for July 8 (Figure 6.7f).

As N-S wind component increases, near coast SST decreases and the equatorward

flow is intensified (see Figures 6.6b, c and d), at western and intermediate coastal

segments. The intensity of the coastal cooling is not homogeneous, but is reinforced

in some locations where the vertical surface flux is stronger. Indeed, northerly winds

lead to a decrease of more than 3◦C in the adjacent region of Cape Finisterre and near

Minho River, while south of Douro River only a decrease of approximately 1.5◦C is

observed. N-S wind component is stronger at northern regions (at boxes C and E of

Figure 6.1) than at southern (box F of Figure 6.1) between days 8 and 11 (Figure 6.8),

which is in accordance with Nelson and Hutchings (1983) statement that suggests that

upwelling occurs preferentially where the continental shelf is narrowest and off salient

capes.

During northerlies intensification period an increase of Chl-a and oxygen

concentrations is observed at western and intermediate coastal segments, reaching

values of 5 mg m-3 and 8.8 mg l-1, respectively. However, near CFUC and MUC,

Figure 6.8: N-S wind component (m s-1), at the boxes C, E and F represented in Figure 6.1.
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where upwelling is stronger, an unexpected decrease of Chl-a and oxygen concentrations

is observed along with an increase in nitrate concentration (Figure 6.7g, h and i).

Upwelled waters have high nutrient concentrations as result of organic matter sinking

from the sunlit layers into the deep ocean, where cells are decomposed by bacteria. This

process enriches deep waters with nutrients that are transported to surface during

upwelling events and are therefore available for photosynthesis. This nutrient rich

upwelled waters become progressively richer in Chl-a when nutrients are consumed.

However, in CFUC and MUC, the Chl-a concentration decreases and nutrients are

not being consumed. This result can be explained by the low residence time of water

masses in the euphotic layer, which is to short to allow significant multiplication of

phytoplankton. Further offshore, where residence time at surface becomes higher,

photosynthesis takes place (dissolved oxygen is produced) and therefore Chl-a (Figure

6.6g, h and i) and oxygen concentrations increase (Figure 6.7b, c and d). This situation

is a common feature in Benguela upwelling system, where at least two of the existing

upwelling cells in the region experiences a decay in Chl-a concentration due to strong

surface flux (Hardman-Mountford et al., 2003; Demarcq et al., 2007).

At western coastal segment, six days after peak wind intensity, just before N-S wind

component relaxation (lower than 5 m s-1) (Figure 6.2a), Chl-a concentration is slightly

higher (reaching 4 mg m-3 between Douro and Mondego Rivers) than during the days

before and more confined to coast, as result of weakening of upwelling equatorward jet

(Figure 6.6i). At July 18, two days after the relaxation phase and under calm wind

conditions (close to 0 m s-1), there is a general SST increase of approximately 1◦C

and the thermal gradient between coastal and offshore waters is smoother. At this

time, surface Chl-a levels are further higher (between 4 and 5 mg m-3) than during the

preceding days and Chl-a and oxygen concentrations at CFUC and MUC increase

(Figure 6.6j). Indeed, the available nutrients are being consumed by the existing

phytoplankton (Figure 6.7j), and therefore nitrate concentration decrease to 0.1 mg

l-1.

The conditions at northern coastal segment are different than those observed at

western and intermediate coasts. Indeed, a general increase of SST is observed over

time, reaching values of 19◦C on July 18. Here the current velocity is weak (less than

0.1 m s-1) and directed westward, reaching a maximum of 0.2 m s-1 on July 16. The
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northern coastal segment is characterized by low Chl-a (less than 1 mg m-3), nutrients

(less than 0.5 mg l-1) and oxygen concentrations (7.8 mg l-1).

6.3.2.2 Temporal variability

In order to better understand the variability of Chl-a, SST and nutrients in the

upwelling cells by comparison with other regions, time series of these variables (Figure

6.9) were analysed, between 8 and 18 July, in three regions: in CFUC and MUC (points

X and Y of Figure 6.1, respectively) and in point W of Figure 6.1. Tidal frequencies

of these properties were removed by using a 33 hours low-pass filter.

As previously referred, the SST decay during the intensification of northerly winds

was more significant in MUC (point Y), where it decreases approximately 3.5◦C

(Figure 6.9). For CFUC (point X) the decrease is 1.5◦C and at point W is only

1◦C. The biological response to the rise of cold water from lower levels is different

at upwelling cells and at point W. In CFUC and MUC, Chl-a concentration slightly

increases (approximately 0.6 mg m-3) from 8 to 9 July, decreasing then to very low

values (1.7 and 0.6 mg m-3 at CFUC and MUC, respectively). At this time, nitrate

concentration increases, as result of deep, nutrient-rich waters rise. In summary, in

the upwelling cells wind stress promotes the offshore spreading of upwelled waters,

yielding unfavourable conditions for phytoplankton growth, despite the high level of

nutrient enrichment. This confirms the results found by Hardman-Mountford et al.

