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Resumo

O Rio Minho, situado a 30 km a sul das Rias Baixas, é o rio mais importante que desagua na

costa ocidental Galega (NO da Penı́nsula Ibérica). A descarga da água doce proveniente

deste rio é importante para a determinação dos padrões hidrológicos adjacentes à sua

foz, particularmente perto das regiões costeiras galegas. Esta água doce pode inundar

as Rias Baixas por perı́odos prolongados, invertendo a distribuição normal de densidade.

Deste modo, é fundamental caracterizar a dinâmica da pluma do Rio Minho, assim como

os padrões termohalinos das áreas afetadas pela sua dispersão.

Assim, os principais objetivos deste trabalho consistiram no estudo da propagação da

pluma estuarina do Minho em direção às Rias Baixas, e na deteção das condições nas

quais esta afeta a circulação e as caracterı́sticas hidrográficas destes sistemas costeiros,

através do desenvolvimento e aplicação do modelo numérico MOHID.

Com este propósito avaliaram-se inicialmente as caracterı́sticas hidrográficas das

embocaduras das Rias Baixas. Verificou-se então que, no caso das embocaduras norte,

devido à sua reduzida profundidade, os fluxos de calor entre a atmosfera e o oceano

são o forçamento principal que determina a temperatura da água, enquanto que nas

embocaduras sul os eventos de afloramento costeiro e a descarga de água doce são os

fatores determinantes mais frequentes. Observou-se ainda um aumento de salinidade de

sul para norte, o que indica que os menores valores detetados poderão ser explicados pela

descarga de água doce proveniente do Rio Minho.

Seguidamente efetuou-se uma avaliação de dados de vento na costa Galega, com

o objetivo de verificar a sua aplicabilidade no estudo da dispersão da pluma estuarina

do Minho. Inicialmente compararam-se ventos medidos ao longo da costa em estações

meteorológicas terrestres, com ventos medidos ao largo pelo satélite QuikSCAT. Esta

análise permitiu estabelecer que os dados do satélite são uma boa aproximação no estudo

de fenómenos costeiros induzidos pelo vento. No entanto, visto que para forçar o modelo

numérico MOHID são necessários dados de vento com grande resolução espácio-temporal

perto da costa, acrescentou-se ao estudo anterior dados resultantes de simulações de

um modelo de previsão (WRF). Da comparação com os dados provenientes de boias

oceanográficas, conclui-se que a melhor base de dados para representação do vento perto



xii

da costa provém do modelo WRF.

Para efetuar o estudo da influência da pluma estuarina do Minho nas Rias Baixas,

foi desenvolvido e implementado um sistema de modelação integrado de três nı́veis

encaixados, baseado na utilização do modelo numérico MOHID. O primeiro domı́nio é um

modelo de maré barotrópico, englobando toda a costa da Penı́nsula Ibérica. O segundo

e o terceiro domı́nios são modelos baroclı́nicos tridimensionais, sendo o segundo uma

representação grosseira das Rias Baixas e da costa adjacente, enquanto que o terceiro

domı́nio inclui a mesma área com maior resolução. Neste âmbito, foi também implementado

em modo 2D um modelo para o estuário do Minho, de forma a quantificar o fluxo (e as suas

propriedades) que o estuário injeta no oceano.

Devido à disponibilidade de dados foi escolhido o perı́odo de maio de 1998 para a

validação da implementação numérica desenvolvida, efetuando a simulação da propagação

da pluma estuarina do Minho para este perı́odo. Note-se que durante esta época foi

detetada uma descarga elevada do Rio Minho, bem como ventos favoráveis à dispersão da

pluma em direção às Rias Baixas. Os resultados obtidos mostraram que a metodologia de

modelos encaixados foi implementada com sucesso, uma vez que os modelos reproduzem

com precisão aceitável os padrões hidrodinâmicos e termohalinos do estuário do Minho

e das Rias Baixas. Também foi avaliada a importância da descarga do Rio Minho e do

vento no evento de maio de 1998. Os resultados revelaram que uma descarga moderada

e contı́nua combinada com ventos de sul é suficiente para inverter o padrão de circulação

das Rias Baixas, reduzindo a importância da existência de eventos especı́ficos de elevado

caudal.

No âmbito do objetivo princial deste estudo, foram avaliadas as condições nas quais a

pluma estuarina do Minho afeta a circulação e hidrografia das Rias Baixas. Os resultados

numéricos indicaram que a dispersão da pluma estuarina do Minho responde rapidamente

às variações do vento e às variações de batimetria e morfologia da linha de costa. Sem

vento, a pluma expande-se para o largo, criando um bojo em frente da embocadura do

rio. Sob condições de vento de norte, a pluma estende-se numa maior dimensão para

o largo. Por outro lado, sob condições de vento de sul, a pluma fica confinada junto à

costa, chegando às Rias Baixas ao fim de um dia e meio. No entanto, para descargas

do Rio Minho superiores a 800 m3 s-1, a pluma estuarina do Minho inverte os padrões

de circulação das Rias Baixas. Verificou-se também que a variabilidade do vento e da

descarga do Rio Minho são os fatores que mais influenciam o tamanho e forma da pluma.

Sob as mesmas condições analisou-se a troca de água nas Rias Baixas seguindo

a trajetória de partı́culas lançadas perto da embocadura do estuário do Minho. Para

descargas do Rio Minho superiores a 2100 m3 s-1 combinadas com ventos de sul de 6

m s-1 e numa escala superior a cinco dias, observou-se uma intensa troca de água entre

as Rias. Cerca de 20% das partı́culas detetadas na Ria de Pontevedra provêm diretamente

do Rio Minho.
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Em suma, a aplicação do modelo desenvolvido neste trabalho contribuiu para o

conhecimento da influência do Rio Minho na circulação e hidrografia das Rias Baixas,

evidenciando que esta metodologia também pode ser replicada para outros sistemas

costeiros.
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Abstract

The Minho River, situated 30 km south of the Rias Baixas is the most important freshwater

source flowing into the Western Galician Coast (NW of the Iberian Peninsula). This

discharge is important to determine the hydrological patterns adjacent to its mouth,

particularly close to the Galician coastal region. The buoyancy generated by the Minho

plume can flood the Rias Baixas for long periods, reversing the normal estuarine density

gradients. Thus, it becomes important to analyse its dynamics as well as the thermohaline

patterns of the areas affected by the freshwater spreading.

Thus, the main aim of this work was to study the propagation of the Minho estuarine

plume to the Rias Baixas, establishing the conditions in which this plume affects the

circulation and hydrographic features of these coastal systems, through the development

and application of the numerical model MOHID.

For this purpose, the hydrographic features of the Rias Baixas mouths were studied. It

was observed that at the northern mouths, due to their shallowness, the heat fluxes between

the atmosphere and ocean are the major forcing, influencing the water temperature, while

at the southern mouths the influence of the upwelling events and the Minho River discharge

were more frequent. The salinity increases from south to north, revealing that the observed

low values may be caused by the Minho River freshwater discharge.

An assessment of wind data along the Galician coast was carried out, in order to

evaluate the applicability of the study to the dispersal of the Minho estuarine plume. Firstly,

a comparative analysis between winds obtained from land meteorological stations and

offshore QuikSCAT satellite were performed. This comparison revealed that satellite data

constitute a good approach to study wind induced coastal phenomena. However, since the

numerical model MOHID requires wind data with high spatial and temporal resolution close

to the coast, results of the forecasted model WRF were added to the previous study. The

analyses revealed that the WRF model data is a consistent tool to obtain representative wind

data near the coast, showing good results when comparing with in situ wind observations

from oceanographic buoys.

To study the influence of the Minho buoyant discharge influence on the Rias Baixas, a

set of three one-way nested models was developed and implemented, using the numerical
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model MOHID. The first model domain is a barotropic model and includes the whole Iberian

Peninsula coast. The second and third domains are baroclinic models, where the second

domain is a coarse representation of the Rias Baixas and adjacent coastal area, while the

third includes the same area with a higher resolution. A bi-dimensional model was also

implemented in the Minho estuary, in order to quantify the flow (and its properties) that the

estuary injects into the ocean.

The chosen period for the Minho estuarine plume propagation validation was the spring

of 1998, since a high Minho River discharge was reported, as well as favourable wind

patterns to advect the estuarine plume towards the Rias Baixas, and there was field data

available to compare with the model predictions. The obtained results show that the adopted

nesting methodology was successful implemented. Model predictions reproduce accurately

the hydrodynamics and thermohaline patterns on the Minho estuary and Rias Baixas. The

importance of the Minho river discharge and the wind forcing in the event of May 1998 was

also studied. The model results showed that a continuous moderate Minho River discharge

combined with southerly winds is enough to reverse the Rias Baixas circulation pattern,

reducing the importance of the occurrence of specific events of high runoff values.

The conditions in which the estuarine plume Minho affects circulation and hydrography

of the Rias Baixas were evaluated. The numerical results revealed that the Minho estuarine

plume responds rapidly to wind variations and is also influenced by the bathymetry and

morphology of the coastline. Without wind forcing, the plume expands offshore, creating a

bulge in front of the river mouth. When the wind blows southwards, the main feature is the

offshore extension of the plume. Otherwise, northward wind spreads the river plume towards

the Rias Baixas. The plume is confined close to the coast, reaching the Rias Baixas after

1.5 days. However, for Minho River discharges higher than 800 m3 s-1, the Minho estuarine

plume reverses the circulation patterns in the Rias Baixas. It was also observed that the

wind stress and Minho River discharge are the most important factors influencing the size

and shape of the Minho estuarine plume.

Under the same conditions, the water exchange between Rias Baixas was analysed

following the trajectories particles released close to the Minho River mouth. Over 5 days,

under Minho River discharges higher than 2100 m3 s-1 combined with southerly winds of 6

m s-1, an intense water exchange between Rias was observed. However, only 20% of the

particles found in Ria de Pontevedra come directly from the Minho River.

In summary, the model application developed in this study contributed to the

characterization and understanding of the influence of the Minho River on the Rias Baixas

circulation and hydrography, highlighting that this methodology can be replicated to other

coastal systems.



Publications and Communications in
the context of this dissertation

Several publications in peer reviewed journals and presentations at international and

national conferences were accomplished as result of the research developed in this thesis,

and used as base for several chapters of this dissertation.

Papers in international scientific periodicals with referees:

• Sousa M.C., Alvarez I., Vaz N. and Dias J.M. (2011). Physical forcing of the

hydrography of the Ria de Vigo mouth. Journal of Coastal Research, SI64, 1589-

1593. (Chapter 2)

• Sousa M.C., Alvarez I., Vaz N. and Dias J.M. (2011). Evaluating QuikSCAT wind data

to study wind induced coastal phenomena in the Galician Coast. Journal of Coastal

Research, SI64, 445-449. (Chapter 3)

• Sousa M.C., Alvarez I., Vaz N., Gomez-Gesteira M. and Dias J.M. (2013). Assessment

of wind patterns accuracy from the QuikSCAT satellite and the WRF model along the

Galician coast (NW Iberian Peninsula). Monthly Weather Review, 141, 2, 742-753.

(Chapter 3)

• Sousa M.C., Vaz N., Alvarez I. and Dias J.M. (2013). Effect of Minho estuarine plume

on Rias Baixas: numerical modeling approach. Journal of Coastal Research, SI65,

2059-2064. (Chapter 5)

• Sousa M.C., Vaz N., Alvarez I., Gomez-Gesteira M. and Dias J.M. (in review).

Modelling the Minho River plume intrusion into the Rias Baixas (NW Iberian

Peninsula). Continental Shelf Research. (Chapter 5)



xviii

• Sousa M.C., Vaz N., Alvarez I., Gomez-Gesteira M. and Dias J.M. (in review).

Influence of the Minho River plume on the Rias Baixas (NW Iberian Peninsula).

Journal of Marine Systems. (Chapter 6)

Other publications:

• Sousa M.C., Alvarez I., Vaz N., Gomez-Gesteira M., Dias J.M. (2012). Análisis de la

precisión de los datos de viento obtenidos del satélite QuikSCAT y el modelo WRF en

la costa gallega. Revista Avances en Ciencias de la Tierra (ACT), 3, 39-53.

Conference abstracts, proceedings and communications:

• Sousa M.C., Alvarez I., Vaz N., Dias J.M. (2010). Wind Analysis in the Western

Galician Coast. IV Congresso Brasileiro de Oceanografia. 17-21 May, Rio Grande,

Brazil.

• Sousa M.C., Alvarez I., Vaz N., Dias J.M. (2011). Physical forcing of the hydrography

of the Ria de Vigo mouth. 11th International Coastal Symposium 2011 (ICS 2011).

9-14 May, Szczecin, Poland.

• Sousa M.C., Alvarez I., Vaz N., Dias J.M. (2011). Evaluating QuikSCAT wind data

to study wind induced coastal phenomena in the Galician Coast. 11th International

Coastal Symposium 2011 (ICS 2011). 9-14 May, Szczecin, Poland.

• Sousa M.C., Vaz N., Alvarez I., Dias J.M. (2012). Wind forcing response of the

dispersal of Minho estuarine plume. European Geosciences Union, General assembly

2012. 22-27 April 2012, Vienna, Austria.

• Sousa M.C., Vaz N., Alvarez I., Dias J.M. (2012). Dispersão da Pluma Estuarina do
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Chapter 1

Introduction

1.1 Motivation

Freshwater inputs from rivers have great influence on coastal waters, changing the

distribution of various parameters, such as particles, dissolved matter, pollutants, nutrients,

biogeochemical and phytoplankton communities [Dortch and Whitledge, 1992; Kortzinger,

2003; Warrick and Milliman, 2003; Bruland et al., 2008; Reifel et al., 2009].

Generally, river plumes are turbid and rich in nutrients, remaining near surface due to

their buoyancy and breaking up into lenses of less saline water, stimulating phytoplankton

growth [Lunven et al., 2005]. Some studies suggest that the areas corresponding to river

plumes are preferred feeding places for zooplankton [Pearcy, 1992]. The plume dynamics

is controlled by the interaction of outflow inertia [Horner-Devine et al., 2009], buoyancy

forcing [Jurisa and Chant, 2012], Earth’s rotation effect [Monteiro et al., 2011], wind forcing

[Choi and Wilkin, 2007] and alongshore coastal current [Fong and Geyer, 2002]. All these

factors contribute to change the dynamics of river and estuarine plumes. Different plume

classifications have been carried out. Several authors established relationships relating the

extension, velocity of the discharged freshwater and the depth of the river at the mouth

[Garvine, 1995; Yankovsky and Chapman, 1997; Lentz and Largier, 2006].

Due to their large spatial and temporal dynamics and considering the importance of the

driving factors, the development and exploitation of ocean circulation models has become an

important tool to study the evolution of estuarine plumes. From their application, individual

effects of the driving factors (e.g. river discharge, tide or wind direction) on a buoyant plume

may be evaluated under different conditions. Several numerical studies related to coastal

plumes characterization have been performed worldwide [Fong and Geyer, 2002; Garcı́a-

Berdeal et al., 2002; Choi and Wilkin, 2007; Guo and Valle-Levinson, 2007; Otero and

Ruiz-Villarreal, 2008; Horner-Devine et al., 2009; Jurisa and Chant, 2012], indicating the
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utility of a numerical model to analyse their dynamics as well as the thermohaline patterns

of the areas affected by its propagation. These studies have shown that downwelling

favourable wind compresses the plume towards the coast and the vertical mixing reduces

the stratification in the plume, where velocities are stronger. On the other hand, during

upwelling favourable winds, the main feature is the offshore extension of the plume,

increasing the vertical stratification in the area under its influence [Otero and Ruiz-Villarreal,

2008]. Moreover, the tidal effect contributes to increase the mixing processes, reducing the

stratification.

In general, the magnitude of the impact of river plumes on coastal regions is

proportional to the amount of river discharge [Tian et al., 1993; Dagg et al., 2004]. Extreme

events of river discharges associated to torrential rain episodes and favourable wind patterns

can flood the major coastal estuaries located north of the river for long periods, reversing

the normal estuarine density and salinity gradients.

The Rias Baixas (Figure 1.1) are located in the northern limit of the NW Africa upwelling

system [Wooster et al., 1976] and are ecosystems of enormous potential, both economical

(e.g. exploration of marine resources: fisheries, aquaculture and fishing industry) and social

(e.g. tourism: beaches and natural beauty), leading to a wide population establishment in

this area. Thus, the quality of its inhabitant’s life depends on the conservation of the natural

ecosystems and mitigation of the negative impacts of anthropogenic activities. They are

also situated along one of the most important maritime routes and numerous merchant

ships navigate through its waters and even close to the coast. The frequent storms which

affect the coast during winter time can provoke accidents with important consequences

as oil spills. These spills may seriously affect the local economy, which depends on

the richness of marine ecosystems (bivalves, octopus, sardine, sole and barnacle). The

seasonal coastal upwelling induced by favourable winds in spring-summer months is the

main recognized source of primary production, supporting the high fishery and aquaculture

yields. Nowadays, the number of suspended rafts in the Rias Baixas is 3237, with an

estimated annual mussel production per raft of 75×103 kg raft-1 y-1 (around 15% of the world

production), rendering a total estimated production of 243×106 kg y-1 of edible mussels,

representing enough biomass to have clear impact on the Rias as an entire ecosystem

[Alonso-Perez et al., 2010].

The primary production generated by the upwelling events can also be affected by the

estuarine discharge that flow in the interior of the Rias and continental shelf. The freshwater

discharge from the rivers is particularly important in near coastal regions. The Rias Baixas

have numerous rivers flowing inside, modifying their thermohaline properties. The Minho

River, situated south of the Rias Baixas (Figure 1.1), is the most important river that flows

into the Western Galician coast. The Minho estuarine plume intrusion can generate an

important salinity decrease at the Rias Baixas mouths, reversing the normal circulation

pattern and affecting the primary production distribution [deCastro et al., 2006a]. This
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Figure 1.1: Location and bathymetry of study area.

reverse circulation pattern is characterized by the intrusion of warm and less saline coastal

waters at the surface, which accumulates in the Rias interior and finally flows towards

the ocean through the bottom. The Minho freshwater intrusion can rise both positive and

negative effects. It can generate an inverse estuarine circulation, which tends to stop water

exchange between the Rias and the shelf, increasing residence time and hence affecting

water quality. Conversely, extreme freshwater pulses can induce phytoplankton blooms at

the shelf, which penetrates into the Rias embedded in a water fresher than the estuarine

one, fertilizing the area. Consequently, knowledge of freshwater effects in these areas

greatly facilitates the management of many exploited and protected species. Due to the lack

of continuous and simultaneous in situ measurements along coastal estuaries as the Rias

Baixas, it is important to develop numerical models to understand the complex structure

of the oceanographic features and circulation patterns that characterize these particular

environments.

The numerical models are used worldwide, in order to quantify and understand

different process occurring in coastal waters. They have the ability to answer questions

and investigate hypothetical scenarios (e.g. changes in wind and river discharge), which

observations alone cannot provide. In addition, they afford the capability to study processes
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independently. The Minho estuarine plume influence inside the western Galician estuaries

has not been studied in detail, namely by means of numerical model applications,

specifically designed for this purpose. Therefore, this study aims the implementation of a

high resolution circulation and transport model, in order to study the influence of the Minho

buoyant discharge influence upon Rias Baixas.

1.2 Aims

The main goal of this work is to study the evolution of the Minho estuarine plume and its

effect on the circulation and hydrography of the Rias Baixas, as well as the dependence

of the estuarine plume impact on these coastal systems in terms of its major forcing

mechanisms. In particular, this work aims to:

• compare surface winds from weather forecast model, satellite and in situ

measurements along the Galician coast, in order to evaluate its applicability to study

wind induced coastal phenomena;

• characterize the hydrography and dynamics of the NW Iberian Peninsula, with special

emphasis to the Rias Baixas adjacent area;

• develop a high resolution numerical model application to reproduce the propagation of

the Minho estuarine plume towards the Rias Baixas;

• study specific events of the Minho estuarine plume intrusion inside the Rias Baixas;

• analyse the dynamics of the Minho estuarine plume in terms of the major forcing (tides,

river discharge and wind conditions);

• investigate the necessary conditions for the establishment of the reverse circulation in

the Rias Baixas;

• assess the water renovation and mixture between Rias Baixas through the analysis of

the trajectories of passive particles released at the Minho River mouth;

The approach used to achieve the specific aims listed above involves the implementation of

a three-dimensional baroclinic model and in situ and remote sensing data analysis, allowing

to research the evolution of the Minho estuarine plume along the NW Iberian Peninsula, and

especially its influence in the Rias Baixas dynamics.
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1.3 Literature review

1.3.1 Estuarine plumes

Rivers often discharge in the coastal zone in the form of plumes and are essential for

the exportation of fine sediments, nutrients and organic material from land to the coastal

ocean. They can directly influence coastal sediment budgets, ocean biogeochemistry

and circulation in coastal waters [Garvine, 1984; Kourafalou, 1999]. The estuarine plume

structure may take a variety of shapes, depending on the complex interactions with the

ambient flow, tides, bottom topography, freshwater volume discharged, the shape of the

river mouth and wind stress [Garvine, 1974; Yankovsky and Chapman, 1997; Fong and

Geyer, 2002; Garcı́a-Berdeal et al., 2002].

Since the 1950s, various studies including observational, laboratory and numerical

model studies have been adopted to understand the dynamics and structures of estuarine

plumes. The first steady state theory of a river plume entering the sea off a straight coast

were presented by Takano [1954a,b, 1955]. From 1960s to 1980s, observational studies

of several plume dynamics had been made around the world: for example the Columbia

River estuary (USA) [Stefansson and Richards, 1963; Park, 1966], Connecticut Estuary

(USA)[Garvine, 1974], Fraser River (Canada) [Royer and Emery, 1982], Rhine River estuary

(Netherlands) [van Alphen et al., 1988] and the Rhone River estuary (France) [Szekielda and

Kupferman, 1973].

Chao [1988a,b] and Chao and Boicourt [1986] were the first authors to apply an ocean

model with idealized topography, to examine the effect of wind and river discharge on

buoyant plumes. Latter, Garvine [1995] introduced a classification scheme for unforced

plumes to assess the contribution of advection terms and the Coriolis force to the buoyant

plume. A different classification scheme was suggested by Yankovsky and Chapman

[1997], using the plume’s vertical structure and discriminating between bottom and surface

advected plumes. In spite of the absence of external forcing mechanisms in their theory, they

correctly predicted the plume type for several numerical and real cases. In the mid-1990s

and in the early 2000s, the dependence of three-dimensional plume characteristics on

model parameters were investigated by Garvine [1999, 2001], Kourafalou et al. [1996] and

Kourafalou [1999]. To study the impact of upwelling winds to the surface advected plume,

a conceptual model was developed by Fong and Geyer [2001]. Their model simulations

demonstrated that the plume thins and is advected offshore by the cross-shore Ekman

transport. Garcı́a-Berdeal et al. [2002] and Choi and Wilkin [2007] also used numerical

simulations to study the influence of wind stress and ambient flow in a high discharge river

plume. These studies showed that the wind speed and direction play an important role

in determining plume structure and the fate of freshwater, as demonstrated by Hetland
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[2005]. That is, downwelling favourable wind compresses the plume towards the coast,

increasing the mixing process and inducing the coastal current formation, while upwelling

favourable wind induces an offshore advection on the surface Ekman layer. The results also

showed that the river runoff is one of the most important environmental factors leading to

the seaward expansion of the plume.