(2003), which established that the major upwelling cells occur over narrow shelf areas

Figure 6.9: Time evolution of the water temperature (◦C), Chl-a (mg m-3) and nitrate (mg
l-1) concentrations for the squares X (left panel), Y (middle panel) and W (right panel).
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leading to greater offshore losses. Conversely, at point W, the decrease of SST results

in nitrate and Chl-a concentrations increase, reaching 0.03 mg l-1 and 3.5 mg m-3,

respectively. After the wind relaxation period (July 16), SST starts to rise and nitrate

concentrations drop to very low values (0, 0.1 and 0.01 mg l-1 at X, Y and W points,

respectively).

6.3.3 Vertical time evolution: July 2014 event

Temporal evolution of SST, Chl-a, oxygen and nitrate concentrations was also

analysed between 7 and 19 July, along water column for X, Y, W, L and K points,

being results depicted in Figures 6.10 to 6.14. Tidal frequencies of each property were

also removed by using a 33 hours low-pass filter.

Regarding Figure 6.10, which is representative of CFUC (Point X) conditions, at

July 8, the first 9 m of the water column (named mixed layer or epipelagic zone)

are characterized by water temperature of 16.5◦C, Chl-a concentration of 2.2 mg m-3

and very low nitrate concentrations (0.01 mg l-1). Here the oxygen concentration is

approximately 8.2 mg l-1 and a sub-superficial maximum (8.4 mg l-1) is observed at 17

m depth (Figure 6.10e and f), which is associated to the presence of the well oxygenated

ENACW in the thermocline (Castro et al., 2000). At the surface, the N-S component

of the current velocity is directed southward with an intensity of 0.2 m s-1, reaching

a maximum of more than 0.3 m s-1 at July 10 (peak of N-S wind component). Along

water column, vertical current velocity is approximately 0.006 cm s-1. All the properties

decrease with depth, except nitrate concentration that increases to values higher than

0.2 mg l-1, as result of organic matter sink into deep waters. The mixed layer water

temperature decreases over time, reaching a minimum of 14.5◦C at July 12, when its

depth is 8 m. Unexpectedly, surface Chl-a concentration decreases to 0.8 mg m-3 and

nitrate concentrations increase to 0.2 mg l-1. At July 15, an increase in surface water

temperature (to 16◦C) and Chl-a concentration (to 1.8 mg m-3) is observed, which is

related to N-S wind component relaxation that occurs in the preceding days (Figure

6.8). At the end of the event (July 17), N-S component of the current velocity at

surface decreases to 0.1 m s-1 and a poleward flow develops in deep layers (−0.1 m s-1).

Surface waters downwelling is observed, with a vertical current velocity of −0.005 cm

s-1 (Figure 6.10d) and therefore nutrients depletion occur at surface. An increase in
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surface water temperature (17◦C), Chl-a (more than 2 mg m-3) and oxygen (8.2 mg

l-1) concentrations are observed after July 18.

For MUC (point Y, Figure 6.11), at onset of the upwelling event (July 8), water

temperature is approximately 18◦C at the epipelagic zone, which has 18 m depth,

where a sub-superficial maximum of Chl-a (1.8 mg m-3) and oxygen (8.75 mg l-1)

concentrations occur (Figure 6.11e, f, g and h). These sub-superficial Chl-a and oxygen

maxima are due to nitrate concentration increase at 18 m depth (Figure 6.11g and h).

Here, the current velocity is directed southward along the water column, being stronger

at the upper layers (0.2 m s-1), due to wind stress. As deep water rises (0.005 cm s-1),

as response to northerly winds, water temperature decreases more than 2◦C and the

depth of the epipelagic zone gradually decreases, reaching 16 m on July 10. At this

time nitrate concentration increases along water column, reaching 0.1 mg l-1 at surface.

As consequence, in the epipelagic zone Chl-a and oxygen concentrations also increase

to 2 mg m-3 and 8.5 mg l-1, respectively. However, at thermocline, Chl-a and oxygen

concentrations decrease to values lower than those found in previous instants, which is

due to high concentrations in the upper levels that not allow the penetration of light

at this depth.

Until July 14, water temperature, Chl-a, oxygen and nitrate vertical gradients

decrease (Figure 6.11a, e and g). At the epipelagic zone water temperature reaches a

minimum of 14.5◦C and nitrate reaches a maximum of 0.2 mg l-1 on July 13 (Figure

6.11a, b, e and f). As in CFUC, Chl-a and oxygen concentrations gradually decrease,

which can be explained by the residence time, which is insufficient for phytoplankton to

complete nutrient uptake and carry out photosynthesis. At the end of the event (from

July 17) water temperature increases and N-S component of current velocity attenuates

on the upper layers (to −0.1 m s-1), reversing in deeper layers and therefore resulting

in an increase of ocean stratification, which is accompanied by the shallowing of the

epipelagic zone. Chl-a and oxygen maxima are now observed, reaching concentrations

of 3 mg m-3 and 8.5 mg l-1, respectively.

Regarding the southern part of the study area (point W), the decrease of water

temperature with the intensification of northerly winds is less accentuated (1◦C) than

for CFUC and MUC and therefore the Chl-a concentration patterns are different.

At beginning of the upwelling event, N-S component of current velocity has a
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similar distribution to previous points analysed along time and water column, flowing

southward with an intensity of 0.2 m s-1 in the upper and 0.1 m s-1 in deeper layers

(Figure 6.12b). The epipelagic zone in this area is approximately 10 m deep and slightly

decreases over time (Figure 6.12a). At July 8, oxygen concentration is approximately

8.1 mg l-1 in epipelagic zone and increases along water column, reaching a maximum

of 8.8 mg l-1 at 19 m depth. Chl-a concentration is almost homogeneous along water

column, with an average value of 1.7 mg m-3 (Figure 6.12c and d). Deep waters start to

rise at July 10 with a vertical velocity of 0.001 cm s-1, which is weaker than for CFUC

and MUC. Conversely to upwelling cells, Chl-a concentration increases over time on

the epipelagic zone, reaching values higher than 4 mg m-3 at the end of the upwelling

event. Chl-a concentration becomes much lower at deep layers than at epipelagic

zone, which can be explained by thermal stratification that helps phytoplankton to

stay in the well-lit mixed layer zone and therefore supports primary production.

Otherwise, once the surface layers are well mixed, light is not able to penetrate in deeper

waters (thermocline) and a decrease of Chl-a concentration is observed. However,

because mixed layer is difficult to mix deeply, it becomes depleted in nutrients (Figure

6.12h). In summary, results show a clear relation between thermal stratification and

nutrient availability, highlighting the importance of ocean physical structure in primary

production patterns.

Regarding point L, representative of intermediate coastal segment, the mixed

layer on July 8, which has 10 m depth, is characterized by water temperature of

approximately 17◦C and Chl-a concentration of 1.7 mg m-3 (Figure 6.13a, b, c and

d). At this time vertical current is approximately 0.005 cm s-1, bringing the nutrients

from deep layers to surface, where they are consumed by phytoplankton organisms and

therefore producing oxygen. Also, a sub-superficial oxygen maximum (8.5 mg l-1) is

observed at beginning of the event, being transported towards surface over time (Figure

6.13f). An equatorward flow is observed, with an intensity of approximately 0.05 m

s-1. Over time, mixed layer depth decreases reaching a minimum of 2.5 m on July 14,

and Chl-a concentration increases to 2 mg m-3.

At northern coastal segment (point K), the epipelagic zone has a constant depth of

approximately 20 m during all period analysed (Figure 6.14a and b), characterized by

high water temperature (between 18 and 19◦C). This high SST causes a stable water-
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column, resulting in stratification that might limit nutrient injection into the euphotic

zone, as observed through Figure 6.14g and h, and therefore primary production

observed herein is weaker than at western coastal segment. Indeed, in upper layers,

Chl-a concentration is approximately 1.2 mg m-3 on July 8 decreasing to values lower

than 1 mg m-3 on July 18. A positive vertical flow is observed (0.003 cm s-1) on July

9, as result of easterly winds observed in the region (Figure 6.2c), however not strong

enough to reduce the mixed layer depth and provide nutrients for photosynthesis.

Nutrients that eventually reach surface are consumed by the existent phytoplankton

(Figure 6.14d).

Here, the general surface circulation flows eastward, however in summer change to

westward following the wind forcing (Lav́ın et al., 2006). Indeed, during the period

of easterly winds (between July 8 and 12 and July 15 and 17) along shore current

velocity is directed westward (0.1 m s-1), while during westerly winds (between 12 and

15) current velocity is directed eastward (0.05 m s-1) (Figure 6.14b).

Regarding oxygen distribution along water column, low concentrations are detected

at surface (7.7 mg l-1), while a maximum (8.5 mg l-1) is observed in the thermocline

during all the period under analysis. In fact, the study region has the particularity of

being well oxygenated due to the presence of ENACW in the main thermocline (Castro

et al., 2000; Reboreda et al., 2015). Therefore, once the water mass that upwells in

the northern coastal segment is the BBCW, a variety of subpolar ENACW (Tréguer

et al., 1979; Fraga et al., 1982; Botas et al., 1989), are expected high levels of oxygen

in thermocline, that do not reach the surface due to the low vertical current observed

during this event.

6.3.4 Comparison between July 2014 and August 2013 upwelling events

In order to better understand the origin of the decay of Chl-a levels in upwelling

cells, July 2014 was compared with August 2013 event, in which this decay does not

occur. As previously referred, the latter event is characterized by lighter winds than

July 2014 and although the generation of two upwelling cells (CFUC and MUC) is also

observed.
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6.3.4.1 Vertical structure of SST, Chl-a concentration and circulation patterns

Based on previous results, vertical structure of daily average SST and Chl-a

concentration along with zonal and meridional current velocities were analysed in two

sections (Figure 6.1): one located in front of Cape Finisterre (section I at 42◦54′N)

and other in front of Minho River (section II at 41◦52′N), for both upwelling events.