A modulation effect was attributed to the tidal action, which contributes to mixing

processes, reducing stratification generated by the wind and spreading the freshwater over

the shelf [Chao, 1990; Garvine, 1999; Guo and Valle-Levinson, 2007; Marques et al., 2009].

This was further confirmed with laboratory experiments by Horner-Devine et al. [2006,

2009]. Therefore, it is of great significance to have a comprehensive understanding of the

plume shaping in relationship with the river discharge, wind and ambient current.

1.3.2 Western Galician coast

1.3.2.1 Hydrodynamical and hydrographical patterns

During the last few years the Western Galician coast has been extensively studied taking

into account its hydrodynamical and hydrographical patterns. This area has an important

hydrologic and biogeochemical activity, mainly attributable to coastal upwelling processes

which occur from April to October [McClain et al., 1986; Tilstone et al., 1994]. This upwelling

is commonly attributed to the action of northerly winds along the shelf which produce an

offshore Ekman transport, displacing surface water seaward.

The Rias Baixas have been extensively studied by means of in situ measurements and

by numerical models. Prego and Fraga [1992] analysed scattered measurements at the Ria

de Vigo from February to October 1986, by means of stationary box model. It was observed

that the Ria de Vigo behaves as a partially mixed estuary with residual positive circulation.

An interannual study to describe thermohaline and biogechemical properties of the Ria de

Vigo from May 1994 to September 1995 was carried out by Doval et al. [1998], showing

the Ria also behaves like an extension of the shelf during the upwelling season and like a

partially mixed estuary during the downwelling season. More recently, Alvarez et al. [2013]

analysed the response of thermohaline properties to the occurrence of upwelling events

at the Ria de Vigo from October 2003 to September 2004. Eastern North Atlantic Central

Water (ENACW) was observed during spring-summer (summer) at the southern (northern)

mouth of Ria de Vigo.

deCastro et al. [2000] performed hydrodynamical and thermohaline measurements at

the Ria de Pontevedra from February to July 1998, through nine stations spreaded along

the Ria, and an anchored station located in the inner-middle part of the Ria. These

measurements were used to identify the current patterns. It was observed that the wind
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direction is strongly dependent on topography and that wind velocity higher than 4 m

s-1 dominate the current at surface layers, even against tidal effect. Prego et al. [2001]

assessed the physical-hydrodynamical characteristics of the Ria de Pontevedra, studying

its hydrography and spring upwelling events during a year. Four distinct water bodies

penetrating inside the Ria during the course of a year were observed: (1) autumnal shelf

water, (2) seawater showing characteristics of the poleward current in winter, (3) subsurface

shelf water in May to September when the upwelling relaxes and (4) the ENACW in summer.

In the same period, an unusual two-layered tidal circulation pattern in this Ria was also

studied in terms of thermohaline stratification and wind forcing by Gomez-Gesteira et al.

[2001]. This unusual positive tidal circulation showed dependency on the particular summer

stratification conditions and on the presence of easterly winds inside the estuary. The

stratification was generated by solar heating and favourable upwelling conditions on the

adjacent shelf, which reinforced the estuarine positive circulation and originates near bed

inflow of ENACW. The unusual winter upwelling event observed in the Ria de Pontevedra,

during a cruise carried out on the 27 January 1998, corresponds to the water mass

transported by the poleward current, which is saltier and warmer, though less dense water

than the ENACW observed in spring and summer [Alvarez et al., 2003]. deCastro et al.

[2004] studied the along estuary negative circulation in the Ria de Pontevedra, revealing

a two-layered circulation pattern generated by the existence of two different water masses

at intermediate depths. This pattern was due to a sudden transition between upwelling

and downwelling combined with a fast decrease of river discharge. This negative estuarine

circulation was also described in Ria de Arousa [Alvarez-Salgado et al., 1996a,b], which is

30 km North of Ria de Pontevedra. Moreover, deCastro et al. [2006b] analysed the seasonal

evolution of the spatial thermohaline asymmetry. This asymmetry varies throughout the

year depending on two external parameters: the river discharge and the seawater inflow

(characterized by upwelling index).

The Rias de Vigo, Pontevedra and Arousa were studied in simultaneous by Alvarez

et al. [2005a], through the analysis of inter and intra-annual evolution of water temperature

and salinity (between October 1997 and October 2002) in the boundary between the Rias

and the adjacent ocean. All Rias were observed to share some common features: thermal

inversion from November to February, intense upwelling events from April to September.

The Rias de Vigo and Pontevedra behave in a similar way, even quantitatively, and they

differ slightly from the Ria de Arousa. This difference is especially important at the northern

mouth of Arousa, where water is fresher in winter and upwelling events are less frequent

during the summer. The water exchange between the Ria de Pontevedra and the shelf,

under tidal effects, wind and freshwater input was studied during the past few years, while

in the other Rias fewer studies were performed on this subject.

The first studies carried out off the Rias Baixas were performed by Wooster et al.

[1976]. They analysed the seasonal upwelling cycle along the eastern boundary of the
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North Atlantic from 1850 to 1970. It was found that this system is the northernmost limit

of the Eastern North Atlantic upwelling system, which extends from 10° N to about 44°

N. Fraga [1981] was also among the first to describe the upwelling off Galician coast,

using scattered measurements obtained from 1974 to 1977. Tenore et al. [1982] studied

the benthic distribution on the continental shelf in order to describe the coastal upwelling

offshore. McClain et al. [1986] analysed the wind driven upwelling using a grid of stations

covering the continental shelf from Cape Finisterre to Vigo during April 1982. They observed

a salinity increase and a water temperature decrease during the upwelling season. Alvarez-

Salgado et al. [1993] studied the hydrographic variability off the Rias Baixas during the

upwelling season (May-October 1989) by means of samples taken at a station located

on the shelf, about 9 km from the mouth of the Ria de Pontevedra. They observed that

the upwelling events occur with biweekly periodicity, bringing Eastern North Atlantic Water

(ENAW) to the subsurface layer at the station. The observations show that the thermohaline

properties of the upwelled water tend to increase over time. Perez et al. [1995] studied

the correlation between inter-annual variations in wind stress and changes in ENACW by

means of the combination of data obtained from the eastern North Atlantic region from

1974 to 1992 and data obtained near the Iberian coast (around 42° N, 10° W) in 1991

and 1993. Fiuza et al. [1998] analysed water masses and their circulation in the eastern

North Atlantic region based on CTD measurements in May 1993. They concluded that this

episodically circulation is enhanced, especially from April to October, by coastal upwelling

events induced by northerly shelf winds, during which cold and nutrient-laden ENACW

ascends to the shelf and eventually enters the Rias. Torres et al. [2003] used sea surface

temperature (SST) to describe the Galician upwelling region from July 1999 to May 2001,

although they covered a larger area and their study was mainly focused on wind patterns.

They verified that the wind measured at Finisterre itself, is not always representative of the

overall wind field.

Alvarez et al. [2005b] also studied the variation in upwelling intensity along the

northwest Iberian Peninsula. They observed that the intensity of coastal upwelling is strongly

dependent on the wind pattern. The maximum amplitudes of wind stress were observed at

the western coast (0.30 N m-2) with southward direction and these are shown to be related

to low water temperature (12 °C) and high salinity (35.8) in the estuary mouth. In order to

describe the Ekman transport patterns in the area close to the Galician coast, Cabanas and

Alvarez [2005] analysed a 40-year time series of daily and monthly Ekman transport. The

Ekman transport shows different seasonal patterns: the summer pattern is characterized

by seaward transport (upwelling favourable), while the winter pattern is characterized by

landward transport (downwelling favourable).

Alvarez et al. [2008a] described the wind forcing over the area extending from 36°

N to 44° N by means of two different but complementary databases: QuikSCAT satellite

database was used for the period between 2000-2006 with high spatial resolution (0.25°×
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0.25°) and Pacific Fisheries Environmental Laboratory (PFEL) database provided longer

records (from 1967-2006) with a coarser spatial resolution (1°× 1°). They found that the

upwelling events occur along the full western coast of the Iberian Peninsula, although these

are definitively more complex on particular coastal features, due to the interaction between

the macroscopic wind regime and coastal orography. More recently, Santos et al. [2012]

studied the differences in the variability of water temperature along the western Iberian

Peninsula. The difference between coastal and ocean values was related to the generation

of coastal upwelling, which partially inhibits the warming from surface of coastal waters.

1.3.2.2 Minho River

The Minho River, situated south of Rias Baixas, is the most important river flowing into the

Western Galician coast. The discharge of freshwater is particularly important in near coastal

regions. Freshwater can flood the major coastal estuaries located north of the river for

prolonged periods, reversing the normal estuarine density and salinity gradients [Fiedler and

Laurs, 1990]. Because the freshwater intrusion can occur in these estuaries, its presence

or absence can provide an important environmental distinction between estuaries as well

as between near coastal regions. This river is also one of the most important contributing to

the formation of an extensive buoyant plume known as the Western Iberian Buoyant Plume

(WIBP)[Peliz et al., 2002; Otero et al., 2008, 2013].

The influence of the Minho estuarine plume along the western Galician coast has never

been studied in detail. There are previous works which have been carried out analysing

changes in thermohaline variables: Mourino and Fraga [1982] analysed variations in water

temperature, salinity, nitrate, nitrite and silicate at the southern mouth of the Ria de Vigo from

October 1976 to December 1977. They found an important salinity decrease in the estuary

mouth from December to March that they attributed to the Minho River freshwater. More

recently, the effect of the Minho River intrusion in the hydrographic behaviour of the Rias

Baixas was assessed by Alvarez et al. [2006] using thermohaline observations. This study

was carried out in the spring of 1998 under high Minho River discharge and favourable wind

patterns, which spread the estuarine plume northward from the river mouth. The generated

buoyancy reverses the normal salinity gradient in the Rias of Vigo and Pontevedra, but

not in Ria de Arousa. deCastro et al. [2006a] also observed an intrusion of low salinity

water coming from the Minho River for the same period, which can be related to the high

discharge from the dams that control the Minho River discharge. This release resulted in

a strong cross-axis salinity gradient, in which salinity decreases seawards, giving rise to a

two-layered circulation pattern and a high concentration of the phytoplankton Skeletonema

costatum.
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1.3.2.3 Numerical modelling

Several developments and applications of numerical models have been made in the last

decades to investigate the interaction between the Rias Baixas and their adjacent coastal

waters.

Pascual [1987a,b] studied the circulation produced by tides and wind in the Ria de

Arousa with a 2D finite difference model. Bermudez et al. [1997, 1996] studied the

circulation inside the Ria de Vigo driven by tides using also a 2D model but based on

finite elements. Some studies have been done to quantify the long term processes and

the seasonal variations inside the Rias, by means of a box model [Prego and Fraga, 1992;

Nogueira et al., 1997b] or using data from a fixed station [Nogueira et al., 1997a]. The results

were used to describe the dynamics of the system, the seasonal patterns and the long term

trends. On the other hand, some authors [Montero et al., 1992, 1997] used lagrangian

models coupled with 2D eulerian models to carry out dispersion studies in Galician Rias.

Taboada et al. [1998] developed a 3D baroclinic model to study the seasonal variations of

the Ria de Vigo residual circulation. This circulation model was compared to and found to be

in reasonable agreement with the box model [Prego and Fraga, 1992]. The results showed

that the Ria de Vigo has a two-layered circulation, where most of water enters the estuary

through the southern mouth and leaves it through the northern one. Gomez-Gesteira et al.

[1999] used the model of Taboada et al. [1998] in a 2D mode to track the dispersion of

passive pollutants in the Ria de Vigo, concluding that the Ria de Vigo has a small residence

time. Some modelling efforts have evaluated residual fluxes in Ria de Vigo and indicate a

two-layered pattern [Montero et al., 1999; Torres-López et al., 2001; Souto et al., 2003].

Only few studies have dealt with the hydrodynamics modelling of the Ria de Pontevedra.

Ruiz-Villarreal et al. [2002] applied a numerical model to understand the hydrodynamics

and its influence on nutrients cycles and on the productivity in the Ria. This Ria was found

to be a partially mixed estuary with a double-layered residual pattern, with water flowing

seaward at the surface layers and upstream at the bottom layers. The combination of these

characteristics has an important effect in biogeochemical cycles and productivity in the

estuary. Gomez-Gesteira et al. [2003] used numerical modelling to relate the residence

time estimated by a stationary box model to the upwelling index and river discharge

considering biweekly surveys in the Ria de Pontevedra. The calculated residence time

varies from around 3 days at upstream region to around 8 days near the mouth and it

depends simultaneously on the river discharge and seawater inflow. More recently, Gilcoto

et al. [2007] developed a 3D kinematic box model based on tracer and volume balances.

However, through the analysis of the model results the existence of a bidirectional flow

originated by a barotropic interaction with the shelf upwelling was found.

Recently, Otero et al. [2008, 2013] also used a numerical model for study the variability

of the Western Iberian Buoyant Plume in response to wind events in the adjacent shelf of



1.4 Structure of this work 11

Rias Baixas, identifying three characteristic situations: a) confinement of the plume to the

coast during downwelling-southerly-winds, b) expansion of the plume during the declining

phase of the downwelling event by relaxation of the wind and c) expansion of the plume by

upwelling-northerly-winds.

All these studies provide insight on the dynamics of the adjacent coast of the Rias

Baixas. In this work, in order to give a step forward, a high resolution numerical model

was implemented for this region. This was performed to study the propagation of the Minho

estuarine plume to the Rias Baixas, establishing the conditions in which this plume affects

the circulation and hydrographic features of the Rias Baixas.

1.4 Structure of this work

This dissertation is divided in 7 chapters. Chapter 1 presents the Introduction, where the

motivations, general objectives, a general literature review and the structure of the work are

described. This is followed by Chapter 2, where a review of the hydrography and dynamics

characterization of the NW of the Iberian Peninsula, with special attention to the Rias Baixas

adjacent area is performed. In Chapter 2, the hydrography of the Ria de Vigo, Ria de

Pontevedra and Ria de Arousa mouth is studied in terms of its major mechanisms and

identifying their influence on the establishment of the observed patterns. In Chapter 3 an

assessment of wind patterns accuracy from the QuikSCAT satellite, WRF model and in situ

wind along the Galician coast is carried out, allowing to evaluate its applicability to study

wind induced coastal phenomena. Chapter 4 presents the general overview of MOHID

numerical model as well as the setup of the coastal and estuarine models. The model

ability to reproduce the Minho estuarine plume, as well as the study of the propagation

and influence of Minho estuarine plume on Rias Baixas circulation and hydrography can be

found in Chapters 5 and 6. Finally, in Chapter 7, the conclusions of the dissertation are

drawn and suggestions for further work are presented.
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Chapter 2

Characterization of the Minho River,
Rias Baixas and adjacent coastal
zone

2.1 Introduction

Circulation and exchange processes in estuaries are forced by waves, tides, freshwater

inflow, wind stress and exchanges with the atmosphere. These processes determine the

patterns found for the salinity and water temperature inside estuaries, which are perhaps

the most important physical factors confronting an organism here.

The northwest of the Iberian Peninsula is characterized by the presence of four

estuaries located south of Cape Finisterre locally named as Rias Baixas (Figure 2.1),

which are similar from a morphological point of view and sharing several common features

[Alvarez et al., 2005a]. They are located in the northernmost limit of the Eastern North

Upwelling System, which extends from 10°N to about 44°N [Wooster et al., 1976], and

therefore in an area where the along-shore winds interact with the coastal topography to

generate upwelling-downwelling dynamics on the continental shelf. The seasonal coastal

upwelling induced by favorable winds in spring-summer months is the main recognized

source of primary production related to the presence of ENACW near coast and inside

these estuaries [Rios et al., 1992b; Perez et al., 1995; Fiuza et al., 1998]. Although this

coastal upwelling is basically a spring-summer process linked to northeast winds, several

autumn-winter upwelling events have been characterized along the Galician coast [Alvarez

et al., 2003; deCastro et al., 2006c; Prego et al., 2007; deCastro et al., 2008; Varela et al.,

2008, 2010; Alvarez et al., 2009], indicating that the upwelling process along the Galician

coast cannot be considered a limited phenomenon to the spring-summer seasons and that
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Figure 2.1: Map of the Western Galician Coast.

should be observed under favourable conditions independently of the season. Due to the

proximity with the Minho River, the Rias Baixas considered in this thesis are from south to

north: the Ria de Vigo, the Ria de Pontevedra and the Ria de Arousa.

In this chapter, a review of the hydrography and dynamics characterization of the NW

of the Iberian Peninsula, with special attention to the Rias Baixas adjacent area is carried

out, based on published papers and data collected from surveys. It is intended, therefore

to understand and evaluate the importance of the physical processes in the study area.

Thus, this chapter is structured as follows. First, general atmospheric, topographic and

hydrographic features of the Minho River and Rias Baixas are briefly presented. This

is followed by an overview of the additional aspects to the water masses and circulation

patterns in the Rias Baixas adjacent area. Next, the hydrography of the Ria de Vigo, Ria

de Pontevedra and Ria de Arousa mouth is studied, in terms of its major mechanisms,

identifying their influence on the establishment of the observed patterns. Finally, the main

conclusions from the work are discussed.
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2.2 General description

The Rias Baixas between 42°N and 43°N are characterized by a fairly topography and a

jagged SSE-NNW coastline. They are V shaped widening progressively from the innermost

part of the estuary toward the mouth, with volume comprised between 3.0 and 4.3 km3.

They are connected to the open sea by means of two entrances due to the existence of

islands in the outermost part. Freshwater contributions come from four small rivers: the

Verdugo-Oitabén River at the Ria de Vigo head, the Lérez River at the Ria de Pontevedra

and the Umia e Ulla Rivers at the Ria de Arousa (Figure 2.1). The Table 2.1 shows the main

fundamental dimensions of Rias Baixas.

The Ria de Vigo supports the highest population among the Rias. The Ria de Arousa

is the one with higher surface, while the Ria de Pontevedra is the second largest estuary of

the Rias Baixas in terms of water volume content. The volume of freshwater flowing into the

Rias is higher in Ria de Arousa, because two main rivers discharge into this estuary. It is

the shallowest of the Rias.

The Rias Baixas are characterized by an oceanic climate, which tends to aridity in

summer. The climate of the area can be related to the seasonal evolution of two major

atmospheric systems the Azores High and the Iceland Low [Wooster et al., 1976; Fiuza

et al., 1982; Vitorino et al., 2002]. Typically, during the summer months, when the Azores

high-pressure cell is located over the central North Atlantic, the associated trade wind blows

southward along the coast of Iberia inducing upwelling and associated southward currents.

The summer wave regime is characterized by low energy wave conditions, with significant

wave heights of 2 m and period of about 8-9 s [Vitorino et al., 2002; Dodet et al., 2010].

During the winter, the Azores High is usually located farther south of the North West Africa

and the Iceland low pressure is deeper and located in southeastern Greenland. Thus, the

pressure gradient between the two systems results in an onshore and slightly northward

wind along the west coast of the Iberian Peninsula. During the winter months, the significant

wave heights are of the order of about 3-4 m, with a period of 11 and 13 s [Dodet et al., 2010].

Table 2.1: Rias Baixas dimensions.
Ria de Vigo Ria de Pontevedra Ria de Arousa

Location 42° 06’ - 42° 21’N
8° 36’ - 8° 54’W

42° 15’ - 42° 25’N
8° 39’ - 8° 56’W

42° 27’ - 42° 41’N
8° 44’ - 9° 01’W

Surface (km2) 156 141 239
Volume (km3) 3.12 3.47 4.34

Mean width (km) 4.80 3.80 9.00
Mean depth (m) 21 31 19

Main axis length (km) 32.50 22.00 33.00

Mouth width (km) southern: 5.10 southern: 7.30 southern: 4.60
northern: 2.80 northern: 3.60 northern: 3.70

Mouth depth (m) southern: 45 southern: 60 southern: 55
northern: 25 northern: 15 northern: 5
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2.2.1 Rias Baixas

2.2.1.1 Ria de Vigo

Around 30 km northwards of the Minho River mouth is located the Ria de Vigo (Figure 2.2),

which is the most meridional of the Rias Baixas. It is located near the border between

Portugal and Spain, between 42° 06’N and 42° 21’N, and 8° 36’W and 8° 54’W.

The Ria de Vigo is 32.5 km long, presenting an NE-SW direction, with 1 km width in

its inner part (NE) and 10 km at the mouth of the Ria (SW). The mean width and depth are

4.8 km and 21 m, respectively. The connection of the Ria with the shelf is separated by the

Cı́es Islands, forming two distinct estuary mouths. The northern mouth is 2.8 km wide and

has a maximum depth of 25 m and the southern mouth is 5.1 km wide and 45 m depth.

It can be divided into three zones according to the degree of continental or oceanic

influence. The innermost zone includes San Simón bay and shows the characteristics of

a typical estuary, due to the effects of tides (∼ 3 m of averaged tidal range) and to the

influence of the Verdugo-Oitabén River [Perez et al., 1992]. This River is the main tributary

of freshwater into Ria de Vigo with a catchment area of 333 km2. The Verdugo-Oitabén

River has a annual mean discharge of 13 m3 s-1, with a greatest seasonal variability, with

values ranging from 120 m3 s-1 in winter to values of 1 m3 s-1 in summer [Rios et al., 1992a].

The middle zone, which spreads from the Rande Strait to Mar Cape, is under the influence of

both continental and oceanic contributions. Finally, the outer zone, which is under dominant

oceanic influence, includes the area lying between Mar Cape and the Cı́es islands, providing

a natural protection from Atlantic swell. The almost north-south orientation of these islands

leaves two relatively narrow corridors at the north and south entrances of the Ria.

The tidal forcing is mainly semidiurnal with a Form Number significantly lower than

0.25 [Varela et al., 2005]. The tidal range varies between 2 and 4 m, so this Ria is a

Figure 2.2: Map of the Ria de Vigo.
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mesotidal estuary [Fraga and Margalef, 1979]. The Ria de Vigo behaves as partially mixed

estuary, with positive residual circulation and a two layer circulation pattern, with surface

water outflow and inflow on the bottom [Fraga and Margalef, 1979; Prego and Fraga, 1992].

2.2.1.2 Ria de Pontevedra

The Ria de Pontevedra is located between 42° 15’N and 42° 25’N, and 8° 39’W and 8° 56’W.

It is connected to the ocean by means of two mouths (Figure 2.3). The northern mouth is

narrow (3.6 km) and shallow (15 m), while the southern mouth is wide (7.3 km) and has a

depth of 60 m. The southern mouth provides the main channel for water exchange and the

Ons and Onza islands behave as protective barriers against the swell from the open sea.

It is the second largest estuary of the Rias Baixas in terms of water volume content

(3.47 km3) and has a mean depth of 31 m and a surface of 141 km2 This Ria is oriented

in the SW-NE direction, with the Lérez River being in the innermost part of the Ria and the

Onza and Ons islands in the outermost part of the estuary. This river is the main freshwater

runoff that flows into the estuary. This river has a catchment area of 450 km2 and an annual

mean discharge of 27.5 m3 s-1. The monthly mean discharge oscillates between 2 and 80

m3 s-1 and follows a similar pattern to the rainfall, as its runoff is not controlled by dams.

In this way, the level of the discharge is high from December to March, with a maximum

discharge in February and a low discharge from July to September and a minimum in

September. The Ria may be considered as an extension of the river Lérez valley where

there is tidal influence [Ruiz-Villarreal et al., 2002].