Results are presented in Figures 6.15 to 6.18, for three moments: onset of upwelling,

peak of N-S wind component and at beginning of wind relaxation.

Regarding Cape Finisterre section (section I), during onset of upwelling, vertical

temperature pattern is similar for both events (Figures 6.15a and 6.16a), with higher

temperatures at surface layers. However, for July 2014, a slightly water temperature

difference between coastal (17◦C) and offshore (17.5◦C) waters is noticeable, while for

August 2013 the zonal water temperature is almost uniform (18.5◦C in upper layer).

This is related with wind pattern of preceding days that were characterized by short

periods of strong northerly winds in 2014. Flow is directed westward at upper layers for

both situations, with an intensity of 0.05 m s-1 and eastward in depth. Chl-a patterns

are also similar, with higher concentrations near the coast than offshore, 1.5 mg m-3

for 2013 and more than 2 mg m-3 for 2014. N-S component of the current velocity

suggests that the flow is equatorward, with higher values on the surface (−0.2 m s-1

near coast and −0.1 m s-1 offshore). At deep levels a poleward slope-trapped flow is

found for both situations, however in 2014 event this flow almost reaches the surface

(Figures 6.15b and 6.16b). Oliveira et al. (2009) found similar Chl-a concentration,

water temperature and current patterns during the first days of an upwelling event off

central Portugal.

During peak of N-S wind component, for July 2014, the zonal thermal gradient is

clearly identifiable (Figure 6.16c), with a difference of approximately 2◦C. It is also

detected a surface core of Chl-a concentrations higher than 2 mg m-3 near 9.6◦W,

while near coast Chl-a concentration is low (less than 1 mg m-3). This is related with

strong southwestward flow (−0.2 m s-1), that promotes offshore transport of coastal

waters. For August 2013, this thermal gradient is also detected, however located

slightly westward, with the productive (2 mg m-3) water retained near the coastal area

by weak poleward flow (0.05 m s-1) visible in Figure 6.15. Indeed, poleward current
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Figure 6.15: Daily average vertical temperature (a, c and e) and Chl-a concentration (b, d
and f) along the zonal transect 42◦54′N (setion I at Figure 6.1), for 2013 upwelling event and
for three moments: onset of upwelling (August 9), peak of N-S wind component (August 13)
and at beginning of the relaxation period (August 16). Contours in a, c and e represents the
W-E component of current velocity and in b, d and f the N-S component.

would increase during the reinforcement of northerly winds (Pérez et al., 1995; Bode

et al., 2002) and according to Aŕıstegui et al. (2009), features such as poleward flows

could help to promote retention over the shelf, spreading phytoplankton rich waters in

alongshore direction.

Finally, at beginning of relaxation phase (Figures 6.15e, f and 6.16e, f), vertical

water temperature patterns are similar to previous instant analysed and between both

events. A weakening of near surface westward flow is observed and, for August 2013

case, near the coastal region, this flow extends up to 50 m depth, while for 2014 it

is confined to surface layer. The core of high Chl-a concentration detected before is

stronger now and slightly dispersed westward. Moreover, poleward (equatorward) flow

is intensified (weakened) for August 2013 (July 2014) event. Indeed, when upwelling
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Figure 6.16: Daily average vertical temperature (a, c and e) and Chl-a concentration (b, d
and f) along the zonal transect 42◦54′N (section I at Figure 6.1), for 2014 upwelling event
and for three moments: onset of upwelling (July 8), peak of N-S wind component (July 10)
and at beginning of the relaxation period (July 16). Contours in a, c and e represents the
W-E component of current velocity and in b, d and f the N-S component.

favourable wind relaxes, equartorward currents often weaken and then reverse to form

poleward currents (Otero et al., 2008; Shulman et al., 2010).

In summary, main differences between the two analysed situations are detected after

the establishment of upwelling and refers to N-S component of current velocity, and

therefore in the efficiency trapping of phytoplankton, which is high (low) when N-S

wind component is weak (strong). Results for the section near Minho River (section

II) confirms these assumptions (Figures 6.17 and 6.18).

At section II, a zonal water temperature difference of approximately 1◦C was found

at the onset of both events (Figures 6.17a and 6.18a). This difference is enhanced with

the intensification of northerly winds, reaching 2◦C for 2013 event and 3◦C in 2014, at

peak of N-S wind component. W-E component of the current velocity in upper layers
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Figure 6.17: Daily average vertical temperature (a, c and e) and Chl-a concentration (b, d
and f) along the zonal transect 41◦52′N (section II at Figure 6.1), for 2013 upwelling event
and for three moments: onset of upwelling (August 9), peak of N-S wind component (August
13) and at beginning of the relaxation period (August 16). Contours in a, c and e represents
the W-E component of current velocity and in b, d and f the N-S component.

is directed westward for both cases, with higher current for July 2014 event (higher

than −0.1 m s-1).

For 2013, a core of high Chl-a concentration (2.5 mg m-3 at August 9 and more

than 4 mg m-3 at August 16) is also found near the coast. A poleward flow, slightly

weaker than in section I, is observed (0.05 m s-1), promoting retention over the shelf.

For 2014 event, at the latitude of section II, wind relaxation phase occurs in July

14 (two days earlier than at section I), as depicted in Figure 6.8. Therefore, vertical

water temperature, Chl-a concentration and current velocities are represented for this

day instead July 16 (Figure 6.18). Here, a westward displacement of the high Chl-a

concentration core (3 mg m-3) is observed, being associated with the equatorward flow

observed along water column, which is stronger on surface layer (−0.2 m s-1) (Figures
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Figure 6.18: Daily average vertical temperature (a, c and e) and Chl-a concentration (b, d
and f) along the zonal transect at 41◦52′N (section II at Figure 6.1), for 2014 upwelling event
and for three moments: onset of upwelling (July), peak of N-S wind component (July 10)
and at beginning of the relaxation period (July 14). Contours in a, c and e represents the
W-E component of current velocity and in b, d and f the N-S component.

6.18d and f).

Therefore, when strong upwelling events occur (July 2014) circulation patterns,

namely the strong equatorward flow near coast, promote phytoplankton off shelf export

(Figure 6.19a). Thus, photosynthesis occur in outer shelf waters and therefore Chl-a

levels increase. Otherwise, for weak upwelling events (like August 2013) a poleward

flow develops near coastal region promoting the retention of phytoplankton near surface

layers. These conditions are outlined in Figure 6.19b.

6.3.4.2 Potential phytoplankton pathways

As previously referred a particle tracking model was used to analyse water parcel

trajectories for both events. Particles were continuously released at surface during
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Figure 6.19: Schematic cross-sections of the upwelling cells for a) a strong upwelling event
and b) a weak upwelling event.

upwelling onset and their location was analysed 48, 96 and 132 hours after release,

with results presented in Figure 6.20.

In general, results suggest that particles released at boxes B (located at intermediate

coastal segment), C and D (located at northern part of western coastal segment) tend

to be advected southwestward over time, for both upwelling events (Figure 6.20), due

to the contribution of wind intensity and direction, which is northeasterly. However,

it seems that for July 2014 event this advection occurs faster. Indeed, 48 hours after

release (Figure 6.20a and d), 91% of the particles released at box C crossed the 200

m isobath (limit of continental shelf (Patti et al., 2008)), whereas for 2013 event only

78% of the particles crossed this isobath. 96 hours after release, all particles have

already passed the 200 m isobath, for both cases, however for 2014 event, particles are

more dispersed than in 2013. The difference between both events is higher for particles

released at box D. For the 2014 event, the percentage of particles that have crossed

the 200 m isobath, 48 hours after release, is 36.5%, while for 2013 event is only 9%

(Figure 6.20a and d). 96 hours after (Figure 6.20b and e) the percentage increases to

95% (84%) for 2014 (2013) event.

Regarding particles with origin at box B, 48 hours after release, all particles remain

near the coast for both events, however, 96 hours after, 13%(22%) of the particles, for

2013 (2014) event, were advected to western coastal segment and have crossed the 200

m isobath (Figure 6.20b(e)).

132 hours later, particles with origin at boxes B, C and D remained between 10 and

11◦W, however due to stronger current velocities observed during July 2014, particles

are spread from 40◦N to 42.5◦N, while for August 2013, the majority of particles are

accumulated off Douro River (in the outer shelf) (Figure 6.20c and f).
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Figure 6.20: Position of particles released during the onset of upwelling events (July 8,
2014/August 9, 2013) at sites represented in Figure 6.1, 48 hours (a and d), 96 hours (b and
e) and 132 hours (c and f) after the onset of upwelling.

Concerning particles with origin at northern coastal segment (box A) it is

noteworthy that they are retained near coast, for both events. This happens due to

coastline orientation and current velocity that, despite being directed westward, is not

strong enough (0.1 m s-1) to transport near coast water parcels from northern coastal

segment to western segment (Figure 6.20).

Finally, particles released at southern part of western coastal segment (boxes E

and F) seem to accumulate in inner shelf, however with some differences between both

upwelling events. Indeed, 132 hours after release, an accumulation of particles from

boxes E and F are found from 40.5◦W to the southern part of study region, while for

2013 event the accumulation area extends from the Minho until the Mondego River

(6.20c and f).

The trajectories obtained with the particle tracking model confirmed earlier

suggestions: that for July 2014 event phytoplankton generated near Cape Finisterre

and Minho River does not have enough time for multiplication, due to the strong
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surface currents observed. For August 2013 event, water parcels are advected slower

than for 2014, and photosynthesis takes place near the coast, generating high levels of

Chl-a concentration. For both events, an accumulation of Chl-a rich water is observed

in the southern part of western coastal segment, which could be explained by the

wider (between 60− 65 km near the Mondego River) continental shelf that favours the

trapping of nutrients and phytoplankton near coast (Aŕıstegui et al., 2009).