The Ria de Pontevedra is an estuarine-like system that has a semi-diurnal and

mesotidal regime, which is characterized by a two-layered residual circulation pattern [Prego

et al., 2001]. Typical spring vertical profiles of density show a pycnocline at depths that are

close to −10 m with density anomaly values around 27 kg m3 near the riverbed and lower

density values near the surface due to the Lerez River influence. The surface density values

Figure 2.3: Map of the Ria de Pontevedra.



18 Characterization of the Minho River, Rias Baixas and adjacent coastal zone

range from around 21 kg m3 at the inner part of the estuary to around 24 kg m3 at the outer

one. The partial stratification of the estuary is maintained by salinity in winter and water

temperature in summer [Gomez-Gesteira et al., 2001].

2.2.1.3 Ria de Arousa

The Ria de Arousa is the largest of the estuaries of Galicia (Figure 2.4) and is located

between the estuary of Muros and Noia to the north and the Pontevedra estuary to the

south (42° 27’ - 42° 41’N, 8° 44’ - 9° 01’W).

The Ria de Arousa is 33 km in length, 9 km wide on average (8 km in the mouth,

15 km in its wider central area and 2.5 km in the inner area), with a surface area of 239

km2, a volume of 4.34 km3 and an average depth of 19 m. The Sálvora Island divides the

entrance of the estuary into a narrow and shallow northern mouth (5 m deep) and the wider

and deeper southern mouth (55 m deep), through which almost all the water exchange

is occurring. The middle area has intermediate hydrographic characteristics (INTECMAR,

Xunta de Galicia) depending on the river discharge, but mainly on the wind regime over the

shelf, which is the main factor governing the hydrodynamic of the Ria [Roson et al., 1995].

The Ulla River is responsible by freshwater discharge into the estuary, with a catchment

area of 2924 km2 and an annual mean discharge of 76.3 m3 s-1, which range from about 5

m3 s-1 in summer up to 140 m3 s-1 in winter [Otto, 1975]. Small rivers, of which the Umia

River is the largest, also discharge into the estuary (Figure 2.1). This river has a catchment

area of 250 km2 and a annual mean discharge of 16.3 m3 s-1 [Roson et al., 1995]. These

rivers and the topography determine the division of the estuary into three well defined areas,

inner, central and outer [Otto, 1975]. The inner area is less than 20 m deep and is strongly

influenced by the River Ulla. The outer area (30-60 m deep) has a strong oceanic influence.

The Ria de Arousa, as the other Rias Baixas, is a partially mixed estuary with a two-

Figure 2.4: Map of the Ria de Arousa.
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layer positive residual estuarine circulation [Fraga and Margalef, 1979]. The tidal range is

1.1 m and 3.5 m during neap and spring tides, respectively [Hanson et al., 1986].

2.2.2 Minho River

Minho River is an international river in the north of Portugal that crosses Portuguese and

Spanish territory (Figure 2.1). It rises in Serra de Meira (Spain) and flows into the Atlantic

Ocean (in front of Caminha and A Guardia) in Portugal, after a total length of about 300 km.

The upper part of the river is in Spain and the lower 70 km lie within Portuguese territory.

The river has a catchment area of 17080 km2, 95% of which is located in Spain, and only

5%, in Portugal, and an annual average discharge of 300 m3 s-1. The monthly average

discharge oscillates between 100 m3 s-1 in August and 800 m3 s-1 in February [Rio-Barja

and Rodriguez-Lestegas, 1996].

The Minho estuary (41° 49.0’N - 41° 55.1’N, 8° 26.4’- 8° 56.7’W) is approximately 38

km long with a total area of 23 km2 (Figure 2.5). The estuary has a maximum width of about

2 km near the mouth, decreasing to about 10 m at the head. In the middle estuary there

is a region of sediment accumulation, which forms several sand banks and islands. The

mean depth of the estuary is 2.6 m and the maximum depth is about 4 m near the mouth

[Freitas et al., 2009]. It presents a semidiurnal, high-mesotidal regime and the range of the

astronomical tide varies between 2 m, during neap tides, and almost 4 m, in spring tides [IH,

2006]. The estuary can be considered as a partially mixed system, although it may present

salt wedge characteristics during high river flow events [Sousa et al., 2005]. The limit of salt

intrusion is about 35 km from the mouth [Bettencourt et al., 2003].

Figure 2.5: Map of the Minho estuary.
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2.2.3 Circulation patterns

The general circulation of the NE Atlantic region is directly dependent on two major current

systems that transport surface water masses from west to east across the Atlantic: the

North Atlantic Current extending to the north of the Iberian Peninsula (48°N to 53°N) and

the Azores Current south of Iberia centred at about 34-35°N [Saunders, 1982; Pollard and

Pu, 1985; Peliz et al., 2005].

The surface circulation off the NW of the Iberian Peninsula is dominated by the Portugal

Current System, which is composed of the slow, equatorward, Iberian basin-scale flow of the

Portugal Current (PC) proper in the open ocean, and the fast, seasonally Portugal Coastal

Current (PCC) closer to the shelf break (Figure 2.6).

The PC is estimated, on average, to extend about 300 km beyond the shelf, transporting

about 2.0± 1.2 Sv [Mazé et al., 1997] at an average of 1.6 cm s-1 [Pollard and Pu, 1985] with

maximum speeds reaching up to 5.7 cm s-1 [Martins et al., 2002]. The surface current can

range between 0.3-12 Sv region-wide (10 Sv at 37.2°N, 12 Sv at 43°N and in the narrow strip

between 10.5°W and 1000 m water depths, 9 Sv at 37.2°N and 4 Sv at 43°N) [Huthnance

et al., 2002; Martins et al., 2002].

During summer, the PCC is 30-40 km wide and 50-100 m deep and flows southward

(with maximum values of about 40 cm s-1 [Peliz et al., 2002]) in the vicinity of the shelf break,

being driven by upwelling favourable northerly winds. It then transports upwelled, cold and

nutrient-rich ENACW of subpolar origin (> 45°N, ENACWsp) in the north, and warmer and

nutrient-poor ENACW of subtropical origin (< 40°N, ENACWst) formed along the Azores

Front in the south, while during September to April the PCC piratically vanishes [Alvarez-

Salgado et al., 2003].

During the winter, beneath the near-surface equatorward flow of the Portugal and

Figure 2.6: Schematic map of the main circulation features at the NW of the Iberian
Peninsula. From Varela et al. [2005].
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Canary Currents, there is another current called Iberian Poleward Current (IPC) [Frouin

et al., 1990; Peliz et al., 2005]. The IPC is a saltier and warmer poleward current. It

is a narrow (25-40 km) slope trapped tongue like structure that flows northerly along a

distance exceeding 1500 km off the coasts of the Iberian Peninsula and its magnitude is

of the order of 20 cm s-1. It is a salty surface current (about 200 m deep) geographically

trapped by the bathymetric discontinuity at the shelf break upper slope zone. Moderately

strong upwelling and downwelling favourable winds, can modify the poleward flow but do

not significantly change the density-driven current structure at the slope. The alongshore

transport within the slope region is reduced by 0.2-0.3 Sv (from 1.2 Sv), under the influence

of either downwelling or upwelling winds [Peliz et al., 2003]. In the coastal region, the surface

circulation is also influenced by freshwater plumes resulting of the discharge from rivers

(Verdugo-Oitabén, Lérez, Ulla, Umia, Tambre and to the south by the Minho and Douro),

generating a persistent buoyant plume, the WIBP [Peliz et al., 2002]. Thus, the WIBP is

a low-salinity lens (<35.7) formed by river discharge and continental runoff expanding all

over the shelf, that could reach the 100 m isobath and is about 20 m deep, its thickness

being reduced as it approaches to the coast due to the raise of the isopycnals [Varela et al.,

2005]. According to Peliz et al. [2002], under typical winter conditions, the onshore Ekman

transport driven by southerly winds induces the confinement of the plume to the coast, thus

forcing the WIBP to develop into a narrow coastal current with strong velocities [Otero et al.,

2008]. When the southerly winds weaken or turn northerly, it is advected both southward

with the upwelling jet and offshore in the Ekman layer, even when wind variation has a short

duration (1-3 h) [Otero et al., 2008].

The dynamics on the coastal shelf interact with Rias Baixas circulation in distinct ways.

On one hand, as the Rias Baixas show a positive circulation with surface water leaving the

Rias and bottom water entering it [Otto, 1975; Prego and Fraga, 1992]. Coastal upwelling

enhanced this positive circulation, introducing colder and saltier water inside the estuaries

[Wooster et al., 1976; Fiuza et al., 1998]. One the other hand, coastal downwelling causes

a reversal of this circulation pattern, characterized by the intrusion of warm coastal waters

at the surface, which accumulates in the Rias interior and finally flows towards the ocean

through the bottom [Figueiras et al., 1994, 2002].

2.3 Material and methods

The data used in this study are: hydrographic parameters surveyed in the two mouths of

the Rias de Vigo, Pontevedra and Arousa, wind data, air temperature and Minho River

discharge.

Salinity and water temperature were measured weekly from October 1997 to October

2002 at the surface and deep for the southern (35 m deep) and northern (20 m deep)
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mouth of each estuary (Figure 2.7). Table 2.2 shows the location of sampling stations.

These measurements were made using a conductivity-temperature-depth (CTD) instrument

(Seabird19 and 25). Salinity calibration was previously performed by means of an ”Autosal”

salinometer. Salinity and water temperature time series were smoothed in order to analyse

their seasonal evolution in both mouths of the Rias de Vigo, Pontevedra and Arousa. The

methodology followed can be summarized in several stages: (1) raw data were analysed in

such a way that data out of the range of ±3σ (where σ is the standard deviation) were

removed; (2) data were filtered using a low-pass filter, in such a way that frequencies

higher than one month were smoothed out, and (3) data gaps (less than 5%), generated

by bad weather conditions and problems in the measuring devices, were filled using a cubic

interpolation scheme.

The wind data consists of surface wind fields obtained by the QuikSCAT satellite.

This dataset consists of global grid values of meridional and zonal components of wind,

measured twice a day in an approximately 0.25°×0.25° global coverage grid. Data are

given in an ascending (6 AM) and descending (6 PM) pass. The reference height of wind

data is 10 m. In addition, it is necessary to note that the wind data close to the coast (∼25

km) are not available due to the existence of a small land mask. The time series used in this

study result of the extraction of the data in a point located at 42° 15’N, 10°W .

The air temperature was provided by the ”Agencia Estatal de Meteorologı́a” of Spain

from a meteorological station situated at Peinador (42° 13’N, 8° 38’W).

Daily Minho River discharge was supplied by the ”Confederación Hidrográfica del Miño

Sil”. The river discharge considered is the result of averaging the river runoff from the

Figure 2.7: Map of Rias Baixas and sampling stations position (black dots).
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Table 2.2: Location of the sampling stations.
Southern station Northern station

Ria de Vigo 42° 10.7’N, 8° 52.5’W 42° 14’N, 8° 52.7’W
Ria de Pontevedra 42° 19.5’N, 8° 53’W 42° 23.5’N, 8° 53.5’W

Ria de Arousa 42° 28.5’N, 8° 58’W 42° 30.8’N, 8° 58.8’W

previous 7 days to the day of hydrographic sampling [Alvarez et al., 2003].

All of these datasets cover the period October 1997 to October 2002, except the wind

data provided by the QuikSCAT satellite, which are from July 1999 to October 2002.

Upwelling index was calculated at 43°N, 11°W by means of the geostrophic wind speed

obtained from atmospheric fields [Lavin et al., 1991, 2000] and was averaged for 4 days

before each cruise. Negative values of upwelling index indicate downwelling conditions,

while positive values indicate upwelling conditions.

Additionally, in order to evaluate the influence of the upwelling index, wind, air

temperature and Minho River discharge over the salinity and water temperature patterns in

the Ria de Vigo, correlations between these variables were determined using the correlation

coefficient (rx,y), which can be calculated by:

rx,y =
cov(x, y)

σxσy
(2.1)

where cov(x,y ) is the covariance between data and rx,y ranges from -1 to 1.

2.4 Results and discussion

2.4.1 Forcing mechanisms

In order to study the effect of the major forcing mechanisms in the hydrography of the Rias

Baixas, it is necessary to analyze their seasonal behavior. Upwelling index, air temperature

measured at Peinador meteorological station and Minho River discharge were monthly

averaged from October 1997 to October 2002. These means are depicted in Figure 2.8.

A positive or negative upwelling index values indicates favorable (northerly winds) or

unfavourable (southerly winds) upwelling conditions, respectively. As it can be observed in

Figure 2.8a , the upwelling season occurs from April (114.2 m3s-1km-1) to September (33.5

m3s-1km-1). For the rest of the months, winds are predominantly from the south and south-

west, favouring the predominance of downwelling conditions.

The air temperature (Figure 2.8b) shows the highest value in August (19.8 °C), while

the lowest values corresponds to January (9.2 °C) and December (9.1 °C), presenting a

marked seasonality.
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Figure 2.8: Monthly mean (October 1977-October 2002) upwelling index (a), air temperature
(b) and Minho River discharge (c).

The monthly Minho River discharge shows a typical pattern with high values during

winter and low values during summer. The maximum value corresponds to October (1457

m3 s-1), and the minimum values are reached in July and August (144 and 123 m3 s-1).

2.4.2 Seasonal evolution of hydrographic parameters

The near surface and near bottom salinity and water temperature time series from October

1997 to October 2002 for the northern and southern mouths of the Ria de Vigo, Pontevedra

and Arousa are shown in Figures 2.9, 2.10 and 2.11.

Regarding salinity, the surface salinity decreases in the beginning of 1998 (about 5)

and 2001 (about 7) in the Ria de Vigo (Figure 2.9a) and Ria de Pontevedra (Figure 2.10a),

synchronized with a high Minho River discharge, which reaches 900 m3 s-1 [Alvarez et al.,

2006]. Nevertheless, this decrease in surface salinity is higher for the Ria de Arousa (about

20 for the beginning of 2001) (Figure 2.11a), where the freshwater inflow is higher [Rio-

Barja and Rodriguez-Lestegas, 1996]. The low surface salinities can be also induced by

the southerly winds (downwelling favourable), which are predominant in the winter months

(Figure 2.8a), and drives the water to enter the Ria through the surface layer. On the

bottom (Figures 2.9b, 2.10b and 2.11b), the northern mouth of the three Rias presents the

same pattern, which may be related to its shallowness. However, the bottom salinity does

not exhibit seasonality, because the shelf water intrusion is controlled by the bathymetry

[Guerrero et al., 1997]. However, the salinity difference between surface and bottom is

higher during winter than summer (see Figures 2.12, 2.13 and 2.14), following the Minho
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Figure 2.9: Near surface (a,c) and near bottom (b,d) salinity and water temperature time
series from October 1997 to October 2002 for the northern and southern mouths of Ria de
Vigo.

Figure 2.10: Near surface (a,c) and near bottom (b,d) salinity and water temperature time
series from October 1997 to October 2002 for the northern and southern mouths of Ria de
Pontevedra.
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Figure 2.11: Near surface (a,c) and near bottom (b,d) salinity and water temperature time
series from October 1997 to October 2002 for the northern and southern mouths of Ria de
Arousa.

River and the freshwater inflow pattern (Figure 2.8c). A maximum salinity difference was

observed between January and April in both mouths, with the stratification reaching 2.5.

Stratification decreases in summer, due to the strong upwelling events and low rainfall

occurring in this area [Alvarez et al., 2005a]. When comparing both mouths of the same

Ria, near surface water in the southern mouth is saltier than in the northern mouth, which is

consistent with northward surface freshwater deflection induced by the Coriolis force [Ruiz-

Villarreal et al., 2002].

The water temperature is similar at the surface and near the bottom in both mouths

(Figures 2.9c,d, 2.10c,d and 2.11c,d). Surface water temperature increases from April

to October and decreases at the end of the year (Figures 2.12c, 2.13c and 2.14c). The

bottom water temperature decreases from December to August and increases from August

to November (Figures 2.12d, 2.13d and 2.14d). Surface water temperature is warmer at

the southern mouths than at the northern ones, due to freshwater deflection to the northern

mouth as mentioned above.

Water temperature values range from 12°C (17°C) at the surface to 13°C (15°C) near

to bottom in the winter (summer) months. This pattern is related to the air temperature

variability and freshwater input, since in winter the air is colder than the water, inducing

the surface water cooling, and the freshwater input is much colder than the seawater. In

summer it is found the opposite pattern. This superficial cooling affects sub-superficial
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Figure 2.12: Monthly mean near surface (a,c) and near bottom (b,d) salinity and water
temperature for the northern and southern mouths of the Ria de Vigo for the period from
October 1997 to October 2002.

Figure 2.13: Monthly mean near surface (a,c) and near bottom (b,d) salinity and water
temperature for the northern and southern mouths of the Ria de Pontevedra for the period
from October 1997 to October 2002.
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Figure 2.14: Monthly mean near surface (a,c) and near bottom (b,d) salinity and water
temperature for the northern and southern mouths of the Ria de Arousa for the period from
October 1997 to October 2002.

depths decreasing its effect as depth decreases.

Once again, when comparing both mouths, it can be observed that they have a

similar behaviour. However, the highest surface-to-bottom water temperature difference is

observed in the summer months, reaching 1 °C for Rias de Vigo and Pontevedra and 2 °C

for Ria de Arousa, following the air temperature pattern (Figure 2.8b).

The bottom water temperature decreases from April to September (Figures 2.12d,

2.13d and 2.14d), due to the presence of a colder water mass (ENACW) and the prevalence

of northerly winds (Figure 2.8a), which pump ENACW from the shelf [Rios et al., 1992b;

Prego et al., 1999]. Moreover, a maximum value in October, associated with the presence

of a warmer water mass on the adjacent shelf is also found, in accordance with previous

results from Prego et al. [2001]. The same pattern is also observed at the southern mouth.

When comparing both mouths of the same Ria, the water temperature is colder at the

southern mouth than at the northern one. This situation can be explained by the depth

difference between both mouths (southern mouths are considerably deeper) and by the

different orientation of the mouths (the southern mouth is aligned with the axis of the Ria,

while the northern one opens in the northwest direction) which affects the water circulation

[Alvarez et al., 2005a].
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2.4.3 Influence of external forcing on hydrographic variables

The correlations of water temperature and salinity with upwelling index, alongshore wind,

Minho River discharge and air temperature were computed. Upwelling index values and

alongshore wind were used in order to verify the possible upwelling response to the

wind variability. The Minho River discharge and air temperature were used in order to

evaluate their relationship on the establishment of the circulation patterns. The results are

summarized in Tables 2.3, 2.4 and 2.5.

With respect to the correlation of upwelling index with bottom salinity and water

temperature, the first is positive and the second is negative (Tables 2.3, 2.4 and 2.5). In

both cases, correlations have significance levels greater than 95%. These results show

possibility of occurrence of upwelling events, that is, when the winds blow predominantly

from the North and Northwest (positive upwelling index), it is verified that the colder and

Table 2.3: Correlations coefficients between the forcing variables and hydrographic
parameters for the Ria de Vigo (S: salinity; T: temperature) (a significance level >95%);
b significance level of 95%); c significance level <95%).

Northern mouth Southern mouth
Surface Bottom Surface Bottom

S T S T S T S T
Upwelling Index 0.226a 0.009a 0.532a -0.352a 0.229a -0.049c 0.480a -0.459a

Wind -0.338a -0.047a -0.561a 0.379a -0.324a -0.007c -0.513a 0.462a

Discharge -0.795a -0.317a -0.591a 0.083b -0.848a -0.283b -0.300a 0.247a

Air temperature 0.271a 0.659a 0.200a -0.071c 0.269a 0.554a 0.108c -0.284a

Table 2.4: Correlations coefficients between the forcing variables and hydrographic
parameters for the Ria de Pontevedra (S: salinity; T: temperature) (a significance level
>95%); b significance level of 95%); c significance level <95%).

Northern mouth Southern mouth
Surface Bottom Surface Bottom

S T S T S T S T
Upwelling Index 0.174a 0.020a 0.366a -0.322a 0.277a -0.066c 0.341a -0.400a

Wind -0.136a -0.020c -0.322a 0.366a -0.217c 0.065c -0.400a 0.341a

Discharge -0.759a -0.270a -0.385a 0.093b -0.762a -0.241a -0.319a 0.205a

Air temperature 0.334a 0.592a 0.391a -0.061c 0.282a 0.547a 0.295a -0.132b

Table 2.5: Correlations coefficients between the forcing variables and hydrographic
parameters for the Ria de Arousa (S: salinity; T: temperature) (a significance level >95%); b

significance level of 95%); c significance level <95%).
Northern mouth Southern mouth

Surface Bottom Surface Bottom
S T S T S T S T

Upwelling Index 0.283a 0.010a 0.369a -0.302a 0.206a -0.016c 0.262a -0.390a

Wind -0.165a -0.030c -0.307a 0.218a -0.100a 0.017c -0.201a 0.336a

Discharge -0.713a -0.209a -0.489a 0.116c -0.752a -0.226a -0.274a 0.163a

Air temperature 0.280a 0.596a 0.388a 0.083c 0.286a 0.554a 0.339a -0.136b
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saltier water enters the Rias. At surface the upwelling index correlation with salinity was

low for the three Rias. Although the significance level is greater than 95%, the relationship

between water temperature and upwelling index was not statistically significant, showing

that upwelling events affect only the bottom layers.

The correlation between the alongshore wind and the bottom salinity in the northern

and southern mouths shows negative values, both in Ria de Vigo (0.561 and -0.513),

Pontevedra (-0.322 and -0.400) and Arousa (-0.307 and -0.201). This can be related to

upwelling events, which pump salty water into the Rias mouths [Alvarez et al., 2005a]. A

similar pattern can be observed when comparing bottom water temperature, although the

correlation is positive in this case, since upwelling events pump cold water into the estuary

(Tables 2.3, 2.4 and 2.5). As it can be observed, the correlation between water temperature

and alongshore wind is lower in the northern mouth, which can be related to its low depth.

At the surface, the correlation results are similar for salinity and close to zero for water

temperature, with significance levels lower than 95%.

The correlations between air temperature and the surface water temperature are higher,

ranging from 0.6 and 0.5 in northern and southern mouths, respectively (Tables 2.3, 2.4

and 2.5). Thus, in the northern mouth, the major forcing seems to be the air temperature

(as a consequence of the shallowness of the region), revealing the high influence of the

atmosphere.

The Minho River discharge is negatively correlated with the surface salinity, ranging

from -0.759 and -0.713 (northern mouths) and from -0.848 and -0.752 (southern mouths).

The negative correlation means that when the freshwater inflow increases, the salinity

decreases in the mouths. Thereby, the increase in salinity from south to the north reveals

that the observed values may be induced by the Minho River discharge [Mourino and Fraga,

1982].

As it can be observed in Tables 2.3, 2.4 and 2.5, the water temperature distribution

is found to be weakly dependent on the river discharge and closely related to the air

temperature. However, the salinity distribution is closely related to the wind variability and

to the Minho River discharge. This result is in accordance with the results obtained for

Espinheiro channel [Vaz and Dias, 2008], where the water temperature distribution is closely

related to the freshwater temperature, tide and is also influenced by air temperature patterns

due to the small depth of the channel. The salinity distribution is closely related with the tide

and with the river discharge.

2.5 Conclusions

In this chapter was presented a characterization of the hydrography and dynamics of the

NW of the Iberian Peninsula, with special attention to the Rias Baixas adjacent area. This
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characterization allowed to identify and understand the role played by the major forcings

on the dynamics in this area. A study of the hydrography of the Ria de Baixas mouth in

terms of its major forcing mechanisms, identifying their influence on the establishment of

the observed patterns was also performed. This study has shown the following:

• During winter the surface salinity decreases, synchronized with the high Minho River

discharge. Nevertheless, the surface salinity in the Ria de Arousa was lower than in

the rest of the Rias, due to the existence of a higher inside river inflow. In the summer,

the surface-to-bottom salinity difference increases. This surface-to-bottom difference

may be related to the upwelling events. No seasonality in salinity was observed at the

bottom.

• The water temperature was similar on the surface and near the bottom, in both mouths.

A surface-to-bottom difference of water temperature, with maximum amplitude of 1°C

in Rias de Vigo and Pontevedra and 2°C in Ria de Arousa was observed, following the

air temperature pattern. The water temperature reached a maximum value in October

at all depths associated with the presence of a warmer mass on the adjacent shelf.

• At the southern mouths, the influence of the upwelling events and of the Minho River

discharge is more frequent. At the northern mouths, due to the its shallowness, the air

temperature is the major forcing.

• It was found that water temperature is weakly dependent on the river discharge and

closely related to the air temperature pattern, and the salinity is closely related to wind

variability and to the Minho River discharge.
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Chapter 3

Wind data assessment to study
coastal phenomena along the
Galician coast

3.1 Introduction

Surface winds over open sea and near coastlines have a great impact on many economic

activities, including ship routing, coastal management and fisheries. For example, in the

absence of strong ambient flows, the spreading of plumes and local oceanographic features

of ecological relevance, as upwelling regime, are highly dependent on wind stress. Thus,

in coastal areas, the study of the wind induced phenomena becomes extremely important.

In addition to their meteorological interest and importance, surface winds play a key role

in numerical studies, being a major forcing mechanism of the circulation of coastal ocean

models. This implies that errors in the determination of the surface wind will change the

model forcing and consequently will modify the output of the ocean circulation models.

Therefore, for various offshore applications it is fundamental to have accurate wind

speed and direction, and consequently appropriate tools for their observation or prediction

are essential. A few years ago, the available data for observational studies over the oceanic

regions have been based on anemometer wind measurements from land meteorological

stations. More recently, in situ measurements using oceanographic buoys improve the

knowledge about offshore winds. The data provided from these datasets are generally

long enough in time and have great temporal resolution. However, these datasets are

wind observations at a single point, coastal or offshore. Additionally, satellite scatterometry

and high-resolution weather forecast models are also frequently used to provide useful

winds. Satellite data and model predictions of the surface wind field refer to extended
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gridded spatial and temporal scales, containing more information than isolated buoys or

land meteorological stations. It should also be noted that satellite measurements are not

available near coast, limiting its applications in those areas. In other hand, model predictions

can also be less reliable close to the coast due to the discretization regarding the inland

topography.

The Galician shoreline can be divided in three regions (Figure 3.1): the western coast,

stretching from the northern part of Portugal to Cape Finisterre; the middle coast, from Cape

Finisterre to Cape Ortegal; and the northern coast, eastward of Cape Ortegal. Several

studies have been carried out in terms of wind patterns along the Galician coast [Torres

et al., 2003; Alvarez et al., 2005b; Gomez-Gesteira et al., 2006; Alvarez et al., 2008b;

Ospina-Alvarez et al., 2010; Alvarez et al., 2011]. According to these studies, wind field

along this coast is far from homogeneous due to the particular coastal topography and

orientation, which modulates wind direction and intensity. Wind observations at a single

point, coastal or offshore, will not necessarily be representative of the wind conditions along

the entire coast [Torres et al., 2003]. In this way, the analysis of wind regime along this coast

constitutes an important task, although the lack of real wind measurements (e.g. buoys and

land meteorological stations) obtained simultaneously and over long time periods makes

the analysis of the wind patterns difficult near the shoreline. To overcome this difficulty, data

provided by satellites as QuikSCAT and weather forecast models, can be used to study the

wind regime over the area.

As it can be derived from previously published work [Pickett et al., 2003; Chelton and

Freilich, 2005; Accadia et al., 2007; Alvarez et al., 2008b; Penabad et al., 2008; Otero and

Ruiz-Villarreal, 2008; Pensieri et al., 2010], QuikSCAT is a useful tool to study the wind-

induced phenomena in the open ocean and near the coast. However, it is necessary to keep

in mind the existence of a small land mask (about 25 km) near shore where data are not

available. In fact, it has been observed that QuikSCAT wind data tend to be more accurate

offshore than near shore [Pickett et al., 2003; Tang et al., 2004]. This lack of satellite

wind measurements near coast can be overcome using numerical models. Thus, weather

forecast models also constitute an important tool to characterize the wind regime solving

certain wind features that the satellite is roughly able to estimate, especially near shore.

Since the main aim of this dissertation is to implement a high resolution coastal numerical

model to study the Minho River plume intrusion into the Rias Baixas, it is crucial to know

thoroughly the wind fields close to the coast. Once the wind data is assessed, it is possible to

impose these data as boundary forcing in the coastal numerical model for simulating realistic

scenarios. Therefore, the goals of this chapter are the following: to evaluate the reliability of

offshore winds by the land meteorological stations and to determine the accuracy of wind

patterns along the Galician coast through a comparative analysis between surface winds

obtained from satellite, weather forecast model and in situ observations from buoys. This

comparison will evaluate wind data quality close to the coast, assessing its applicability to
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Figure 3.1: Bathymetry (m) and subaerial relief (m) of the Galician coast. Black squares,
diamonds and stars correspond to the location of oceanographic buoys, meteorological
stations and QuikSCAT data extraction points, respectively.

study the dispersal of Minho estuarine plume.

In a first approach, a comparative analysis between winds obtained from land

meteorological stations and offshore QuikSCAT satellite is performed. Secondly,

surface winds obtained from QuikSCAT data, WRF model predictions and in situ wind

measurements from buoys along the Galician coast is also compared.

3.2 Material and methods

3.2.1 Data

Wind data used in this study were obtained from four different datasets. The wind

supplied by the ”Agencia Estatal de Meteorologı́a” of Spain for the land meteorological

stations situated at Corrubedo (42° 35’N, 9° 6’W) and Peinador (42° 13’N, 8° 38’W), and

”Administração do Porto de Viana do Castelo” at the Viana do Castelo land meteorological

station (41° 41’N, 8° 50’W)(Figure 3.1, diamonds) were considered. For the two first stations,

the wind is measured four times a day over the period January 2000 to December 2001 and
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for the last station it is measured every ten minutes over the period November 2008 to

October 2009.

Wind data measured at three oceanographic buoys moored near the Galician shelf

break were also considered. These buoys, supported by the Spanish Agency Puertos del

Estado, are situated at Silleiro (42° 7.2’N, 9° 24’W at 44 km from land), Villano (43° 29.4’N,

9° 12.6’W at 30 km from land) and Bares (44° 3.6’N, 7° 37.2’W at 38 km from land) (Figure

3.1, squares). They measure wind vectors only over 10 minutes every hour at the 3 m level.

Then an average is calculated and hourly wind vectors are stored.

Surface wind fields obtained by the QuikSCAT satellite are available from July 1999

to November 2009 and were retrieved from the Jet Propulsion Laboratory web site (ftp:

//podaac-ftp.jpl.nasa.gov/allData/quikscat/L3/jpl/v2/hdf/). This dataset consists

of global grid values of meridional and zonal components of wind, measured twice a day in

an approximately 0.25°×0.25° global coverage grid. Data are given in an ascending (6 AM)

and descending (6 PM) pass and provided with a rain flag. Wind intensity measurements

range from 3 to 20 m s-1, with an accuracy of 2 m s-1 and 20° in direction [JPL, 2001]. The

reference height of wind data is 10 m. In addition, it is necessary to note that the wind data

close to the coast (∼25 km) are not available due to the existence of a small land mask.

From the analysis carried out over several ocean regions [Portabella and Stoffelen, 2001;

Stiles and Yueh, 2002; Milliff et al., 2004; Chelton and Freilich, 2005], it was found that the

accuracy of QuikSCAT wind data is very low when the observations are taken under rainy

conditions. This is because scattering from rain drops is higher than the scattering produced

by wind action over the sea surface [Portabella and Stoffelen, 2001]. Thus, QuikSCAT data

marked with a rain flag were discarded to carry out the study. To perform a spatial analysis of

the entire area under study, some gaps detected in daily data were objectively interpolated

between the four surrounding grid points. This interpolation affects less than 10% of the

total data. The time series used in this study results of the data extraction at 3 points: A

(42° 35’N, 9° 30’W), B (42° 13’N, 9°30’W) and C (41° 41’N, 9° 30’W) located at a distance

of about 50 km from the nearest shoreline (Figure 3.1, stars).

Predicted wind data around the Galician coast were also provided by the Regional

Forecast Agency Meteogalicia (www.meteogalicia.es) through the Weather Research and

Forecasting model (WRF) (http://www.wrf-model.org). The ARW (Advanced Research

WRF) core of WRF is ran operationally twice a day, producing numerical weather predictions

up to 72 hours over Galicia. Three two-way nested domains are configured: a first one with

36 km resolution covering the SW of Europe; a second one with 12 km resolution covering

the Iberian Peninsula; the last one with 4 km resolution over Galicia. In this study, results

from the last domain are used. Table 3.1 summarizes the combinations of microphysics and

cumulus parametrizations used with other physics options provided by Meteogalicia. The

wind generated by the model at 10 m over the sea surface (outputted hourly) is from the

PBL scheme (see Table 3.1). Only the measurements corresponding to 6 AM and 6 PM

ftp://podaac-ftp.jpl.nasa.gov/allData/quikscat/L3/jpl/v2/hdf/
ftp://podaac-ftp.jpl.nasa.gov/allData/quikscat/L3/jpl/v2/hdf/
www.meteogalicia.es
http://www.wrf-model.org
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Table 3.1: Summary of the WRF parameterizations.
WRF physics options (three domains)

Cumulus Grell
Microphysics Thompson

Longwave radiation Rapid Radiative Transfer Model scheme
Shortwave radiation Dudhia scheme
Ground temperature Five-layer soil model

were used for comparison purposes. A more detailed description of the model can be found

in Skamarock et al. [2008].

Satellite and model datasets cover the period from November 2008 to October 2009

(the last year of available QuikSCAT data), except the wind data provided by the buoys,

which do not contain continuous data for this period (Table 3.2).

3.2.2 Methodology

To evaluate wind quality close to the coast, two different approaches were applied. The

first one consists of a simple statistical analysis between offshore QuikSCAT points (Figure

3.1, stars) and land meteorological stations (Figure 3.1, diamonds), in order to analyse

the relation between offshore and land wind patterns in the Western Galician coast. This

analysis was carried out in terms of the minimum, mean and standard deviation of the wind

speed and direction. Due to the different location, satellite wind and wind measured by land

meteorological station do not necessarily represent the same measurement. Austin and

Pierson [1999] showed that satellite scatterometer winds represent synoptic scale winds

with mesoscale fluctuations removed. Besides the tidal and other supra-inertial effects,

coastal winds often exhibit diurnal cycles caused mainly by the land–sea interaction, in the

form of breezes. These may be significant in locations with strong land–sea temperature

gradients. With the purpose of removing the mesoscale fluctuations present in the land

meteorological stations datasets, these data were low-pass filtered with an arbitrary low-

pass filtered response of 33 h.

Table 3.2: Available data at the three ocean buoys during the period under study, covering
the period November 2008-October 2009.

Station Start End

Silleiro 5 Dec 2008 6 Mar 2009
31 Mar 2009 16 Jul 2009

Villano
1 Nov 2008 29 Jan 2009
30 Mar 2009 24 Jul 2009
31 Jul 2009 9 Aug 2009

Bares
1 Nov 2008 23 Jan 2009
31 Mar 2009 17 Jul 2009
31 Jul 2009 31 Oct 2009
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The second approach followed consists on a comparative analysis between surface

winds obtained from QuikSCAT, the WRF model and in situ observations from buoys

along the Galician coast, with the objective of determining which database offers the

best representation of the surface ocean wind close to the coast when compared to

measured wind. To compare these different datasets, wind speed values provided by

the oceanographic buoys were adjusted to a 10 m height, assuming neutral stability and

a logarithmic wind profile [Large and Pond, 1981; Johnson, 1999]. The method of a

logarithmically varying wind vertical profile [Ruti et al., 2008] was used instead of other

methods considering algorithms based on neutral stability correction [Liu et al., 1979; Liu

and Tang, 1996] due to the lack of atmospheric pressure, relative humidity and air and

sea surface temperature data. To adjust the time in wind vectors from all databases, the

measurements of buoy winds corresponding to 6 AM and 6 PM were used. The spatial

collocation between databases was carried out with the QuikSCAT/WRF grid point closest

to the location of each buoy.

To evaluate the adjustment between the different wind databases, a statistical analysis

was carried out examining the wind speed and wind direction by means of the correlation

coefficient,

rD,B =
cov(D,B)

σDσB
(3.1)

the root mean square error (RMSE),

RMSE =

(
1

n

n∑
i=1

(Di −Bi)2

) 1
2

(3.2)

the mean error (ME),

ME = (Di −Bi) (3.3)

and the bias,

Bias =
1

n

n∑
i=1

(Di −Bi) (3.4)

where D corresponds to wind data from QuikSCAT/WRF and B corresponds to buoys

and meteorological stations. Positive (negative) values in direction bias indicate that the

QuikSCAT/WRF is anticlockwise (clockwise) rotated with respect to meteorological/buoy

data.A weighted mean was also calculated for the RMSE and bias following,

x̄ =

∑n
i=1 xiwi∑n
i=1wi

(3.5)

where w corresponds to the data weight (number of data).

The differences between QuikSCAT-buoy and WRF-buoy wind direction were also

calculated to better evaluate the wind vector differences. To reduce the discontinuity

between 0° and 360°, the QuikSCAT and WRF wind direction was modified using the
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methodology proposed by Pensieri et al. [2010], which consists of θD = θD − 360 ◦ when

θD − θB > 180 ◦ and θD = θD + 360 ◦ when θD − θB < −180 ◦.

3.3 Results and discussion

In this section, an assessment of wind data close to the Galician coast was investigated.

Firstly, a comparative analysis between winds obtained from land meteorological stations

and offshore QuikSCAT satellite was performed. Next, the accuracy of wind patterns along

the Galician coast was also determined through a comparative analysis between wind

obtained from QuikSCAT satellite, WRF model and in situ from buoys.

3.3.1 Offshore and land wind patterns along the Western Galician coast

The relation between offshore and land wind patterns in the Western Galician coast was

addressed through an adequate statistical analysis between offshore QuikSCAT points and

in situ land meteorological wind data. The details of this comparison are included as follows.

3.3.1.1 Statistics for the year 2000

An overview of the seasonal statistics computed for the offshore stations from QuikSCAT

(A and B) and land meteorological stations (Corrubedo and Peinador) for the year 2000 is

given in Figure 3.2. The winter is defined as January, February and March and summer as

July, August and September.

In winter, the maximum wind speed presents 17.03 and 16.11 m s-1 and a minimum of

0.54 and 0.31 m s-1 at points A and B, respectively. For the Corrubedo and Peinador land

meteorological stations the maxima are 12.50 and 6.39 m s-1 and minima are 0.28 and 0.56

m s-1. During the summer, the maxima are 16.00 and 14.00 m s-1 at points A and B and

minima are 8.61 and 5.56 m s-1, respectively (Figure 3.2). The winds measured at the land

meteorological stations are very much influenced by the orography [Sanchez et al., 2007].

Offshore satellite and land meteorological stations have similar wind direction values during

both seasons.

A statistical analysis was performed in order to analyse both datasets. Correlations

between wind from QuikSCAT and land stations, as well as calculation of bias, ME and

RMSE for the year 2000 were performed (Tables 3.3 and 3.4).

The wind speed correlation between point A and the Corrubedo land meteorological

station shows high values, both in winter and summer (0.78 and 0.54). Data from Point B

are stronger correlated with the Peinador alnd meteorological station for the winter (0.83),
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Figure 3.2: Wind speed and direction minimum, maximum, mean and standard deviation
for offshore QuikSCAT points (A and B) and land meteorological stations (Corrubedo and
Peinador) for winter and summer 2000.

as opposed to the summer (0.14) (Table 3.3). In respect to the wind direction, the correlation

between data from Point A and the Corrubedo land meteorological station ranges from

0.30 (winter) to -0.63 (summer). On the other hand, data from Point B and from the

Peinador land meteorological station presents a wind direction correlation ranging from -

0.76 (winter) to 0.86 (summer). In both cases correlations have significance levels of 5%.

The great variability of the wind direction and the correlation decreasing at Corrubedo land

Table 3.3: Wind speed comparison between offshore QuikSCAT points (A, B and C) and
land meteorological stations (Cor-Corrubedo, Pei-Peinador, VC-Viana do Castelo) for winter
(w) and summer (s) of 2000, 2001 and 2009.

Year Wind Speed
r Bias (m s-1) ME (m s-1) RMSE (m s-1)

w s w s w s w s

2000 A/Cor 0.78 0.54 3.51 3.33 3.71 3.52 3.67 3.48
B/Pei 0.83 0.14 3.91 4.28 4.81 5.25 4.44 4.81

2001 A/Cor 0.22 0.13 2.28 2.33 3.80 3.90 4.10 3.35
B/Pei 0.66 0.87 5.27 4.69 6.33 5.13 5.87 4.93

2009 C/VC 0.24 -0.82 1.08 2.32 1.65 2.57 3.63 3.03

Table 3.4: Wind direction comparison between offshore QuikSCAT points (A, B and C) and
land meteorological stations (Cor-Corrubedo, Pei-Peinador, VC-Viana do Castelo) for winter
(w) and summer (s) of 2000, 2001 and 2009.

Year Wind Direction
r Bias (°) ME (°) RMSE (°)

w s w s w s

2000 A/Cor 0.30 -0.63 77.55 62.36 82.06 65.95 86.40 89.73
B/Pei -0.76 0.86 39.07 27.05 48.70 33.19 67.80 32.80

2001 A/Cor -0.15 0.10 -3.44 24.78 -5.73 41.46 121.95 128.57
B/Pei -0.90 0.13 -51.64 44.70 -61.16 49.96 67.19 72.20

2009 C/VC -0.02 -0.29 119.10 91.32 119.00 92.32 134.50 102.04
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meteorological station in the summer may be related to diurnal fluctuations that reflect the

sea-breeze regime. Moreover, results from the northern Portuguese shelf [Vitorino et al.,

2002] indicated that the summer wind variability at time scales > 2 days is about 25% less

than in winter, and that the main factor affecting wind variability in summer is the sea-land

breeze, at scales of 1 day.

As it can be observed in Tables 3.3 and 3.4, both wind speed and directional bias are

always positive, indicating that offshore satellite data is anticlockwise rotated with respect to

the land meteorological data. This result is in accordance with Penabad et al. [2008] findings

for the Galician coast. With respect to the other variables, the values of wind direction ME

are always higher for data from Point A and Corrubedo land meteorological station for both

seasons. However, the opposite can be observed in ME wind speed, where it is higher in

the Peinador land meteorological station. A seasonal behaviour arises in the ME and RMSE

of wind speed, presenting higher error values in winter. These errors are mainly attributed

to the effect of the distance from the points to the coast. These may be also caused by the

local effects near shore, which are not resolved by the satellite. The southeasterly winds

change frequently and abruptly, associated to passage of frontal systems [Penabad et al.,

2008]. Some errors are due to the wind direction variability, contributing to the relatively high

RMSE values (Table 3.4). Nevertheless, these results reveal that the wind regimes from the

two datasets have similar wind direction patterns but some differences in wind speed along

the Western Galician coast [Gomez-Gesteira et al., 2006].

3.3.1.2 Statistics for the year 2001

The statistical results of the wind speed and direction for the year 2001 for the offshore

QuikSCAT (points A and B) and land meteorological stations (Corrubedo and Peinador) are

presented in Figure 3.3.

The wind speed presents higher values than in 2000. In the offshore stations, the

wind speed maximums are 20 and 13 m s-1 during winter and summer, respectively. At

land meteorological stations of Corrubedo and Peinador, the maximums are 14.4 and 11.1

m s-1, and 6.9 and 5.6 m s-1 during the winter and summer, respectively. The maxima

occurring during the winter, in both locations, can be explained by the presence of cold

fronts that affect the study area and are responsible for the wind variability. The wind speed

differences between the offshore and land meteorological stations can be also explained by

the presence of frontal systems, occurring during the winter [Vitorino et al., 2002]. When

they reach land, these frontal systems lose speed due to the friction exerted by topography.

Thus, it is expected that the wind speed at stations near the shore presents values lower

than at offshore stations. According to the results presented in Figure 3.3, all the statistical

variables studied herein for the wind direction shows a good agreement between both
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Figure 3.3: Wind speed and direction minimum, maximum, mean and standard deviation
for offshore QuikSCAT points (A and B) and land meteorological stations (Corrubedo and
Peinador) for winter and summer 2001.

datasets.

Taking into account wind speed, the higher correlation values are obtained between

point B and the Peinador land meteorological station for the winter and summer (0.66 and

0.87). Point A and Corrubedo land meteorological station show lower correlations values

(0.22 winter and 0.13 summer) (Table 3.3). During the winter, the correlation value may

be related to the strong precipitation occurring in the study area [deCastro et al., 2006c;

Lorenzo et al., 2010]. As previously referred, during this season the large-scale circulation

is mainly driven by the position and the intensity of the Iceland Low. The Western Iberia

is affected by westerly winds that carry moist air and produce rainfall events, affecting the

wind variability. During this year occurred a negative phase in the North Atlantic Oscillation

(NAO) index, which represents a reduced pressure gradient, resulting in fewer and weaker

winter storms crossing the Galician coast [deCastro et al., 2008]. This analysis is confirmed

by Torres et al. [2003], where the winter 2001 was characterized as an “atypical” winter

season.

Relatively to the wind direction, the correlation between data from point B and from the

Peinador land meteorological station ranges from -0.90 in winter to 0.13 in summer (Table

3.4). During the winter, the wind direction has a large variability, therefore it is expected that

the wind direction varies largely between these two stations, since they are 75 km away.

In general, according to Torres et al. [2003], the winter winds present larger variability than

summer winds, showing a decrease in the wind direction correlation.

The wind speed bias is always positive, ranging from 2.28 m s-1 (A/Corrubedo) to 5.27

m s-1 (B/Peinador) in the winter and 2.33 m s-1(A/Corrubedo) to 4.69 m s-1 (B/Peinador)

in the summer (Table 3.3). During the winter (summer), for both datasets negative

(positive) directional bias are observed, indicating that offshore satellite data are clockwise
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(anticlockwise) rotated with respect to land meteorological data. It can be observed that ME

is higher in the Peinador land meteorological station, that may be related to the influence of

the orography (Table 3.3). For the wind speed, RMSE values range from 4.10 to 5.87 m s-1

for winter and 3.35 to 4.93 m s-1 for summer. The higher RMSE values may be related to

the very low wind speed (mainly in Peinador).