6.4 Conclusions

The numerical model MOHID was used to describe the spatial and temporal

evolution of physical-biological features during two summer upwelling events off

northwestern coast of IP. Main conclusions of this study are the following:

• From average fields of SST, two upwelling cells (CFUC and MUC) were found

during both upwelling events analysed;

• For the strongest event, a decay of Chl-a concentration was observed over time in

the upwelling cells, which may be attributed to the short residence time of water

parcels on coastal ocean surface, due to a strong southwestward jet observed at

these regions, which promotes offshore transport of pigment-rich water;

• During weak upwelling events an inverse relation between SST and Chl-a

concentration was found, i.e., Chl-a concentration is maximum in the upwelling

cells. In this case, lighter upwelling favourable winds induce weaker surface

currents;

• Results of in depth analysis carried out in cross-sections representative of

upwelling cells, suggested that when strong northerly winds occur, a strong

equatorward flow develops near coast promoting off-shelf export of phytoplankton,

and therefore high levels of Chl-a concentration are advected to the outer shelf

region. Conversely, during weak upwelling events, circulation in upwelling cells

promote retention of nutrients and phytoplankton near coastal region. A poleward

flow develops near coast and offshore transport is weak and therefore high levels

of Chl-a are found here;
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• The set of particles released at onset of upwelling events confirmed previously

conclusions. A general southwestward displacement of particles released at

intermediate and northern part of western coastal segments are observed, however

this transport is faster for strong upwelling conditions. Also, particles released at

southern part of western coastal segment tend to accumulate in the inner shelf

for both cases, once wider shelves tend to favour the trapping of nutrients and

phytoplankton.
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Chapter 7

Final conclusions

This chapter provides a summary of the thesis main results, which main objective

was to understand the physical factors that influence primary production along the

northwestern coast of IP. With this propose two approaches were used: remote

sensing imagery analysis and numerical modelling. Due to the coastline direction,

three coastal segments were considered: western (from 40 ◦N to 43 ◦N, north-south

direction), intermediate (between Cape Finisterre and Cape Ortegal, northeast-

southwest direction) and northern (between 8 ◦W and 5 ◦W, west-east direction) coastal

segments.

The study began with a ten years (1998-2007) general characterization of the study

area through remote sensed data in terms of Chl-a concentration, SST, wind-derived

UI, Ekman transport and in situ river discharges. All these variables were analysed

simultaneously to interpret the main spatio-temporal processes that occur in this highly

dynamic region and explore the enrichment mechanisms that occur in euphotic layer,

highlighting differences between each coastal segment.

A seasonal analysis was performed and results revealed high seasonal variability

and different annual cycles in each coastal segment. Indeed, for western coastal

segment the strongest Chl-a levels occur during spring (AMJ) and summer (JAS),

which are related to the frequent upwelling events that allow the displacement of

cold and nutrient rich waters to surface layers. Actually, during this period Ekman

transport is strong and directed westward and a water lens of cold water is observed in

the region. During winter (JFM) and autumn (OND) high primary production levels

are also detected. These conditions may be related to the cumulative effect of winter
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upwelling events and river runoff (Mondego, Douro and Minho), favouring the entrance

of nutrients onto the coast, as well as the mixing/stratification season cycle, which

transport nutrients to surface in winter. However, river plumes may also induce surface

stratification which may be a restrictive factor to phytoplankton growth, by limiting

light availability. At intermediate coastal segment, conditions are similar to those

described for western coastal segment, however production levels are slightly lower.

In fact, in spring and summer months the Ekman transport is upwelling favourable

but less intense comparing to that observed at western coastal segment. Likewise,

the river that influences the region (Eume) has a very low flow and therefore primary

production generated from the input of nutrients from land is also low. Moreover, from

maxima Chl-a levels and timing of these maxima, it can be concluded that, in western

and intermediate coastal segments, the mechanism that most influences phytoplankton

growth is upwelling, once maxima values occur during upwelling season (August and

September). Northern coastal segment is the least productive, and showed an opposite

pattern, with the highest Chl-a concentrations occurring during autumn (OND) and

winter (JFM). However, in the surroundings of Nalon River mouth high Chl-a levels

exists most of the year. JFM peaks are associated with the transitional period from

winter mixing to summer stratification periods that favour phytoplankton blooms. For

remaining seasons, Chl-a high levels are attributed to the presence of Nalon River that

is an important source of nutrients in the region, once during this period the Ekman

transport is strong and directed southward (upwelling unfavourable at northern coastal

segment).

An empirical orthogonal function (EOF) analysis was applied to the weakly images

of Chl-a concentration over the whole study area, using the SVD method. This kind

of analysis provides a compact description of temporal and spatial variability of long

time series. Results suggest that dynamics of the first mode that contains 21.54% of

the data total variance, is only related with dynamics of nearshore region of western

and intermediate coastal segments, once positive coefficients were found. Positive

deviation from the mean values were found for JAS for all years. Otherwise, coefficients

computed for northern coastal segment are close to zero. Second EOF mode explains

8% of total Chl-a variance and its spatial variability allows to identify two regions: one

northward Minho River (42 ◦N), including intermediate and northern coastal segments,
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with strong negative coefficients and other comprising the Portuguese coast (southward

Minho River). This indicates a dynamical response of different phases in these two

regions, which are associated with the vertical mixing cycle.