These errors are also attributed to the effect of the distance from the points to the

coast. Therefore, QuikSCAT satellite estimates wind speed as if it were in a neutral stable

atmosphere, while land meteorological stations measure wind in real time. These are in

accordance with the results obtained for Gulf of Finland [Soomere and Keevallik, 2003],

where the wind speed over the open sea and coastal area differ from 40 to 100%.

3.3.1.3 Statistics for the year 2009

For the year 2009, the wind speed and direction statistical results for the offshore point C

and Viana do Castelo land meteorological station is presented in Figure 3.4. In the winter

(summer), the minimum was 1.34 (0.18) and 1.31 (0.63) m s-1 at offshore point C and Viana

do Castelo land meteorological station, respectively. For offshore point C and Viana do

Castelo land meteorological station, the maxima were 17.88 and 14.71 m s-1 (winter and

summer) and 14.17 and 8.22 m s-1 (winter and summer), respectively (Figure 3.4).

In fact, the wind speed and direction correlation values for both seasons are lower than

0.29 (Tables 3.3 and 3.4), indicating that offshore and land meteorological stations winds

are out of phase.

In spite of this low correlation, the values of the bias (1.08 and 2.32 m s-1), ME (1.65

and 2.57 m s-1) and RMSE (3.63 and 3.03 m s-1) (Table 3.3) for the wind speed for the winter

Figure 3.4: Wind speed and direction minimum, maximum, mean and standard deviation for
the offshore QuikSCAT point C and Viana do Castelo land meteorological station for winter
and summer 2009.
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and summer respectively are low, showing the similarity of values into both datasets. The

largest difference can be seen in the wind direction ME (119.1° and 92.3°), which can be

attributed to the effect of the distance to the coast. Finally, the RMSE for the wind direction

are 134.5° and 102.0° for winter and summer, respectively, showing once again the similarity

of values.

Although the comparison of the two wind datasets shows that the offshore wind

from QuikSCAT represents adequately the wind patterns measured at land meteorological

station, in the next sections data from the weather forecast model will be added to the

study due to the near-shore land contamination of satellite values and the lack of land

meteorological stations in the coastal region.

3.3.2 Assessment of wind patterns accuracy along the Galician coast

Once wind conditions in the Galicia coast are highly variable due to the change of coastline

orientation and the complex orographic features, it is crucial to accurately assess wind

patterns by comparing observations at the same local and time. Therefore, only the

comparison between surface winds obtained from QuikSCAT, WRF and in situ data from

buoys was performed and the wind data from land meteorological stations were discarded

from this analysis.

3.3.2.1 Oceanographic buoys wind data analysis

Buoy data were used to characterize the wind regime over the area under study, the

percentage of events obtained for each range of wind speed according to the Beaufort

wind force scale was summarized in Table 3.5. The wind speeds statistics reveal that the

probability of light winds (lower than 3.3 m s-1) ranges from 9 to 18%. Gentle, moderate and

fresh breezes represent the prevailing wind regime of this region showing similar percentage

values which correspond to a total amount of 63-69%. Finally, the probability of strong winds

(<13.8 m s-1) is very low, ranging from 3 to 8%.

Wind roses were also represented to analyse the distribution of wind vectors at the

three stations measured by the oceanographic buoys (Figure 3.5). Bars indicate the

direction from which the wind blows. At the Silleiro station, the wind blows predominantly

from the North and Northwest directions (along shore). South winds are also observed

although with a lower frequency. At the Villano station, the behaviour is slightly different

showing northeast and southwest winds with similar frequencies. At the Bares station

was found prevalence of intense easterly wind, whose amplitude tends to surpass 8 m

s-1. The second most prevailing winds are westerly showing lower intensity than observed

for easterly winds. These results show that coastal winds tend to be aligned with coastal
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Table 3.5: Percentage of events obtained for each range of wind speed according to the
Beaufort scale at the three ocean buoys from November 2008 to October 2009.

Limits of wind
speed (m s-1)

Wind descriptive
terms

Silleiro
(%)

Villano
(%)

Bares
(%)

<1.5 Calm 6 2 3
1.6-3.3 Light breeze 12 7 9
3.4-5.4 Gentle breeze 21 18 19
5.5-7.9 Moderate breeze 20 26 23
8.0-10.7 Fresh breeze 22 22 27

10.8-13.8 Strong breeze 16 17 15
>13.9 Near gale 3 8 4

orientation [Gomez-Gesteira et al., 2006; Alvarez et al., 2008b, 2011]. In addition, these

wind patterns indicate upwelling favourable conditions during most of the period under

study all along the Galician coast. This situation is especially remarkable at the western

coast (Silleiro) which is characterized by the prevalence of intense north winds (upwelling

favourable), indicating that these conditions can also occur during autumn-winter [Alvarez

et al., 2003; deCastro et al., 2006c; Prego et al., 2007; deCastro et al., 2008; Varela et al.,

2008, 2010; Alvarez et al., 2009]. The occurrence of upwelling events during these seasons

can have implications on biogeochemical and phytoplankton patterns [Borja et al., 1996;

Santos et al., 2004; Prego et al., 2007]. These circumstances indicate that the accurate

wind regime characterization during periods as the one analysed in the present study is

fundamental to clarify the occurrence of these phenomena and, consequently, to determine

their possible impact on coastal ecosystems.

Figure 3.5: Wind rose diagrams (m s-1) calculated at the three oceanographic buoys over
the period November 2008 to October 2009.
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3.3.2.2 Comparison of forecast and satellite winds with buoy data

Wind speed data from QuikSCAT, WRF and buoys were fitted to a Weibull distribution

in order to characterize the variability among the different datasets and to calculate the

probability of finding particular wind speeds at each coastal station (Figure 3.6). Weibull

distribution gives an approximate but generally good fit to the observed wind speed

distribution [Sanchez et al., 2007; Otero and Ruiz-Villarreal, 2008]. The selection of this

distribution is often attributed to its flexibility, which assures a good fit to the observed data.

Moderate winds are very common all along the coast, although some differences can be

observed depending on the coastal area. At the western and middle coast a similar pattern

can be observed between WRF and in situ wind observations showing almost the same

behaviour. QuikSCAT tends to underestimate (overestimate) the occurrence of winds lower

(higher) than 5-6 m s-1. At the northern coast the distributions of QuikSCAT and WRF

data are different from the buoy data, indicating a lower accuracy for both databases at this

coastal area.

Table 3.6 shows the Weibull shape parameter (κ), which refers to the width of the

distribution, and the scale parameter (λ) which is related to the mean wind speed. The most

commonly occurring wind speed (Wm) was also considered. The shape parameter presents

values about 2 at the three stations independently of the database. The maximum value

Figure 3.6: Wind speed occurrence at the three stations fitted to a Weibull distribution (grey-
QuikSCAT; black-WRF; dashed black-buoy) over the period November 2008 to October
2009.
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Table 3.6: Weibull shape parameter (κ), scale parameter (λ) and the most commonly
occurring wind speed (Wm) corresponding to the Weibull distributions shown in Figure 3.6.

Station κ λ (m s-1) Wm (m s-1)

Silleiro
Buoy 1.9 7.9 5.4
WRF 1.9 8.2 5.6

QuikSCAT 2.1 8.4 6.2

Villano
Buoy 2.1 8.6 6.4

t WRF 2.0 8.6 6.2
QuikSCAT 2.2 9.1 6.9

Bares
Buoy 2.3 8.4 6.5
WRF 2.0 8.1 5.7

QuikSCAT 2.2 9.0 6.9

of the scale factor is obtained for QuikSCAT data at the three stations (between 8.4-9.1 m

s-1). In addition, the scale parameter corresponding to the model and buoys show a similar

magnitude at the three stations indicating that the WRF model predictions presents better

results than the satellite measurements. The most common wind speed ranges from about 5

to 7 m s-1 among the different databases and stations showing that moderate winds are very

common. The highest value of Wm is also observed for QuikSCAT data at the three stations

(between 6.2-6.9 m s-1). At the western and middle coast model predictions and buoys data

show a similar value. Nevertheless, at the northern coast, QuikSCAT data present a value of

Wm closer to the buoy measurements showing a higher accuracy of the satellite to measure

these winds.

A more detailed analysis can be carried out considering different limits of wind speed.

According to the results shown in Table 3.5, three different intervals are considered. The

first one includes calms and light breezes (0-3.3 m s-1), the second corresponds to values

between gentle and fresh breezes (3.4-10.7 m s-1) and the last one considers values higher

than strong breezes (> 10.8 m s-1). Table 3.7 shows the RMSE and bias calculated for

these intervals using the QuikSCAT/WRF and buoy data. The different limits of wind speed

are classified according to the values measured by the buoy. The bias is calculated as the

difference between QuikSCAT/WRF values and buoy values. Thus, a positive bias in wind

speed means that QuikSCAT/WRF tends to overestimate winds. The analysis by speed

intervals shows similar RMSE results for QuikSCAT and WRF at the three stations. Bias

distribution is less consistent. RMSE values tend to be higher at low winds (< 3.3 m s-1) for

satellite and forecasted data at the three stations agreeing with the highest values of bias.

Moderate winds show the lowest errors also at the three stations both for QuikSCAT and

WRF. Note that these winds are the most commonly observed along the coast (Figure 3.6)

and therefore, the highest number of samples is obtained within this interval. The statistical

analysis was also carried out over the whole range speed (last row) and a weighted mean

was calculated at the three stations, in terms of the number of samples existent in each bin.

Thus, some data points contribute more than others to the final average. When comparing
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wind speed results for the three locations, the RMSE values obtained for the satellite (about

1.5 m s-1) are always lower than those for the model (about 2 m s-1). Bias shows the

opposite behaviour with the lowest absolute values found for the model. In addition, bias is

always positive for QuikSCAT (about 0.5 m s-1), indicating that the satellite overestimates

wind intensity at the three stations. For the model there is a clear pattern showing a positive

bias value at the western and middle coast and negative one at the northern coast. Thus,

at the northern coast, forecasted data tend to be lower than in situ observations.

According to the previous results obtained from the Weibull analysis (Figure 3.6, Table

3.6), macroscopically at the western and middle coasts, forecasted data tend to present

better results than the satellite data, showing wind patterns more similar to those determined

from buoys measurements. Nevertheless, from the statistical analysis (Table 3.7) the RMSE

values obtained for the satellite data are lower than the corresponding forecasted data, while

the bias distribution shows the lowest absolute values for the model.

The wind direction variability was analysed considering the differences between

QuikSCAT/WRF and buoy data. Figure 3.7 shows the dependence of wind direction

difference between WRF-buoy (QuikSCAT-buoy) data on the buoy wind speed at the left

column (right column) for the three stations.

A common pattern can be observed for WRF and QuikSCAT with most of the points

distributed between -45° and 45°. The highest variations are observed for low wind speeds

(< 3 m s-1). In fact, the standard deviations (bars) increase at low wind speeds for the three

stations, as consequence of the complexity to define the direction for these events. For low

wind speeds, it is more difficult to measure the wind direction. Winds over 15 m s-1 were not

included in the calculations of the mean (black points) and standard deviation values (bars)

due to the low number of samples, since their inclusion could result in a greater margin of

error. In addition, high wind speeds are usually associated to bad weather conditions which

can cause buoys oscillations in the higher waves as well as surface layer distortion [Large

et al., 1995; Ebuchi et al., 2002] and therefore, buoys measurements become less reliable.

To better characterize the wind direction variability, a detailed analysis was carried out

considering the four main direction sectors calculating the RMSE and bias for wind direction

at the three stations for QuikSCAT and WRF data (Table 3.8). As in Table 3.7, direction

sectors are classified according to the values measured by the buoy. The bias is calculated

as the difference between QuikSCAT/WRF values and buoy data. Thus, a positive bias in

wind direction means that QuikSCAT/WRF tends to rotate winds clockwise. Comparing the

wind direction results analysed by sectors at the three stations, the RMSE is lower for the

most frequent sectors (Figure 3.5), both for QuikSCAT and WRF. Thus, at the western coast

the lowest RMSE values are obtained for S winds. At the middle coast, the lowest RMSE

values correspond to the W direction and at the northern coast to the E and W direction.

It is also important to note the higher RMSE obtained for the model at the western coast

for W winds (65.5°) and at the northern coast for N winds (65.9°). According to Figure
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Figure 3.7: Dependences of wind direction differences (WRF-buoy and QuikSCAT-buoy) on
the buoy wind speed at the three stations (grey points) calculated over the period November
2008 to October 2009. Black points represent the average of the differences based on 3 m
s-1 bins and bars represent the standard deviation.

3.5, these winds are uncommon and the high RMSE can be due to the low number of

samples. Nevertheless, the RMSE values obtained for QuikSCAT at the same sectors have

considerable lower values which could indicate lower model accuracy when in situ measured

winds come from land due to an insufficient model resolution regarding the complexity of

coastal topography. For bias distribution there is not a clear pattern for QuikSCAT and WRF

and values are dependent on the considered sector and station. Weighted means were

also used to analyse the overall patterns (lower row). The RMSE values obtained for the

satellite and the model are similar at the three stations (around 35°). For both databases a

positive bias is obtained at the western coast and a negative bias at the intermediate and

northern coast. In terms of bias absolute value, the forecasted data present lower values

at the three stations. Note that they can be dependent on the positive/negative distribution

of bias values analysed by sectors. Thus, at the western coast QuikSCAT tends to present
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positive bias values while at the middle and northern coasts bias values tend to be negative.

The bias distribution corresponding to the model is less consistent.

3.3.3 QuikSCAT vs. WRF

With respect to the previous results, it was found that the WRF model and QuikSCAT

data reproduce with reasonable accuracy the wind patterns measured by the buoys. In

this section, the analysis of both datasets at each grid point around the Galician coast

is also evaluated for the full period under study by means of an annual average. The

annual mean wind pattern is calculated by averaging daily values provided by QuikSCAT and

WRF at each grid point (Figure 3.8a, 3.8b). For the spatial comparison, model data were

interpolated on a grid of 0.25°×0.25° using a bi-cubic interpolation. Both datasets reproduce

approximately the same pattern in wind direction with some differences in wind speed. The

wind speed increases from north to south for both databases showing higher values for

satellite data over the entire domain. QuikSCAT minus WRF values were used to evaluate

and quantify the differences in wind speed, through the computation of RMSE (Figure 3.8c)

and bias (Figure 3.8d). The maximum RMSE values (about 2.2 m s-1) are observed around

Cape Finisterre mainly closer to coastline. Bias distribution shows positive values for the

entire domain indicating that QuikSCAT tends to overestimate wind speed. The highest

values of bias (about 0.7 m s-1) are also observed north and south of Cape Finisterre near

the shoreline. On the one hand, these results could be explained by the land mask for

QuikSCAT data near shore. In fact, previous studies have shown that due to this mask,

satellite measured winds tend to be more accurate offshore than near shore [Pickett et al.,

2003; Tang et al., 2004]. On the other hand, it is necessary to consider the possibility of

an insufficient model resolution regarding the complexity of the Galician coastal topography

which could influence the model results near the shoreline. Wind direction differences were

also analysed through the RMSE (Figure 3.8e) and bias (Figure 3.8f). The highest values

of RMSE (about 38°) are observed at the western coast near the shoreline. These values

could be explained by the fact that model results tend to be less accurate when measured

winds come from land (see Table 3.8). At the most eastern part of the northern coast high

values of RMSE are also observed, although they are more dependent on the low wind

speed measured all over the northern coast (Figure 3.8a,3.8b). Bias distribution shows low

values for the entire domain. Along the western coast the highest positive values (about

6°) near the shoreline are identified, indicating that QuikSCAT tends to rotate clockwise the

wind direction. For the rest of the area bias values range between -1° and 2°.
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Figure 3.8: Mean annual wind circulation obtained from satellite (a) and model (b) along the
Galician coast from November 2008 to October 2009. RMSE and bias for wind speed (c,d)
and wind direction (e,f) from QuikSCAT-WRF data.



3.4 Conclusions 53

3.4 Conclusions

The main objectives of this chapter were to evaluate wind data quality close to the coast,

assessing its applicability to study the dispersal of Minho estuarine plume. Thus, the relation

between offshore and land wind patterns, and an assessment of wind patterns accuracy

from the QuikSCAT satellite and the WRF model were performed. From these analysis, the

following can be concluded:

• Despite the deviations found in the comparative analysis performed, the offshore data

from the QuikSCAT satellite has revealed to constitute a good approach to the wind

data measured in land meteorological stations.

• Near the coast, the wind pattern strongly depends on coastal geometry and orography.

During the study periods, the wind regime was similar for the years 2000 and 2009.

The winter 2001 was characterized by the passage of cold frontal systems that affected

the study area. They induced important wind variability. Thereby, during the winter,

the wind variability was larger than in the summer.

• The accuracy of the wind speed derived from the QuikSCAT and the WRF model was

similar all along the coast, showing RMSE errors between 1.5 m s-1 and 2 m s-1. The

calculated bias for QuikSCAT data was positive at the three stations (0.5 m s-1) while

the bias for WRF predictions was positive at the western (0.3 m s-1) and middle (0.1

m s-1) coast and negative at the northern one (-0.3 m s-1).

• Similar RMSE values were found for wind direction at the three stations (35°). Wind

direction bias also showed a similar pattern between satellite and forecasted data, with

positive values at the western coast and negative values at the middle and northern

coasts, although always lower in absolute value for WRF data.

• From the analysis carried out considering different wind speed ranges, it was found

that QuikSCAT tends to overestimate wind speeds within the whole ranges. RMSE

and biases tend to be lower for moderate winds at the three stations both for satellite

and forecasted data.

• Regarding the direction sectors analysis, the lowest errors and biases were observed

at the same sectors for both databases at the three stations (S: Silleiro; W: Villano;

E-W: Bares). The model tends to be less accurate when in situ measured winds come

from land.
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• From the spatial comparison between satellite and forecasted data it was found that

the forecasted winds tend to be lower than satellite winds over the entire domain, with

the highest RMSE and bias values found near shoreline.

In summary, the analyses revealed that the WRF model is a consistent tool to obtain

representative wind data near the coast showing good results when comparing with in situ

wind observations. Thus, in the oceanographic numerical modelling implementation that will

be developed in this study, the WRF data will be used as the surface boundary condition.



Chapter 4

Numerical model

4.1 Introduction

To study the propagation and influence of the Minho estuarine plume on the Rias Baixas

circulation and hydrography, the numerical model MOHID was used. MOHID (www.mohid.

com) is a three-dimensional free surface numerical model under development at the Instituto

Superior Técnico (Universidade Técnica de Lisboa) [Santos, 1995; Martins et al., 2001;

Leitão, 2002; Leitão et al., 2005; Vaz et al., 2009b; Mateus et al., 2012]. This model

has the ability to simulate flows in shallow systems, like the Minho estuary, as well as to

study the Western Iberian coastal circulation, and it has been previously applied to simulate

the Galician Rias [Taboada et al., 1998; Gomez-Gesteira et al., 1999; Ruiz-Villarreal et al.,

2002]. Thus, to achieve the main objectives of this work two model applications composed

by a coastal nested model and an estuarine model were designed. The first one is used to

simulate the propagation of the Minho River plume towards the Rias Baixas and analyse the

effects of the plume intrusion into these estuaries. The second one runs offline and it was

developed to reproduce the Minho estuary-ocean interaction.

Therefore, a general overview of the MOHID is performed in this chapter, presenting the

main formulations solved by the model. Also, a nesting numerical modeling methodology

developed to reproduce the propagation of the Minho estuarine plume towards the Rias

Baixas is described.

www.mohid.com
www.mohid.com
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4.2 Model physics

4.2.1 Equations

The model solves the three-dimensional incompressible primitive equations. Hydrostatic

equilibrium is assumed as well as Boussinesq and Reynolds approximation. All the

equations below have been derived taken into account these approximations. Only a

summary of the model information is presented here. A more detailed description of the

numerical algorithms can be found in Santos [1995], Martins et al. [2001], Leitão [2002] and

Vaz [2007]. The hydrodynamic model solve the primitive equations in Cartesian coordinates

for incompressible flows. The momentum evolution equation is portrayed in Equation 4.1:

∂ui
∂t

+
∂(uiuj)

∂xj
= − 1

ρ0

∂patm
∂xi

− gρ(η)

ρ0

∂η

∂xi
− g

ρ0

∫ η

x3

∂ρ
′

∂xi
dx3 +

∂

∂xj

(
ν
∂ui
∂xj

)
− 2εijkΩjuk (4.1)

where ui is the velocity vector components in the Cartesian coordinates xi directions, ν is

the turbulent viscosity, η is the free surface elevation, g is the gravity acceleration and patm

is the atmospheric pressure. ρ is the density, ρ′ is its anomaly, ρ0 is the reference density

and ρ(η) represents the density at the free surface, t is the time, h is the depth, Ω is the

Earth velocity of rotation and ε is the alternate tensor.

The mass balance equation (continuity) is:

∂ui
∂xi

= 0 (4.2)

The vertical velocity is calculated from the continuity equation (Equation 4.2) by

integrating between the bottom -h and the depth x3 where u3 is to be calculated:

u3(x3) =
∂

∂x1

∫ η

−h
u1dx3 −

∂

∂x2

∫ η

−h
u2dx3 (4.3)

The free surface equation (Equation 4.4) is obtained by integrating the continuity

equation over the whole water column (between the free surface elevation η(x, y) and the

bottom -h):
∂η

∂t
= − ∂

∂x1

∫ η

−h
u1dx3 −

∂

∂x2

∫ η

−h
u2dx3 (4.4)
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The hydrostatic approximation gives:

p(z) = patm + ρ0g(η − z) + g

∫ η

z
ρ
′
dz (4.5)

Equation 4.5 relates pressure at any depth with the atmospheric pressure at the free

surface, the sea level and the anomaly pressure integrated between the level and the

surface.

The model also solves a transport equation for salinity, water temperature or any other

tracer:
∂α

∂t
+ uj

∂α

∂xj
=

∂

∂xj

(
K
∂α

∂xj

)
+ FP (4.6)

where α is the transported property, K is the diffusion coefficient and FP is a possible source

or sink term.

Finally, the density ρ is calculated as a function of water temperature and salinity by a

simplified equation of state [Leendertse and Liu, 1978]:

ρ =
(
5890 + 38T − 0.375T 2

)
/(1179.5 + 11.25T − 0.0745T 2 − (3.8− 0.01T )S

+ 0.698
(
5890 + 38T − 0.375T 2 + 3S

)
) (4.7)

4.2.2 Lagrangian model

Lagrangian transport models are very useful to simulate localized processes with sharp

gradients, such as discharge by submarine outfalls, sediment erosion due to dredging

works, oil dispersion and water quality. This particle tracking model is a subset of the

MOHID modelling system and has been used to study pollutant dispersion [Gomez-Gesteira

et al., 1999; Braunschweig et al., 2003]. The Lagrangian module derives the hydrodynamic

information (current fields) from the system and updates the calculations without having the

need to solve all the variables at the same time. It uses the concept of passive tracers,

characterized by their spatial coordinates, area and a list of properties. The particle tracking

model assumes that the velocity of each particle (up) can be split into a large scale organized

flow, characterized by a mean velocity (uM), provided by the model, and a smaller scale

random fluctuation (uF) so that up=uM+uF. The particle tracking model used the equation:

dxi
dt

= ui(xi, t) (4.8)
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where ui is the mean velocity and xi the particle position, this equation is solved using and

explicit method:

xt+∆t
i = xti + ∆tuti (4.9)

The random movement is calculated following the procedure of Allen [1982], and the

random displacement is calculated using the mixing length and the standard deviation of

turbulent velocity provided from the hydrodynamic model. Particles retain velocity during the

necessary time to perform the random movement, which is dependent on the local turbulent

mixing length.

The increase in volume is associated with small-scale turbulence and is reasonable to

assume it as isotropic. In these conditions, small particles keep their initial form and their

increase in volume is a function of the volume itself. In this study every particle is considered

as a water parcel whose paths are modelled as their move through the water.

4.2.3 Equations discretization

The MOHID model uses a finite volume approach to discretize the equations in a

structured grid. In this approach, the discrete form of the governing equations is applied

macroscopically to a cell control volume. This method makes the solution independent of

the mesh geometry, allowing the use of a generic vertical mesh [Martins et al., 1998, 2001].

The equations are discretized horizontally using an Arakawa C staggered grid. All types of

vertical coordinates have a wetting/drying cell scheme. Temporal discretization is performed

by a semi-implicit Alternating Direction Implicit (ADI) algorithm to compute the sea level

evolution with two time levels per iteration, following the method proposed by Leendertse

[1967]. The two components of the horizontal velocity are globally centred in time, t+dt/2,

leading to a second order time accuracy [Martins et al., 1998, 2001]

For the baroclinic force, MOHID uses a z-level approach for any type of vertical

coordinate. This methodology integrates the horizontal density gradient always into the

Cartesian space. Advection and diffusion of tracer properties such as water temperature

and salinity are computed explicitly in the horizontal and implicitly in the vertical, using a

Total Variation Diminishing (TVD) Superbee method. Vertical turbulent mixing is computed

using the k-εmodel, while for the horizontal, constant coefficients are assumed. The MOHID

model is coupled to the General Ocean Turbulence Model (GOTM) [Burchard et al., 1998].

GOTM is a water column model which simply allows a choice between some standard

turbulence parametrizations. In this work, the parametrization proposed by Canuto et al.

[2001] is used.
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4.2.4 Boundary conditions

Five different types of boundaries were used in this study: free surface, bottom, lateral

closed boundary, lateral opened boundary and moving boundary.

At the free surface boundary, advective fluxes of mass and momentum across the

surface are assumed null, imposing a null W vertical flux:

Wflux|surface = 0 (4.10)

Diffusive flux of momentum is imposed explicitly by means of a wind surface stress, ~τW :

ν3
∂ui
∂x3
|surface = ~τW , i = 1, 2 (4.11)

where ν3 is the vertical eddy viscosity. The wind stress is calculated according to a quadratic

friction law:

~τW = CDρa ~W | ~W | (4.12)

where CD is a drag coefficient that is a function of the wind speed (W ) measured 10 m

above the sea surface and ρa is the air density.

At the bottom boundary, the water flux is also assumed null and a quadratic law is used

to calculate the bottom stress:

ν3
∂ui
∂x3
|bottom = CDui

√
u2

1 + v2
2, i = 1, 2 (4.13)

For stability reasons the bottom stress must be calculated implicitly in the momentum

equation of the bottom cell.

The closed boundaries of the domain correspond to land. A free slip condition is used

to resolve this lateral boundary, imposed by specifying a zero normal component of mass

and momentum diffusive fluxes at cell faces in contact with land.

At the ocean open boundary the free surface elevation is imposed and at the river

boundaries the flow is specified.

Moving boundaries are closed boundaries whose position varies with time. Intertidal

zones generate moving boundaries in the alternate wetting/drying areas. A detailed

explanation of the algorithms used in MOHID can be found in Martins et al. [2001] and

Leitão [2002].
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4.3 Model implementation

To investigate the dynamics of the Minho estuarine plume two downscaling methodologies

similar to the one proposed by Leitão et al. [2005] and Vaz et al. [2009b], for simulating

the Algarve coastal circulation and Tagus estuarine plume were developed. Two nested

configurations with three levels one-way nested grids and an estuarine model were

implemented. The nested configurations are used to simulate the propagation of the Minho

River plume towards the Rias Baixas and analyse the effects of the plume intrusion into

these estuaries. The estuarine model runs offline and was developed to reproduce the

Minho estuary-ocean interaction, computing the estuarine outflow which is introduce as a

point discharge in the coastal model. A coarse model for the entire coast of the Iberian

Peninsula (‘”father” model) supplies boundary conditions for finer models applied to the

Rias Baixas and the adjacent coastal area (”son” model). The communication between

the ”father” and ”son” models is made by relaxation of the horizontal and meridional

components, through an eleven cell band adjacent to the lateral boundary. The ”son” model

did not exchange information with the ”father” model.

The two configurations only differ in the source of the initial forcing conditions. The first

one comes from Levitus climatology (called Configuration #1 hereafter) and the second one

comes from Mercator Open Global Solution (called Configuration #2 hereafter), respectively.

There was a need to test and implement these two configurations, in order to check which

configuration best represents the Minho estuarine plume propagation.

The two nested models comprise a large domain, used to compute the barotropic

tide, and two smaller baroclinic domains, which are used to simulate the estuarine plume

advection (schematized in Figure 4.1). The main difference between the second and third

domains is the horizontal resolution, which is coarser for the second domain, and also that

the third domain comprises a smaller region. The downscaling approach was implemented

to smooth the transition between first and third solutions. Therefore, the second domain

can be seen as the transition between the low-frequency solutions, while the third extracts

information from the larger-scale models to provide adequate boundary conditions for its

open boundaries as well as initial conditions.

4.3.1 Configuration of the coastal nested model including the Rias Baixas

4.3.1.1 Configuration #1

The first domain (L1) (Figure 4.2) ranges from 13.5°W to 1° E and 33.5°N to 50°N, with a

variable horizontal resolution changing from 0.02° (∼ 2 km) near the coast to 0.06° (∼ 6 km)

offshore and was constructed based on the ETOPO1 global database. This domain is a 2D
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Figure 4.1: Schematic diagram of the MOHID.

barotropic tidal driven model using the FES2004 (Finite Element Solution) global solution

as forcing [Lyard et al., 2006]. The time step is 180 s and the horizontal eddy viscosity is

100 m2 s-1. For the levels, at the open boundary a radiation boundary scheme was used

[Blumberg and Kantha, 1985]. The ocean boundary conditions are given in cascade starting

at the first level.

The second domain (L2) (Figure 4.2) comprises a region from 10.08°W to 8.40°W

and 40.92°N to 43.5°N with a horizontal resolution of 0.02° (∼ 2 km). The third domain

Figure 4.2: The MOHID nesting system implemented for Configuration #1.
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(L3) (Figure 4.2) is from 9.52°W to 8.60°W and 41.68°N to 42.86°N with a horizontal step

of 0.005° (∼ 500 m) and includes the Rias Baixas adjacent coastal area and it is directly

coupled to L2 at the open boundaries. Higher resolution is used in order to properly simulate

the small scale processes inside the estuary and also the plume dispersion. The L2 and

L3 bathymetries were constructed based on the General Bathymetric Chart of the Oceans

(GEBCO), with some corrections on the continental shelf. A z-level vertical discretization

was adopted, with L2 and L3 having 46 and 42 vertical layers, where the bottom 39 (L2), 35

(L3) are in Cartesian coordinates and the top 10 m are 7 sigma coordinate layers.

To obtain the initial ocean stratification, L2 and L3 are forced at the open boundaries

with monthly mean climatologies from Levitus (http://www.nodc.noaa.gov/OC5/WOA09/

pr_woa09.html) [Antonov et al., 2010; Locarnini et al., 2010]. In the second level a time

step of 60 s is used, and the turbulent horizontal eddy viscosity inside the domain is set to

20 m2 s-1. The third level uses a time step of 15 s and a turbulent horizontal eddy viscosity

of 5 m2 s-1. Furthermore, in both levels, the zonal and meridional velocity components,

salinity and water temperature in boundary cells are relaxed from the previous level down.

For relaxation, the Flow Relation Scheme [Martinsen and Engedahl, 1987], which consist to

apply a relaxation time at the boundary in an extension of ten cells is used. The baroclinic

force is slowly active over 10 inertia periods. The biharmonic filter coefficients are set to

1×107 m4 s-1 and 1×104 m4 s-1 for Levels 2 and 3, respectively.

The surface boundary condition is imposed using the high resolution results from

the WRF [Skamarock et al., 2008] with a spatial resolution of 5 km. These fields were

interpolated into hourly fields for the two last model domains using triangulation interpolation

in space and linear interpolation in time. At the surface, the sensible and latent heat fluxes

are calculated using the Bowen and Dalton laws, respectively [Chapra, 1997]. For the

bottom boundary condition, a constant value of the bottom rugosity was considered. The 3D

momentum (zonal and meridional velocities), heat and salt balance equations are computed

implicitly in the vertical direction, while in the horizontal directions are computed explicitly.

As landward boundary condition (L3 grid), the freshwater input from Rias Baixas and

the Minho estuary outflow are considered. The Oitabén-Verdugo, Lérez, Umia and Ulla

River discharges were obtained from estimations presented by Otero et al. [2010]. The

Minho estuarine outflow is imposed offline in L3. This outflow is computed by the Minho

estuary model developed in this study, and directly imposed as momentum, water and mass

discharge to the coastal model.

4.3.1.2 Configuration #2

The first domain (L1) (Figure 4.3) ranges from 12.60°W to 5.10°W and 34.38°N to

45.00°N with a horizontal resolution of 0.06° (∼ 6 km). This domain corresponds to the

http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html
http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html
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Figure 4.3: The MOHID nesting system implemented for Configuration #2.

Portuguese Coast Operational Modelling System (PCOMS) (http://forecast.maretec.

org/) predictions [Mateus et al., 2012]. The system provides 3 days forecast of hourly

ocean currents, sea surface height, water temperature and salinity.

The vertical resolution comprises 50 vertical layers, where the top are 7 sigma

coordinate layers and the remaining 43 to the bottom are cartesian coordinates layers. The

bathymetry is calculated by interpolation of the SRTM30 dataset. At the open boundary, the

model downscales the solution of the General Circulation Model Mercator Ocean PSY2SV4.

Tidal forcing results from a 2D barotropic model domain with 0.06° (∼ 6 km) of resolution

forced only with the FES2004 tidal atlas solution, using a Blumberg and Kantha [1985]

radiation scheme. The surface forcing is provided by MM5 regional and local atmospheric

forecasting model, supported by Instituto Superior Técnico. The variables used are air

temperature, relative humidity, wind velocity at 10 m, solar radiation and downward long

wave radiation. Bulk formulas are used to compute heat transfer between the atmosphere

and the ocean.

The L2 and L3 have the same configuration as in Configuration #1 (Figure 4.3). The

only difference is that the L2 and L3 are forced at the open boundaries with salinity, water

temperature, three components of velocities and sea level from the father model (L1-

PCOMS solution).

http://forecast.maretec.org/
http://forecast.maretec.org/
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4.3.2 The Minho estuary model

Due to the low depth (∼ 2 m) of Minho River estuary, the estuarine model was implemented

in a 2D depth integrated mode. This procedure follows a methodology similar to that used

by Vaz et al. [2007] for the Ria de Aveiro. In this configuration, a variable spatial step grid

was developed due to the geometry of the estuary, which is characterized by several sand

banks and islands. The grid has 119×100 cells, with dimensions of 100 m in the inner part

of the estuary and 650 m (300 m in the direction y ) at the western boundary. The numerical

bathymetry was interpolated from topo-hydrographic data measured by the Hydrographic

Institute of the Portuguese Navy in 1978/1989/1999 (Figure 4.4). The model is forced by

tides at the offshore open boundary and by river flow at the upstream end of the Minho

River estuary. Tidal forcing at the oceanic open boundary is specified using a global tidal

model [Le Provost et al., 1998].

The Minho river freshwater input was supplied by the ”Confederación Hidrográfica

del Miño-Sil”. At the ocean and river boundaries, the water temperature and salinity are

considered fixed, with typical values for the season of the simulation. At the surface, heat

fluxes were imposed, using latent and sensible heat fluxes parametrizations based on the

Dalton and Bowen laws, respectively [Chapra, 1997]. The meteorological data used for heat

fluxes calculation were obtained from MeteoGalicia (www.meteogalicia.es). The time step

defined for this application is 10 s, the horizontal eddy viscosity is 10 m2 s-1, and a constant

value of 0.0025 is assumed for bottom rugosity. Initial conditions for the hydrodynamic model

are null free surface gradient and null velocity in all grid points. For the transport model the

initial conditions are constant values of salinity and water temperature.

The Minho estuarine model was developed to produce outflow properties

(hydrodynamic and hydrographic variables) at the mouth of the estuary, as well as to

maintain the computational efficiency. This outflow was computed along the section shown

in Figure 4.4 (red rectangle). Hourly discharges flow were determined using the velocity

Figure 4.4: Minho estuary bathymetry with the location of the section (red rectangle) used
to compute the Minho River outflow.

www.meteogalicia.es
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magnitude, depth and water level on the cells that define the section. The salinity and

water temperature along the section were determined by the mean value for these cells.

The outflow is imposed offline in the coastal nested models (Configurations #1 and #2).

This methodology presents clear advantages in the reproduction of the Minho estuary-

ocean interaction. Indeed, it takes into account the estuarine dynamics (e. g. tide and

ocean-atmosphere interaction) and not a river represented by a point source with a constant

outflow.

4.3.3 Comparison between Configurations #1 and #2

As it was previously mentioned, the Configurations #1 and #2 only differ in the source of

the initial forcing conditions, more specifically in the salinity and water temperature patterns.

As initial conditions, Configuration #1 uses Levitus climatology and the Configuration #2

uses Mercator Open Global Solution as boundary conditions. In order to evaluate which

configuration is more accurate in order to represent the Minho estuarine plume propagation,

model results were compared with remote sensing data covering the region under analysis

and in situ data collected close to the Ria de Vigo mouth. The comparison between

Configurations #1 and #2 was made for the period from January to March 2010. It was

used six months and five days as spin-up for Configurations #1 and #2, respectively. The

Configuration #1 has a longer spin-up than Configuration #2, because it initializes with a

climatological solution, while Configuration #2 initializes with PCOMS model results. The

spin-up is defined as the period after which each is considered that there is no significant

spurious perturbation in the solution associated with the model initialization process [Leitão

et al., 2005]. During these simulations the salinity and water temperature fields are

generated. The initial conditions in the third nested model were interpolated from the

previous level.

SST was obtained from Moderate-resolution Imaging Spectroradiometer (MODIS)

(http://oceancolor.gsfc.nasa.gov/). MODIS is a key instrument comprising the Terra

(EOS AM) and Aqua (EOS PM) satellites. The orbit is sun-synchronous, meaning that the

satellite always passes over a particular part of the Earth at about the same local time

each day. MODIS Aqua always crosses the equator from south to north at about 1:30 PM

local time. One of the instruments on Aqua, MODIS, measures 36 spectral frequencies

of light reflected off the Earth in a 2300-kilometers wide swath along this orbit, so that

MODIS measures almost the entire surface of the Earth every day. The measurements can

only be taken in ocean regions that are free of clouds. For the spatial comparison of the

model results, predicted data (500 m) were interpolated for the satellite grid (1 km) using

a cubic interpolation. Figure 4.5 shows SST maps obtained from satellite data and model

predictions for Configurations #1 and #2 for the L3 domain.

http://oceancolor.gsfc.nasa.gov/
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Figure 4.5: Sea surface temperature (°C) on 1 February 2010 obtained from satellite data
(a), model predictions (Configurations #1 and #2) (b,c) and respective difference (d,e). The
computed RMSE and bias between satellite and model data are also shown.

In general, both configurations show the same spatial pattern of the Minho estuarine

plume. In Configuration #1, the area of propagation of the plume is very similar to the

observations (Figures 4.5a and 4.5b, black line), showing the same extension and water

temperature values. In this configuration, in front of Rias Baixas the water temperature

pattern (Figures 4.5a and 4.5b, black line) is also very well represented. On the other

hand, the water temperature pattern offshore (Figures 4.5a and 4.5c, gray line) is better

represented in Configuration #2.

The difference between satellite and model predicted SST and error analyses (RMSE

and bias) were performed for both configurations. The RMSE and bias are also computed in

order to quantify the difference between satellite and model data. In most of the region, the

difference distribution shows negative values in Configuration #1 (Figure 4.5d), meaning that

the model overestimates the SST (bias of -0.62 °C). However, the lowest values (close to
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zero) are observed in the area of propagation of the plume and close to the coast, revealing

a good fit between predictions and satellite data. In Configuration #2 (Figure 4.5e) an

underestimation of the SST (bias of 0.62 °C) is observed in the entire region. However,

Configuration #1 (0.80 °C) has a RMSE slightly lower than the Configuration #2 (0.95 °C),

showing that the Configuration #1 represents better the main features of the surface water

temperature field in the region under analysis. This result is very similar to the one obtained

by Leitão et al. [2005] in the Algarve coast, revealing that the climatological solution is a

good alternative to obtain the ocean salinity and water temperature.

Regarding the plume propagation, the configurations accuracy was also verified using

salinity and water temperature data on a buoy moored at Cı́es (44.16°N, 8.91°W, close to

Ria de Vigo mouth) (Figure 4.6).

Generally, according to the results presented in Figure 4.6, the predictions obtained by

Configuration #1 are more accurate for the salinity and water temperature. The bias (RMSE)

for the salinity is 0.12 (1.16) and 1.55 (1.92) in the Configurations #1 and #2, respectively

(Figure 4.6a). For the water temperature, the RMSE for Configuration #1 is 0.65 °C, while

for Configuration #2 is 1.78 °C (Figure 4.6b). While the Configuration #1 results show a

slightly warm (-0.47 °C) bias, the Configuration #2 results show a significant cold bias (1.72

°C). These high errors values obtained in Configuration #2 may be related to the initial

conditions differences [Mateus et al., 2012], showing that the climatological solution fits the

data better than the Mercator solution.

Considering the previous results, the Configuration #1 allows a better agreement

with the water temperature and salinity data in the area of propagation of the Minho

estuarine plume. Thus, in the next chapters, this nesting numerical modelling methodology

Figure 4.6: Observed and predicted (Configurations #1 and #2) salinity (a) and water
temperature (b) time series at Cı́es from 2 to 3 February, 2010.
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(Configuration #1) will be used to study the evolution of the Minho estuarine plume, as well

as its effect on the hydrography of the Rias Baixas.



Chapter 5

Model application on Minho River
plume intrusion into the Rias Baixas

5.1 Introduction

The buoyancy generated by the Minho plume can flood the Rias Baixas for long periods,

reversing the normal estuarine density gradients [Fiedler and Laurs, 1990; Alvarez et al.,

2006], and motivating the research of its influence on these estuaries through several

studies [Mourino and Fraga, 1982; Alvarez et al., 2006]. Their results show that the plume

intrusion can generate an important salinity decrease at the estuaries mouth, with the

water fresher than at the middle estuaries [Mourino and Fraga, 1982; Otero et al., 2013].

Consequently, the plume intrusion reverses the normal circulation pattern, with near bed

water moving seawards and near surface water moving landwards, which tends to stop

water exchange between estuaries and shelf [Alvarez et al., 2006; deCastro et al., 2006a].

In addition, the nutrient salts, the oxygen, the chlorophyll and the phytoplankton patterns

can be modified suggesting the existence of blooms penetrating the Ria from the shelf,

embedded in a water mass that is fresher than the estuarine one. According to deCastro

et al. [2006a] the effects of the Minho river freshwater intrusion in the Ria de Pontevedra are

characterized by a peculiar pattern of nutrient salt and oxygen distribution. The nutrient salt

patterns show a decrease of nitrate down to undetectable values in the photic layer, while

the oxygen distribution shows high oxygen saturation near the surface in the middle part of

the estuary. This pattern results from the surface water mass originated from the mixing of

coastal water and low-salinity nutrient-rich freshwater from the Minho River. Thus, the high

concentration of nutrients from the Minho River fertilized the external and middle estuary

leading to the development of diatom blooms and resulting in an extra feeding source for

the main shellfish in the area. These studies show the relevance and need of the detailed
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analysis of the effects of the Minho River plume on the Galician estuaries.

In fact, this area is characterized by a high primary productivity mainly due to spring-

summer upwelling events that can support the high fishery and aquaculture yields in this

region [Tenore et al., 1995]. Indeed, the Galician area produces around 250000 tons of

mussels per year, i.e., around 15% of the world production. Consequently, knowledge of

freshwater effects in these areas greatly facilitates the management of many exploited and

protected species. Due to the lack of continuous and simultaneous in situ measurements

along coastal estuaries as the Rias Baixas, the use of numerical models is therefore a

reliable and useful tool to understand the complex structure of the oceanographic variables

and circulation patterns that characterize these particular environments.

The present review of the literature showed that the Minho river plume influence inside

the western Galician estuaries has not been previously studied in detail, namely by means

of numerical model applications specifically designed for this purpose. Thus, this chapter

aims to study the propagation and influence of Minho estuarine plume on the Rias Baixas

circulation and hydrography. Additionally, it describes the validation of a nesting numerical

modelling methodology (Configuration #1) developed to reproduce the propagation of the

Minho estuarine plume towards the Rias Baixas, using a downscaling approach. In this

context, the model ability to reproduce the Minho River plume intrusion into the Rias Baixas

is analysed for the spring of 1998, since in this year was reported a high Minho River

discharge as well as favourable wind patterns to advect the river plume towards the Rias

Baixas, inducing an inverse circulation [Alvarez et al., 2006]. Field data is compared to

the profiles predicted by the model in this situation to validate the model results. Finally,

the possible effect of this high discharge and wind on the Rias Baixas circulation and

hydrography is also analysed.

5.2 Methodology

5.2.1 Model validation

Two sets of simulations were performed to validate the settings of the model in

reproducing the evolution and fate of the estuarine plume originated from the Minho

freshwater discharge, using the initial and boundary conditions described in Section 4.3.1.1

(Configuration #1). The first one was dedicated to evaluate the Minho estuary model

accuracy and the second one to evaluate the coastal nested model including the Rias Baixas

(L3) (Figure 5.1a) under a high Minho River discharge.

The sets of simulation of the Minho estuarine model covers the period between

February (model spin-up) and March 2006, and only the results of March 2006 were used

for the validation.



5.2 Methodology 71

Figure 5.1: Rias Baixas (a) and Minho estuary (b) bathymetries with indication of sampling
stations position (red squares) and tide gauges (green diamonds). The n, s and i indices
correspond to the northern mouth, southern mouth and inner-middle areas of the Rias,
respectively.

The model prediction skill for the Minho estuary is evaluated through a qualitative and

quantitative comparison of the temporal evolution of predicted sea surface elevation (SSE),

salinity and water temperature and concurrent in situ data. First, a visual comparison

between observed and predicted times series of SSE at Barra (41° 52.0’N, 8° 51.2’W),

Caminha (41° 52.4’N, 8° 50.5’W) and Seixas (41° 54.0’N, 8° 48.2’W) (Figure 5.1b, red

squares) was done. Next, in order to quantify the model accuracy in reproducing in situ data,

RMSE and predictive skill [Warner et al., 2005] at same stations are computed following the

methodology proposed by Sousa and Dias [2007] and Dias et al. [2009]. The comparison

between harmonic constituents [Pawlowicz et al., 2002] computed from the model results

and observations is another quantification method used to perform the evaluation of the

model accuracy. This methodology was applied in this study, by comparing the harmonic

constants of the major tidal constituents in the Minho River estuary (M2, S2, K1 and O1) for

the stations shown in Figure 5.1b. Computed and observed salinity and water temperature

were also compared to evaluate the transport model accuracy. These comparisons were

performed at two locations (Figure 5.1b) inside the estuary.