The influence of upwelling events and river runoff on Chl-a patterns along IP

northwestern coast was also analysed considering the interannual variability of SST,

Chl-a concentration, UI and river discharges as well as correlation coefficients between

these variables, for summer (JAS) and winter (JFM/FMA). Results suggest that

at western and intermediate coastal segments, 2005, 2006 and 2007 were the most

productive years during summer season, which is associated with cold waters, strong

upwelling favourable UI and low discharges. Indeed, strong positive (negative)

correlations were found between Chl-a concentration and UI (SST) during JAS for

three locations at western coastal segment: 0.40 (-0.52) near Mondego, 0.35 (-0.26)

near Minho and 0.33 (-0.36) near Douro Rivers and for the location at intermediate

coastal segment: 0.43 (-0.30) near Eume River mouth. The least productive years were

2003 and 2004 for western and 1999 and 2004 for intermediate coastal segments. During

winter, in general, primary production is weaker, however some particular situations

should be highlighted. For instance, 1998 and 2001 showed high Chl-a concentration

at western coastal segment. The absence of upwelling favourable conditions together

with localized low SST and considerable discharges suggests that this high levels of

Chl-a is mainly attributed to nutrients input from land. Indeed, correlation analysis

corroborate this assumption. A correlation coefficient of 0.29, 0.51 and 0.43 was found

between Chl-a concentration and discharges of the Mondego, Minho and Douro Rivers,

respectively.

At northern coastal segment during the summer season low Chl-a concentrations

were generally observed, however 2007 revealed high values in September, which are

associated to strong upwelling UI observed here. Correlation coefficients of 0.22 (-0.28)

were found between Chl-a concentration and UI (SST). During winter, high levels of

phytoplankton were mainly detected during March, being 2005 and 2006 the most

productive years. Indeed, at northern coastal segment, these years were characterized

by extreme mixed layer deepening, resulting in a nutrient increase and consequently

high levels of Chl-a occur. Discharges from Nalon River are also important during JFM

and a correlation with Chl-a concentration of 0.25 was found.
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The study of forcing mechanisms of phytoplankton formation and growth is of

extreme importance in such a highly dynamic region. Moreover, several analysis of

ocean temperature all around the world reveal a global warming trend in the ocean

and an acceleration of coastal upwelling circulation, inducing changes on phytoplankton

development and therefore in the whole marine ecosystem. Accordingly, the influence

of meteorological conditions on upwelling and phytoplankton (Chl-a concentration) is

highly relevant. In this context, the link among atmospheric conditions, identified

through CWTs, upwelling and Chl-a conditions was established for the entire study

area, through a probability analysis. Generally, results suggest that for western

coastal segment north component CWTs (N, NE and NW) induced most of the times

upwelling and phytoplankton generation. It is noteworthy that during winter, when SW

weather type occur (recurrent, considering a frequency between 9 and 12%), upwelling

was never observed; however, Chl-a concentrations had high conditional probabilities

(between 10 and 20%). Therefore, in this case, Chl-a existing in ocean surface was

related with rivers outflow that transports nutrients to the coast. At intermediate

coastal segment, upwelling occurred essentially under NE, E and S CWTs during

spring and summer. A probability of 100% was found as well as an offshore surface

transport almost perpendicular to coast, favouring upwelling and generating high rates

of phytoplankton at surface. Finally, at northern coastal segment and for both seasons,

south CWT (S) induced significant upwelling generation with the highest probability

for Chl-a to exceed its mean value. Indeed, due to coastline orientation (parallel to

equator) S type can generate upwelling favourable conditions transporting nutrient-rich

water from lower depths to the surface and thus generating high primary production.

Probabilities of upwelling occurrence under NE and E CWTs were also high (30–100%)

for both seasons, being the probability of Chl-a to exceed its mean value under these

conditions about 10% (except for NE during October to March). The definition of

these relations constitutes a novel result and is of major importance considering that

nowadays synoptic situations can be settled and forecasted in advance. Consequently,

the connections established in this study between weather types and marine variables

allow to identify the most productive regions according to weather conditions and

therefore optimize resources and improve fisheries and aquaculture activities, both

offshore and at the coast.
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Numerical models are powerful tools to perform ocean high resolution (spatial and

temporal) studies, allowing the study of specific events as well as to design future

scenarios. Physical-biological coupled models have been recently explored by the

scientific community and had showed strong potential to understanding the ocean

biogeochemical processes. Accordingly, a coupled circulation and biogeochemical model

was implemented in the study region, with the objective to study the ocean biological

response to physical factors. The model used was MOHID and a downscalling approach

with two nested domains was applied. Model results were evaluated against several

databases of in situ and remote sensed data of physical and biological variables available

for the study area, during years 2013 and 2014. Variables such as water temperature,

salinity and current velocity were compared along the whole 2013 year for five buoys

located along Galician coast. Results reveal the model accuracy in reproducing the

seasonal evolution of water temperature and salinity, showing a maximum RMSE of

0.6◦C for water temperature and 0.21 for salinity, during the period analysed. Predicted

current velocity also showed good agreement with measurements (RMSE at most 0.13

m s-1). In situ SSE at three locations near coast was also compared with model

predictions, with the higher error achieved for the Aveiro station (RMSE of 0.13 m).