The validation of L3 is performed in two steps: first, the propagation of the astronomical

tidal wave is evaluated and second, the Minho estuarine plume dispersion is analysed over

the period 1-13 May 1998. This simulation was made for the period of November 1997 to

May 1998, and the first six months of the simulation are considered as spin-up.

To verify the accuracy of model predictions for the Rias Baixas (L3, Figure 5.1a),

SSE outputs from a hydrodynamic simulation from 1 to 18 May 1998 are compared with

synthesized tides for Vigo (42° 14.4’N, 8° 43.8’W) and Villagarcia (42° 36.0’N, 8° 46.2’W)
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(Figure 5.1a, green diamonds). The tide was synthesized from local tidal constituents. The

RMSE, predictive skill and harmonic analysis are also computed.

The model ability to reproduce the pattern of the Minho estuarine plume dispersion is

also analysed, comparing SST horizontal fields and salinity vertical profiles predicted by the

model with satellite measurements and results obtained by Alvarez et al. [2006] inside the

Rias Baixas. SST data was obtained by the Advanced Very High Resolution Radiometer

(AVHRR) sensors provided by the AVHRR/Pathfinder. SST daily data are available from

1986 to 2006 with a high spatial resolution of 4.5 km. The in situ salinity data available was

measured weekly at three sampling stations located at the southern (wider and deeper)

and northern mouths, and in the inner-middle areas of the Rias de Vigo, Pontevedra

and Arousa, during May 1998 (Figure 5.1a, red squares). These measurements were

made using conductivity-temperature-depth (CTD) instruments (Seabird19 and 25). Salinity

calibration was previously performed by means of an ”Autosal” salinometer. Regarding the

circulation pattern, the accuracy of the model is also analysed using current meter data

taken at the inner-middle part of the Ria de Pontevedra (42° 23.51’N, 8° 44.29’W) during

eight hours on 12-13 May 1998. Current velocity data was measured in situ by means of an

Electromagnetic Current Meter (Valeport Model 808) at six different depths during 5 min at

each depth. The same protocol was repeated every 30 minutes during a tidal cycle.

5.2.2 Influence of Minho estuarine plume on Rias Baixas circulation and
hydrography

The impact of the buoyant plume in the circulation and thermohaline patterns of Rias Baixas

is also evaluated from 1 to 18 May 1998. Figure 5.2 shows the daily Minho River discharge

(black line) and the meridional wind component at a point located close to the Minho River

mouth (42°N, 9°W) for the period 19 April-17 May 1998. The river discharge shows an

atypical pattern with high values during early May (1600 m3 s-1; Figure 5.2a, black line).

The meridional wind component is variable, with strong fluctuations in direction and intensity.

The prevailing winds are from the north, with intensities higher than 5 m s-1.

Thus, in order to assess the individual effect of Minho outflow and wind forcing on

the establishment of negative circulation in Rias Baixas, two new simple simulations were

designed, keeping most of the setups described in previous section, but changing the wind

and river discharge characteristics. The first one was run considering essentially the wind

effect, adopting a river discharge where the maximum values from 1 to 3 May were removed,

and a constant average value (833 m3 s-1) between 30 April and 4 May was considered

(Figure 5.2a, dashed gray line). The second one analysis essentially the river discharge

effect, considering the real discharge (Figure 5.2a, black line), but removing the wind from 1

to 13 May 1998. With this procedure is also studied the effect of the Minho estuarine outflow
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Figure 5.2: Minho River discharge between 19 April and 17 May 1998 (black line) (a).
Meridional wind component (b).

in the circulation and hydrography of the Rias Baixas and understood the effects of its main

driving forces.

5.3 Results and discussion

5.3.1 Model validation

5.3.1.1 Minho estuary

SSE, salinity and water temperature data sampled at the Minho estuary during February

2006 by the Hydrographic Institute of Portugal under the project ”Estuarine Contributions to

Inner Shelf Dynamics (ECOIS)” were used to validate the 2D estuarine model.

Figure 5.3 shows the observed and predicted SSE at three tidal stations (Figure

5.1b). The predicted tidal elevations closely follow the observed records, revealing that the

numerical model reproduces the tidal propagation inside the estuary. The average RMSE

and the predictive skill are 0.16 m and 0.96, respectively. These values are very similar to

those obtained in previous numerical modelling works for other estuaries, such as the Ria
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Figure 5.3: Observed and predicted sea surface elevation time series at Barra, Caminha
and Seixas.

de Aveiro [Sousa and Dias, 2007; Vaz et al., 2009a] and the Ria Formosa [Dias et al., 2009],

and show that the estuarine model accuracy is excellent.

The amplitudes and phases for M2, S2, K1 and O1 constituents at Barra, Caminha and

Seixas are determined (Table 5.1) through harmonic analysis [Pawlowicz et al., 2002] of 30

days time series for both observed and predicted SSE.

The distributions of both observed and predicted amplitude and phase are very similar.

The tide is semi-diurnal with low diurnal inequality, with form number of about 0.08. At

all stations, M2 presents the highest amplitude decreasing upstream. For this constituent,

the phase errors range from 9 to 30 min in Barra and Caminha, respectively (Table 5.1).

The model predictions for Barra are more accurate than for the remaining stations, with

amplitude errors of 0.06 m for both semidiurnal constituents. Both in amplitude and

phase, the highest differences between model predictions and observed data correspond

to Caminha and Seixas stations. These differences are due to bathymetric constraints that

are more significant between Caminha and Vila Nova de Cerveira [Reis et al., 2009]. The

results for the diurnal constituents reveal a good agreement between model predictions and

observations, with average amplitude (phase) errors of about 10% (11.5°) and 17% (10.6°)

for the constituents K1 and O1, respectively. In summary, the harmonic analysis results
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Table 5.1: Harmonic analysis results comparison of observed and predicted sea surface
elevation data for Barra, Caminha and Seixas (M2, S2, O1 and K1 constituents).

Tide gauge Amplitude (m) Phase (◦)
Data Model Difference Data Model Difference

M2

Barra 0.98 1.04 -0.06 84.74 80.65 4.09
Caminha 0.87 0.98 -0.11 95.62 80.94 14.68
Seixas 0.72 0.84 -0.12 106.87 99.63 7.24

S2

Barra 0.43 0.49 -0.06 122.55 114.97 7.58
Caminha 0.37 0.45 -0.08 137.91 116.30 21.61
Seixas 0.26 0.36 -0.10 156.07 139.98 16.09

O1

Barra 0.05 0.06 -0.01 324.53 320.03 4.50
Caminha 0.06 0.06 0.00 338.96 324.47 14.49
Seixas 0.04 0.05 -0.01 325.60 341.11 -15.51

K1

Barra 0.05 0.05 0.00 64.17 79.17 -15.00
Caminha 0.05 0.05 0.00 94.28 84.11 10.17
Seixas 0.07 0.05 0.03 93.57 100.42 -6.85

show that the amplitude and phase of the major tidal constituents are well reproduced by

the model.

The water temperature and salinity predictions accuracy is also investigated at the

Minho estuary. These variables can be strongly influenced by the freshwater discharge

and the validation of the salt and heat transport becomes an interesting and challenging

issue. Salinity and water temperature data sampled at Barra and Seixas during two tidal

cycles was available for comparison with model predictions (Figure 5.4). This comparison

shows that the model reproduces the variability of the thermohaline properties, with small

differences in water temperature values. The maximum RMSE value was determined for

Barra station, with a value of 0.89 °C, which represents about 30 % of the local water

temperature amplitude. For the salinity, the RMSE values are typically about 8% of the

local salinity amplitude. According to these results is considered that the model reproduces

the heat and salt transport inside the Minho estuary and consequently was considered

validated.

5.3.1.2 Rias Baixas

The dataset used in the validation of the Rias Baixas model comprises harmonic constants

of the main tidal constituents obtained at the mouth of the Rias Baixas (available from

Puertos del Estado) and hydrographic parameters surveyed in the Rias during May 1998.

In Figure 5.5 the predicted and synthesized SSE at Vigo and Villagarcia stations are

represented. In general, a good agreement between the predicted and synthesized SSE for

both stations is achieved, revealing the ability of the model to reproduce the data. The RMSE

between computed and synthesized time series is 0.06 m and 0.05 m for Villagarcia and

Vigo stations, respectively. The predictive skills are close to 1 for both stations, confirming
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Figure 5.4: Observed and predicted salinity and water temperature time series for Barra and
Seixas.

the excellent agreement between both datasets.

Harmonic analysis was also applied to predict SSE for Rias Baixas, to comparison

with the harmonic constants available from Puertos del Estado for the Villagarcia and Vigo.

Results of the amplitude and phase of the harmonic constants M2, S2, O1 and K1 determined

are presented in Table 5.2.

The agreement between predicted and observed values is very good both in amplitude

and in phase for the semi-diurnal and diurnal constituents, which are the major tidal

Figure 5.5: Model results and predicted sea surface elevation time series at Villagarcia and
Vigo.
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constituents in the Rias Baixas and near coastal region [Marta-Almeida and Dubert, 2006;

Herrera et al., 2008].

For the M2 constituent, whose amplitude is the largest, the difference between datasets

is 0.01 m. In Villagarcia, the phase difference is 2.6°, which means an average delay

between the observed and predicted tide of about 5.5 minutes for this constituent. For

the Vigo station, the average delay is lower (about 2.5 minutes), revealing a good phase

agreement. For the diurnal constituents the amplitude and phase agreement may be

considered good for both stations (about 0.01 m for amplitude and 10° for phase in Vigo).

The results from the harmonic analysis show that the tide should be classified as semidiurnal

(form number ≈ 0.07) and that semidiurnal constituents together determine about 90% of

the astronomic tide in Western Galician coast. This last result is in accordance with findings

from previous studies [Marta-Almeida and Dubert, 2006; Herrera et al., 2008].

The wind and river runoff affects the dispersal of estuarine plumes, influencing the

transport and mixing of plume waters [Choi and Wilkin, 2007]. Thereby, it is important

to evaluate the model accuracy to reproduce the Minho estuarine plume under different

conditions.

One way of validating the accuracy of model results spatial variability consists in

comparing model predicted SST horizontal fields with satellite measurements. For the

spatial comparison, model data were interpolated for the satellite grid (4.5 km) using a cubic

interpolation. The modeled SST is calculated by daily averaging the model predictions at

each grid cell. Thus, Figure 5.6 shows SST patterns obtained from model predictions and

satellite data on 3 May 1998 (northerly winds, Figure 5.2b) and 11 May 1998 (southerly

winds, Figure 5.2b).

The results show that wind plays an important role in the dispersion of the Minho

estuarine plume. When the wind blows southwards (Figure 5.6, upper panel), the main

feature is the offshore extension of the plume. Otherwise, northward wind (Figure 5.6, lower

panel) spreads the river plume towards the Rias Baixas, confining it close to the coast.

In this case the plume reaches the mouth of the Ria de Pontevedra, influencing its inner

Table 5.2: Harmonic analysis results comparison of observed and predicted sea surface
elevation data for Villagarcia and Vigo (M2, S2, O1 and K1 constituents).

Tide gauge Amplitude (m) Phase (◦)
Data Model Difference Data Model Difference

M2
Villagarcia 1.06 1.07 -0.01 83.07 80.47 2.60

Vigo 1.02 1.03 -0.01 80.25 79.06 1.19

S2
Villagarcia 0.44 0.41 0.03 100.89 97.32 3.57

Vigo 0.42 0.40 0.02 97.66 95.78 1.88

O1
Villagarcia 0.06 0.07 -0.01 323.22 323.59 -0.37

Vigo 0.06 0.07 -0.01 318.96 332.52 -13.56

K1
Villagarcia 0.05 0.08 -0.03 32.86 42.98 -10.12

Vigo 0.06 0.08 -0.02 47.87 42.60 5.27
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Figure 5.6: Sea surface temperature maps obtained from satellite data, model predictions
and respective difference on 3 May 1998 (upper panel) and 11 May 1998 (lower panel).

physical properties.

Both the measured and predicted SST patterns show approximately the expected main

features of the water temperature field in the region under analysis, which is characterized

by higher temperatures offshore that decrease toward the coast (Figure 5.6).

In both periods there is a satisfactory agreement between the observations and

predictions of the plume, although the adjustment quality tends to decrease offshore and

close to the river mouth (Figure 5.6, lower panel). More specifically, in the area of spread of

the plume it should be considered the existence of a small satellite land mask near shore

and the satellite coarse resolution. These results are very similar to those obtained in

previous numerical modelling works [Otero and Ruiz-Villarreal, 2008; Marta-Almeida et al.,

2012], revealing that the numerical model developed reproduces adequately the plume

propagation.

The difference between satellite and model predicted SST was determined to evaluate

and quantify the model accuracy (Figure 5.6). The difference distribution shows negative

values in the northwestern Galician coast for both scenarios, meaning that the model

underestimates SST in this region. However, the lowest values (close to zero) are
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observed in the area of spread of the plume, revealing a good fit between predictions and

measurements in the reproduction of the estuarine plume. Nevertheless, it is necessary

to keep in mind that the predicted water temperature is the average of the surface layer,

whose thickness is about 1 m, while the satellite data refers to the ”skin” temperature.

The top ocean ”skin” has approximately 0.01 mm or less, which may not represent the

bulk temperature of the upper ocean layer due primarily to effects of solar surface heating,

reflected radiation, as well as sensible heat loss and surface evaporation. All these factors

make it somewhat difficult to compare satellite data with predicted SST [Robinson, 2004].

Considering that the temperature measured by the satellite is usually lower, it is reasonable

to assume that the model simulates adequately the thermodynamics of the top sea layer.

These differences between model and satellite data are consistent with values described in

the literature, where differences of the order of 1-1.5 °C are found.

Figure 5.6 shows that when the wind blows from the south the Minho estuarine plume

reaches the Rias Baixas. To investigate this freshwater intrusion, the salinity vertical profiles

predicted by the model were compared with salinity measurements at the sampling stations

shown in Figure 5.1a (Figure 5.7). According to Alvarez et al. [2006] the waters from the

Minho River modulate an abnormal horizontal salinity gradient along the axis direction of

the Ria de Vigo and Pontevedra, corresponding to fresher water at the mouth of both Rias

Figure 5.7: Observed and predicted salinity vertical profiles for the sampling stations shown
in Figure 5.1.
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than at the inner-middle region. This situation contrasts with the typical salinity pattern,

corresponding to the normal Rias Baixas dynamics, with saltier water near the mouth.

The in situ salinity data reveals an abnormal salinity gradient along the axis direction

for the Rias de Vigo and Pontevedra. The southern mouths of the Rias are less saline than

the innner region, i.e. an inverse circulation is observed. This difference is more marked

in the Ria de Vigo. On the contrary, the Ria de Arousa shows a different salinity gradient,

being the water near the mouth saltier than in the inner part of the estuary, corresponding

to the typical pattern of an estuarine system. A similar situation is observed in the model

predictions. The increase in salinity from south to north shows that the low salinity values

are not generated by the rivers inside the Rias, since the highest river runoff corresponds to

the Ria de Arousa (the northernmost one) [Alvarez et al., 2006].

Analysis of Figure 5.7 shows that the model overestimates salinity values in the

southern mouth of the Ria de Vigo. Nonetheless, the halocline is well reproduced by the

model for all stations, being predicted at the same depth.

The maxima RMSE values (1.27) between model predictions and measurements are

observed in the Ria de Vigo. For the other stations, RMSE values range from 0.15 to

0.33. The bias was also determined, showing positive values for most of the stations, which

indicate that the model predictions tend to overestimate in situ salinity. The highest biases

(about -1.19) are also observed in the Ria de Vigo. These values can be explained by

an improper prescription of the landward boundary condition or a malfunction of the CTD

instrument.

The observed and predicted along estuarine circulation in the inner-middle part of Ria

de Pontevedra between 12 and 13 May 1998 is also shown in Figure 5.8. Both measured

and predicted currents patterns show a negative estuarine circulation in the inner-middle

part of Ria de Pontevedra (Figure 5.1), which is characterized by near surface water

moving landward and near bed water moving seaward, in accordance with previous findings

presented by deCastro et al. [2004].

In general, the predictions reproduce the main features of the observed velocity vertical

structure, although the adjustment quality tends to decrease near the surface. The observed

maxima velocities are 0.10 m s-1 on the surface, while the predicted velocities are 0.06

m s-1, meaning that the model underestimates the velocity in this region. No significant

differences are observed near bed, showing a good agreement between predictions and

measurements. It is important to note that, according to previous research in the area

[deCastro et al., 2000], the wind effects inside the estuary may dominate the current at

surface layers, while bottom layers are mainly controlled by tide. Nevertheless, it should be

considered that the wind field used in this implementation (5 km resolution) does not have

enough resolution to properly solve the associated features of the estuary.

Although the errors are not negligible, especially on the surface layers, the

validation results show that the model developed in this study adequately reproduces the
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Figure 5.8: Observed (a) and predicted (b) along estuarine circulation (m s-1) in the inner-
middle part of Ria de Pontevedra on 12-13 May 1998. Black line corresponds to 0 m s-1.

hydrodynamic behaviour of the Rias Baixas. Therefore, the model is a useful and suitable

tool to study of Rias Baixas circulation and hydrography, and in particular for the analysis of

the intrusion of the Minho estuarine plume in these coastal regions.

5.3.2 Negative circulation in Rias Baixas

The model developed in this study was used to investigate the influence of Minho estuarine

plume on the generation of the inverse circulation episodes in Rias Baixas, as the one

described by Alvarez et al. [2006]. These authors observed that high Minho River discharge

and favourable southern winds spread the Minho river plume towards the Rias Baixas

affecting thermohaline properties inside the estuaries on 12-13 May 1998.

Surface salinity maps (Figure 5.9, top) predicted by the model show a northward spread

of the Minho River plume reaching the Ria de Vigo on 11 May. During the following days

the northward displacement of the plume continued and the plume intrusion is observed in

the Ria de Pontevedra on 13-14 May. This situation generates an unusual surface salinity

pattern at these locations. The Rias Baixas normal salinity pattern is characterized by the

presence of saltier water at the outer part of the estuary and freshwater at the middle-inner

part. In contrast with this normal behavior, the existence of an important external freshwater
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Figure 5.9: Evolution of surface salinity. Along estuarine circulation at stations located at
mouths of Rias de Vigo (a), Pontevedra (b) and Arousa (c) between 10 and 15 May 1998.
Black line corresponds to 0 m s-1.

supply in an estuary can generate a reversal of the normal salinity and consequently a

reversal of the normal estuarine circulation [Alvarez et al., 2006; deCastro et al., 2006a].

The along axis circulation at the mouth of Rias de Vigo, Pontevedra and Arousa

is also calculated. Figure 5.9a corresponds to the current pattern at the Ria de Vigo

calculated from 10-16 May. Between 11 and 13 May, an unusual circulation (upstream

circulation) at the upper layers (up to 5-8 m) with water moving landward is observed, with

the highest velocities (0.30 m s-1) between 0-2 m. The presence of southwesterly winds

during this period favoured the reversal of the positive circulation resulting in the introduction

of the Minho estuarine outflow into the Ria. Chao [1988b], Soares et al. [2007] and

Marques et al. [2009] also observed that downwelling winds reverses the surface current,

enhancing the mixing processes in their studies for La Plata River and Patos Lagoon. This

reverse estuarine circulation may have some ecological consequences. It introduces the
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dinoflagellate blooms that are generated in coastal waters into the Rias [Fraga et al., 1988;

Sordo et al., 2001], thus decreasing the abundance of marine species in this area.

Thus, the surface current is mainly controlled by the plume intrusion while the tidal

effect is only observed at the bottom layers. This pattern is in accordance with the results

obtained for the Willapa Bay by Banas et al. [2004], where the Columbia River plume enters

the mouth at all depths under a strong tidal flow and the axial gradient can in fact reverse for

sustained periods. These forcing conditions confines the Minho plume close to the coast,

where a less saline region is developed, as found by Otero and Ruiz-Villarreal [2008].

The Ria de Pontevedra (Figure 5.9b) shows a similar circulation pattern although, in

this case, surface water moving landward is observed between 13-15 May. In addition,

this unusual circulation is more intense than for the Ria de Vigo with positive values of the

along axis current until 10 m. In fact, around 13-14 May it is also possible to see bottom

water moving seaward along one tidal cycle, which results in a negative estuarine circulation

during this period. The results also agree with those reported by Alvarez et al. [2006], who

found this negative estuarine circulation in a station located at the middle-inner estuary.

Therefore, the existence of freshwater supplied from the Minho River could generate this

unusual circulation, which tends to stop water exchange between this Ria and the shelf,

increasing the residence time and consequently changing water quality. This reversal poses

a selective force on the phytoplankton assemblage. Diatoms are unable to counteract under

these conditions and are therefore removed from the water column [Pitcher et al., 2010].

On the other hand, the high concentration of nutrients from the Minho River could fertilize

the external part of the estuary, resulting in an extra feeding source for the main shellfish in

the area [deCastro et al., 2006a]. Finally, the Ria de Arousa (Figure 5.9c) shows a normal

estuarine circulation (outflow in the surface layer and inflow in the bottom layer) with the

whole water column following the tidal cycle, landward during flood and seaward during

ebb, without influence of the Minho estuarine plume.

5.3.2.1 Minho outflow and wind effect on Rias Baixas negative circulation

River discharge and wind are important in the modulation of the vertical and horizontal

spreading of an estuarine plume. In fact, their temporal variability forces vertical and

horizontal mix between buoyant and coastal waters. As it can be observed in the previous

results, episodes of moderate-high river discharge combined with southern winds could

result in a plume with a northward direction, affecting coastal estuaries located north of

the river mouth, and reversing the normal estuarine circulation [Fiedler and Laurs, 1990;

Roegner et al., 2002; Hickey and Banas, 2003]. The presence or absence of the plume may

provide an important environmental distinction between the estuaries as well as between

nearshore coastal regions.
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Considering the results of the simulations described in section 5.2.2, for the first

scenario (removing the high river discharge from 1 to 3 May), the obtained pattern (Figure

5.10) is very similar to the simulation with real river discharge (Figure 5.9a) with no

significant differences at the Rias Baixas mouth. Choi and Wilkin [2007] also demonstrated

through numerical modelling a greatest similarity between a steady-low and high discharge

events in Hudson River mouth. These results show that the high Minho River discharge,

observed at the beginning of May, is not directly responsible for the abnormal hydrographic

patterns found at the Rias Baixas, indicating that a continuous and moderate river discharge

(500-1000 m3 s-1) may be enough to produce the negative circulation pattern.

In fact, using wind data provided by the NCEP Climate Forecast System Reanalysis

(CFSR; http://rda.ucar.edu/pub/cfsr.html) at a control station located near the mouth

of the Minho River and river runoff data from 1979 to 2010 (period of available discharge

for the Minho River), a percentage analysis of events occurring under northward winds was

carried out (Table 5.3). It is found 27% of events at moderate river discharge (> 500 m3 s-1)

under northward wind conditions, showing the importance of studying these situations.