Model accuracy in reproducing the main vertical features of the ocean was also

evaluated through comparison with Argo buoys data, which are programmed to operate

in regions where bathymetry is deeper or equal to 2000 m depth. Variables such

as water temperature, salinity and oxygen were compared with model predictions,

revealing models accuracy to reproduce the upper layer thermodynamics and vertical

stratification, as well as the distribution of oxygen along the water column. Finally, a

set of remote sensed images was used to validate the spatial distribution of SST and

Chl-a concentrations. Despite some differences, mainly in summer Chl-a distribution,

good agreement was observed. Indeed, ocean biological features are strongly dependent

from the interactions between physical, chemical and biological factors and therefore

are very difficult to reproduce.

Once validated, the numerical model was used to explore phytoplankton patterns

during two upwelling events: a strong that occurred during July 2014, and a weak

during August 2013. For both events two upwelling cells (regions where the upwelling

of cold water is strong) were identified along the western coastal segment: one near
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Cape Finisterre and other near Minho River. For the weakest event (2013) the Chl-a

concentration shows inverse relation with SST, with maxima values occurring in Minho

and Cape Finisterre upwelling cells. Otherwise, for the strongest event (2014), a decay

of Chl-a concentration in upwelling cells was observed. Intense and persistent winds

induce appreciable offshore movement of water masses and create excessive turbulence

yielding an environment unsuitable for phytoplankton growth. Bakun (2006) proposed

that biological success is only possible in a marine environment if the balance between

enrichment, concentration and retention is preserved. Here retention process, which

represents the ability of surface currents to keep phytoplankton in coastal areas, are

not preserved for the case of 2014 event. Indeed, for this event a strong equatorward

flow develops near coast promoting advection offshore, where residence time is higher

and phytoplankton grows. Otherwise, for 2013 event a poleward flow is detected near

coastal region promoting high Chl-a waters retention. Due to wide continental shelf at

the southern part of western coastal segment an accumulation of pigment rich waters

is observed, for both events.

Overall, the outcome of this thesis show different conditions at each coastal

segment, leading to an unbalanced phytoplankton distribution along the study area.

Seasonal wind induced coastal upwelling, freshwater input and vertical mixing cycle

were considered the main responsible for high biological diversity of the region, with

important implications on phytoplankton growth. Both remote sensing imagery

and numeric modelling revealed to be valuable methodologies to study physical and

biological features in the region under study. Therefore, results of this thesis, as well as

the methodologies developed, may be replicated in other upwelling systems, to improve

understanding of main factors influencing phytoplankton generation and growth.

All the aims established for this thesis were achieved and new insights in the

comprehension of primary production along the northwestern coast of IP were

proposed. Some limitations were identified, mainly in the modelling task. The major

problems concern the biogeochemical variables, namely the temporal resolution of the

initial conditions and the lack of in situ data with appropriate temporal resolution

for all rivers discharging in the region. It remains for future the implementation of a

more complex ecologic model developed for MOHID, the Life modulus. Future research

should also focus in the study of the continental runoff influence on the phytoplankton
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blooms, mainly in winter, through the numerical application developed. Also the

dynamics of upwelling cells should be further explored, in order to understand if the

decay of Chl-a concentration is a recurrent phenomenon and/or a problem for the

fisheries in the region.
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Carvalho D., Rocha A., Gómez-Gesteira M. and Santos C.S. (2014a). Comparison of

reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data

along the Iberian Peninsula coast. Remote Sensing of Environment, 152, 480–492.
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Thesis, Instituto Superior Técnico, Universidade de Lisboa, Portugal, 70 pp.

Pingree R. and Cann B.L. (1990). Structure, strength and seasonality of the slope

currents in the Bay of Biscay region. Journal of the Marine Biology Association of

U.K., 70, 857–885.

Pingree R.D. and Cann B.L. (1989). Celtic and armorican slope and shelf residual

currents. Progress in Oceanography, 23, 303–338.

Pollard R. and Pu S. (1985). Structure and circulation of the upper Atlantic Ocean

northeast of Azores. Progress in Oceanography, 14, 443–462.
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Sánchez F., Rodŕıguez-Cabello C. and Olaso I. (2005). The role of Elasmobranchs in

the Cantabrian Sea Shelf ecosystem and impact of the fisheries on them. Journal of

Northwest Atlantic Fishery Science, 35, 467–480.
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