Without wind forcing (second scenario), the plume is displaced over the shelf, creating

a bulge in front of the river mouth during the first days. Then, the low salinity waters are

Figure 5.10: Along estuarine circulation at station located at mouths of Ria de Vigo (a),
Pontevedra (b) and Arousa (c) between 10 and 15 May 1998, considering constant river
discharge. Black line corresponds to 0 m s-1.

http://rda.ucar.edu/pub/cfsr.html
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Table 5.3: Percentage of events obtained for each range of discharges occurring under
northward winds.

Limits of river
discharge (m3 s-1)

Percentage of
events (%)

<500 73
500-750 17

750-1000 6
1000-1250 2
1250-1500 1
>1500 1

advected to the right extending northward (along the coastline) reaching the Ria de Vigo

mouth (Figure 5.11a). In this situation, the plume effect is observed earlier (between 6-8

May) affecting only near surface layers, being surface currents weaker in this case than in

the real one (Figure 5.9a), which is consistent with the results by Marques et al. [2009] for

the Patos Lagoon. For the other Rias (Figures 5.11b and 5.11c), the classical estuarine

pattern is observed, showing that without wind forcing the Minho estuarine plume does not

influence their circulation pattern. Therefore, southerly winds tend to mix the water column

and to reverse the normal estuarine circulation.

Figure 5.11: Along estuarine circulation at station located at mouths of Ria de Vigo (a),
Pontevedra (b) and Arousa (c) between 5 and 12 May 1998, considering no wind forcing.
Black line corresponds to 0 m s-1.
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5.4 Conclusions

The present chapter aimed to validate the numerical model, and consequently to study

the propagation and influence of the Minho estuarine on Rias Baixas circulation and

hydrography. The results obtained from this analysis indicate the following:

• The nesting methodology adopted for the Minho estuary and the Rias Baixas

was successful implemented. Model predictions reproduce accurately the local

hydrodynamics and thermohaline patterns.

• Under certain conditions, the Minho River plume can reach the Rias Baixas and

reverse Rias de Vigo and Pontevedra circulation patterns, while the circulation of Ria

de Arousa remains unchanged. This situation was observed under northward winds

and significant Minho River discharge. The freshwater intrusion of the Minho River into

these systems was the main responsible for the unusual horizontal salinity gradient

(saltier water near the mouth than in the inner part) and negative circulation pattern

characterized at these estuaries on previous research during May 1998.

• The situation observed at the Rias Baixas at the beginning of May was not directly

dependent only on the high Minho River discharge observed. Without wind forcing,

the Minho estuarine plume does not influence the circulation pattern on Rias Baixas.

Furthermore, under northward winds, a continuous moderate Minho River discharge is

enough to produce the negative circulation pattern, reducing the importance of specific

events of high runoff values.



Chapter 6

Influence of the Minho River plume
on the Rias Baixas

6.1 Introduction

The interaction between local seasonal upwelling and estuarine plume intrusion drives the

primary productivity in the coastal region of Rias Baixas, supporting an intense raft culture

of mussels [Blanton et al., 1987]. Moreover, the plume intrusion can generate an important

salinity decrease at the estuary mouth, reversing the normal circulation pattern. On the

surface, this reverse pattern is characterized by the intrusion of warm coastal waters, which

accumulate within the Rias and finally flow towards the ocean through the bottom. Several

works were carried out to analyse changes in thermohaline variables, as salinity, inside the

Rias Baixas [Mourino and Fraga, 1982; deCastro et al., 2004; Alvarez et al., 2006; deCastro

et al., 2006a]. Some of these studies were performed under a high Minho river discharge

and favourable wind in order to spread the river plume northward, toward the Galician coast.

In the previous chapter it was observed that under northward winds, a continuous moderate

Minho River discharge is enough to produce the negative circulation pattern in Rias Baixas,

reducing the importance of the existence of specific events of high estuarine (or river) runoff

values. The Minho freshwater intrusion can give rise to both positive and negative effects

from a biological point of view. It can generate an inverse estuarine circulation, which tends

to stop the water exchange between the Rias and the adjacent shelf, increasing residence

time and hence affecting water quality. Conversely, extreme freshwater pulses can induce

phytoplankton blooms at the shelf, which penetrates into the Rias embedded in a water

mass that was fresher than the estuarine one, contributing to fertilize the area.

As it can be derived from the previous works [Garcı́a-Berdeal et al., 2002; Choi and

Wilkin, 2007; Otero et al., 2008], local wind forcing and river discharges affects significantly
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the dispersal of a river plume, namely its trajectory and vertical flux. Moreover, river

discharge also affects the location and magnitude of these physical processes. Thus,

it becomes important to study the interaction of the wind and river discharge on the

Minho estuarine plume propagation, in order to investigate the necessary conditions for the

establishment of the reverse circulation at Rias Baixas and also to evaluate water exchange

and mixing between Rias Baixas.

Additional insight concerning plume intrusion and the nature of the water exchange

between the Rias Baixas can be acquired by looking at particle tracking results. Lagrangian

transport constitutes a very useful tool to study the dispersion processes and also to predict

the fate of pollutants (e.g. oil spills accidents), allowing the analysis of particle fate through

the estimation of its trajectory. The use of particle tracking models in a complex system

like the Galician coast is very important, since the Rias Baixas are located along one of the

most important maritime routes and numerous merchant ships navigate through its water

and even close to the coast. The frequent storms which affect the coast can provoke a

larger number of pollutant accidents, affecting the primary production. Therefore, insight of

non-dissolved particles dynamics allows the local scientist and managers to improve local

policies of ecosystem protection. In the previous chapter, the importance of the Minho River

intrusion inside these Rias was analysed, indicating that the possibility of a spill near the

river mouth could seriously affect the whole area. Particles transport simulations related to

the plume dynamics have been performed worldwide [Whitney and Garvine, 2006; Banas

et al., 2009; Xia et al., 2011]. To study the response of the Minho estuarine plume dispersal

to an idealized wind forcing during extreme river discharges conditions, several scenarios

from weak-to-moderate winds are considered, blowing from each of the main four cardinal

points. Three different realistic scenarios of river discharge were chosen: low, moderate

and high. A lagrangian particle model is also applied to simulate the transport of released

particles at Minho River mouth, in order to assess the water exchange and mixture between

Rias Baixas.

6.2 Numerical experimental design: data and methods

A statistical analysis of the maximum annual values of the Minho River discharge was

performed to characterize the extreme river discharge events. Estimation of the extreme

events is usually carried out by fitting observed data samples with a suitable probability

distribution. Thus, the monthly mean Minho River discharge (supplied by the ”Confederación

Hidrográfica del Norte”) from January 1971 to December 2010 is depicted in Figure 6.1a,

showing a typical pattern with high values during winter and low values during summer. The

maximum value corresponds to February (692 m3 s-1), and the minimum value is reached

in August (121 m3 s-1).
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Figure 6.1: Monthly mean Minho River discharge for the period January 1971 to December
2010 (a). Minho River discharge scenarios (black line: high discharge; red line: moderate
discharge; blue line: low discharge) (b). Water flux (c), water temperature (d) and salinity
(e) computed through the Minho estuary mouth for the three scenarios.

Through the analysis of Figure 6.1a, the mean maximum values occur in February.

Therefore, the annual maxima of this month for Minho, Verdugo, Lérez, Umia and Ulla

rivers obtained from estimations presented in Otero et al. [2010] were adjusted to five

probability distributions. The empirical cumulative distribution function was computed

according to Kaplan and Meier [1958], while the theoretical distributions were determined by

calculating the location, scale and shape parameters of each annual maximum series. In this

study, the following probability distributions were considered: Generalized Extreme Value

distribution (GEV), Gamma, Log-normal, Exponential and Weibull. The best distribution
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was then selected by testing the quality of the fit using two statistical tests (Chi-squared

and the Kolmogorov-Smirnov tests) at the 95% confidence level and the RMSE between the

discharges empirical cumulative distribution and each probability cumulative distributions.

The GEV distribution is the one that best fits the Minho river discharge, having the lowest

RMSE value (0.03 m3 s-1). Otherwise, the Gamma and Log-normal distributions are the

best fits to the Verdugo, Lérez, Umia and Ulla rivers. From these probability distributions, the

maxima discharges for non-exceedance probability of 0.05, 0.2, 0.5, 0.8 and 0.95 [Fortunato

et al., 2002] were calculated (Table 6.1). These calculations consist in the probability of

occurrence of events that are equal to or less than a specific event. Thus, the results

suggest maximum (non-exceedance probability of 0.8) of 2108.2 m3 s-1, 64.0 m3 s-1, 70.9

m3 s-1, 53.5 m3 s-1 and 229.8 m3 s-1for the Minho, Verdugo, Lérez, Umia and Ulla rivers,

respectively (Table 6.1).

Taking into account these discharge estimates, three scenarios were chosen (Figure

6.1b). The first one considers an idealized high discharge, with an exponential shape for

the Minho river discharge starting from 692 m3 s-1 (an average discharge for February),

increasing to 2108.2 m3 s-1 (non-exceedance probability of 0.8) over 4 days and then

remaining constant (Figure 6.1b, black line). As it can be observed in Figure 6.1b (black line),

the exponential beginning is one third of the maximum value, then the second (Figure 6.1b,

red line) (moderate discharge) and third (Figure 6.1b, blue line) (low discharge) scenarios

were defined considering the same exponential shape, being the starting value one third

of the discharge value for the non-exceedance probability of 0.2 and 0.5. Concerning

the others rivers, the discharges were kept constant, ranging from each non-exceedance

probability scenarios. These Minho River discharge scenarios were imposed in the Minho

estuarine model, in order to produce outflow properties at the mouth of the Minho estuary.

These outflows (Figures 6.1c, 6.1d and 6.1e) were computed for each scenario and imposed

offline in the coastal nested model.

Wind data provided by the NCEP Climate Forecast System Reanalysis (CFSR; http:

//rda.ucar.edu/pub/cfsr.html) at a control station located near the mouth of the Minho

River from 1979 to 2010 were used to characterize the wind speed over the area under

study. The wind speed statistics reveal that the probability of winds lower than 3 m s-1 is

32 % while the probability of moderate winds (between 3 and 6 m s-1) is very high (46 %).

Table 6.1: River discharge estimations for February.
Non-exceedance

probability
River discharge (m3 s-1)

Minho Verdugo Lérez Umia Ulla
0.05 237.6 20.0 45.8 14.6 61.0
0.20 429.4 30.6 47.4 23.6 93.6
0.50 873.6 45.3 49.1 36.5 146.7
0.80 2108.2 64.0 70.9 53.5 229.8
0.95 6274.6 86.1 92.7 73.9 352.8

http://rda.ucar.edu/pub/cfsr.html
http://rda.ucar.edu/pub/cfsr.html


6.3 Results and Discussion 91

Thus, for the wind scenarios, these intensities were used as representative of the prevailing

wind regime of this region.

In order to investigate the distribution and behaviour of the estuarine plume due to

external forcing, several numerical experiments were conducted under various external

forcing. More than 30 experiments to test the sensitivities of the plume model were

simulated, including 4 different wind directions (north, south, west and east); 2 different

wind speeds (3 and 6 m s-1) and 3 different river discharges (high, moderate and low). All

the simulations run with six months spin-up, covering the period between August 2009 and

March 2010, though only the results of February 2010 were considered for the analysis. The

wind forcing starts on 5 February 2010, when the river discharge is at its maximum, and is

then held steady constant in all scenarios.

At the same time, in order to evaluate the horizontal pattern of plume dispersal, the

equivalent depth of freshwater is evaluated by:

Fw =

∫ η

−h

Sa − S(z)

Sa
dz (6.1)

where Sa is a reference or ambient salinity, which represents the limit of the buoyant plume.

Following Peliz et al. [2002] and Otero et al. [2008], it is used 35.6 as the reference salinity.

S(z) is the salinity of the water column, η is sea level and h is the bottom depth.

To identify the temporal and spatial variability of the freshwater transport and compare

the effect of the wind and discharge on plume dispersal, the freshwater transport in several

sections of the Rias is also evaluated (Figure 6.2, sections II to IV). The freshwater transport,

relative to the reference salinity, Sa, is defined as the integral of the freshwater fraction:

VFw =

∫ ∫ η

−h

Sa − S
Sa

udzdx (6.2)

where u is horizontal velocity normal to the section and the integral with respect to x is the

horizontal distance across the section [Choi and Wilkin, 2007]. The freshwater transport is

positive in the direction of the flow.

To assess the water exchange and mixture between Rias Baixas, particles were

released continuously close to the Minho river mouth (each simulation time step (15

seconds)), starting 5 and ending 7 February 2010, with a total of 5782 releases. During

the next four days, the location of these particles was recorded half-hourly.

6.3 Results and Discussion

The wind forcing and the river discharge play an important role in the dispersion at the

Minho estuarine plume, reversing the circulation pattern in Rias Baixas. In this section,
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Figure 6.2: Map of Rias Baixas and location of the cross-sections.

a characterization of the Minho estuarine plume and the necessary conditions for the

establishment of this reverse circulation were investigated. Different river discharges (high,

moderate and low) as well as four scenarios of weak and moderate winds (3 and 6 m s-1)

blowing from each of the main four compass points were simulated. The water exchange

and mixture between Rias Baixas was also addressed. The details of their influence on Rias

Baixas are included as follows.

6.3.1 Characterization of Minho estuarine plume

Firstly, changes in the vertical distribution of salinity and current along the section in front

of Minho River mouth (Figure 6.2, section I) after 1 (day 5 in Figure 6.1b) and 4 (day 9 in

Figure 6.1b) days of simulation under high river discharges (Figure 6.1b, black line) and

considering different wind directions are shown in Figures 6.3 and 6.4, respectively.

Under no wind forcing (Figure 6.3a), the plume expands to the west. The plume

becomes about 16.5 km wide offshore, with a thickness of 3 m. The lowest salinity is

about 24, because new water joins the plume without being mixed downward by surface

winds. After 4 days (Figure 6.4a), the only difference is a greater dispersion of the

plume on the surface layers. The northerly winds (Figure 6.3b) also contribute to spread

the plume offshore, tilting the isohalines toward the horizontal. These wind conditions

enhance the upwelling process, spreading surface waters and intensifying the offshore

vertical stratification (Figure 6.4b). Marques et al. [2009] also observed through numerical

modelling experiments that the influence of northerly winds contribute to increase the
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Figure 6.3: Salinity and alongshore velocity (contours) along section I after 1 day under high
river discharges and several wind (6 m s-1) directions (no wind (a), north (b), south (c), west
(d) and east (e). Black line corresponds to 0 m s-1.

vertical stratification close to the Patos lagoon mouth. In contrast, southerly winds (Figure

6.3c) accelerate the buoyant water along shore (north direction), tilting the isohalines toward

the vertical. After 4 days (Figure 6.4c), the plume width and its thickness decrease to 6.5

km and 4 m, respectively. The area of the plume has a salinity of 24 and is well mixed until

5 m. This wind pattern enhances the mixing process within the plume, forming vertically
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Figure 6.4: Salinity and alongshore velocity (contours) along section I after 4 days under
high river discharges and several wind (6 m s-1) directions (no wind (a), north (b), south (c),
west (d) and east (e). Black line corresponds to 0 m s-1.

well-mixed and narrow plumes [Soares et al., 2007]. The northward coastal current has a

surface speed of about 0.10 m s-1 along the salinity front.

During westerly winds (Figure 6.3d), the plume is pushed to the coast and after 4 days

(Figure 6.4d) it becomes about 23 km wide and 2.5 m thick. When the wind blows westward

(Figures 6.3e and 6.4e), the plume expands about 16 km offshore, about as far the unforced
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plume, though the halocline is deeper because of vertical mixing.

Next, the evolution of the surface plume and current structure is analysed (Figures 6.5

and 6.6).

Without wind forcing (Figures 6.5a, 6.5f, 6.6a and 6.5f), the plume expands offshore,

creating a bulge in front of the river mouth. The low salinity waters are advected to the

right due to the Coriolis effect and after the establishment of the geostrophic balance, the

plume water extends northward (along the coastline) [Takano, 1954a,b; Chao and Boicourt,

1986; Zhang et al., 1987; Xia et al., 2007]. However, within 4 days (Figures 6.6a and 6.6f),

the plume arrival affects the salinity distribution of the Ria de Arousa and the area of the

freshwater plume is expanded offshore. These patterns suggest an approximation to the

surface-advected plume presented by Yankovsky and Chapman [1997].

When the wind blows southwards (Figures 6.5b, 6.5g, 6.6b and 6.5g), the main feature

is also the offshore extension of the plume due to the Ekman transport . This is related to the

development of a surface southwestward flow plume. Otherwise, northward wind (Figures

6.5c, 6.5h, 6.6c and 6.5h) spreads the river plume towards the Rias Baixas (to the north),

causing the coastal freshwater band to become more narrow and its thickness to increase

(∼ 1.5 m). The northward flow along the coast and inside the Rias Baixas is stronger in this

scenario (about 0.5 m s-1) than with any other wind condition, transporting freshwater to the

Rias Baixas. The plume reaches the mouth of the Rias de Vigo and Pontevedra after 1 day

(Figures 6.5c and 6.5h) and influences the physical properties within the estuaries.

Eastward wind (Figures 6.5d, 6.5i, 6.6d and 6.6i) accumulates freshwater in Rias de

Vigo and Pontevedra, showing the importance of the wind direction parallel to the estuarine

axis, as found by Choi and Wilkin [2007] in Hudson River. The surface current along the

plume is weak (∼ 0.1 m s-1) relative to the northward wind condition (0.5 m s-1). Westward

wind (Figures 6.5e, 6.5j, 6.6e and 6.5j) is more effective at pushing freshwater out of the

mouth of the Minho River (∼ 13 km). The northwestward flow spreads the plume towards to

north, but a small portion accumulates in front of the Rias Baixas mouth.

In general, the numerical results indicate that the horizontal distribution of the Minho

estuarine plume is mainly due to the wind forcing, changing under the four different wind

directions. These results also indicate that the dynamic response of the Minho estuarine

plume to the wind forcing takes less than 1 day, and that moderated wind conditions under

high river discharge can reverse the circulation in Rias Baixas.

6.3.1.1 Classification of Minho estuarine plume

The plumes as shown in the previous figures are defined as the surface-advected plumes

by Yankovsky and Chapman [1997]. As a wind stress is applied to a buoyant plume, there

will come a point when the flow in the plume ceases to be driven by buoyancy and becomes



96 Influence of the Minho River plume on the Rias Baixas
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heavily influenced by the wind stress [Garvine, 1995]. Here, the theories developed by

Yankovsky and Chapman [1997] and Whitney and Garvine [2005] are used to characterize

the Minho estuarine plume.

To predict the behaviour of the plume based on the inflow properties, the horizontal

length scaling parameter (ys) and the trapping depth of the plume (hb), which is considered

the depth which the plume remains attached to the bottom are applied:

ys =
2(3g′h0 + v2

i )

f(2g′h0 + v2
i )

1
2

(6.3)

hb =

(
Lvih0f

g′

) 1
2

(6.4)

where h0 is the inflow depth (2 m), L is the inflow width (1 km), vi is the velocity of buoyant

inflow as it enters the shelf, and the reduced gravity g’ is given by:

g′ = g
ρ′

ρ0
(6.5)

where ρ
′

is the density anomaly.

To assess the wind impact to the plume shaping, the wind strength index introduced by

Whitney and Garvine [2005] is also computed. The wind strength index (Ws) is defined as:

Ws =
uwind
udis

(6.6)

where,

uwind =

√
ρa
ρ

C10

CDa
U10 (6.7)

udis =
1

k
(2g

′
Qf)

1
4 (6.8)

where U10 is the wind velocity component at 10 m height (6 m s-1), C10 (1.2×10-3) is the

surface drag coefficient and CDa (1.3×10-3) is the depth averaged drag coefficient and k is

the internal Kelvin number. When |Ws| > 1, the flow is heavily influenced by the wind, and

when |Ws| < 1, the flow is dominated by the buoyant forcing.

For high discharge scenario, the computed trapping depth (hb) and the predicted ys are

0.6 m and 36 km, respectively. As hb < h0, the bottom boundary layer has no significant

influence on the buoyant plume transport and the Minho estuarine plume can be classified

as surface-advected. In all directions, the Ws is greater than 1, which means that the

Minho estuarine plume is heavily influenced by the wind. The Minho estuarine plume shows

comparable depth and offshore extension with the findings of Munchow and Garvine [1993]

and Lentz and Largier [2006] for the plumes formed in Delaware estuary and Chesapeake

bay.
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6.3.2 Response of the estuarine plume to wind and river discharge

As it can be observed in Figures 6.5 and 6.6, under high discharge, the Minho estuarine

plume reaches the Rias Baixas when the wind blows from the south and west. This could

change the hydrographic and circulation features of the Rias Baixas, turning this fact a

challenging and important study issue. Thus, in the following only results for these two wind

directions will be reported. To examine how this response differs with wind speed and river

discharge, northward and westward winds are blown with speeds of 3 and 6 m s-1 under

high, moderate and low river discharges after 3 days (Figures 6.7, 6.8 and 6.9).

In general, salinity is lower and freshwater occupies a larger area as the river discharge

increases, which is consistent with a study on variation of plume size with river discharge

performed by Choi and Wilkin [2007] and Shi et al. [2010] for the Hudson River and for an

idealized tidal estuary, respectively. The plume area decreases as the wind speed increases

from 3 to 6 m s-1 due to enhanced surface mixing associated with increased wind speeds.

In the high discharge scenario (Figure 6.7), as a weak northward wind of 3 m

s-1 (Figures 6.7a and 6.7e) blows during 3 days, freshwater reaches the Rias de Vigo,

Pontevedra and Arousa. When the wind increases to 6 m s-1(Figures 6.7c and 6.7g), the

plume also reaches the Rias de Vigo, Pontevedra and Arousa. However, in this scenario the

plume is more confined to the coast, presenting a higher surface velocity (∼ 0.30 m s-1). Xia

et al. [2007] also observed that the intensity of winds tend to reduce the surface plume size

and distort the bulge shape due to enhanced wind-surface mixing. Eastward wind (Figures

6.7b, 6.7f, 6.7d and 6.7h) exports freshwater from the estuary and favours the accumulation

of freshwater in the recirculating bulge outside the mouth of Minho River. Apart of wind

speed, in these conditions, the plume only reaches the Rias de Vigo and Pontevedra.

When the river discharge decreases (Figures 6.8 and 6.9), the patterns are very similar

to the previous ones, only with differences in the plume influence area. For example, under

low river discharge conditions (Figure 6.9), the Minho estuarine plume does not reach Rias

Baixas.

These results show that the wind stress and river discharge are the most important

factors determining the size and shape of the Minho estuarine plume.

The influence of wind forcing and river discharges on the freshwater transport in Rias

Baixas (Figure 6.10) is illustrated showing the hourly volume transports determined through

the cross-sections in front of the Rias Baixas (Figure 6.2, sections II, III and IV).

In general, the freshwater transport is closely related to the river discharges, showing

the importance of river discharges in the dispersion of the Minho estuarine plume towards

the Rias Baixas. Indeed, the freshwater transport is also related to the wind and tide (the

ebb tide produces a decrease of the freshwater flux (outflow)).

When the wind blows eastward during 2 days, an insignificant Minho estuarine influence

is observed in Ria de Pontevedra (∼ 0.01 Sv) (Figure 6.10b), showing that this wind direction
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Figure
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Figure 6.10: Freshwater transport in sections II, III and IV for high (a,b,c), moderate (d,e,f)
and low (g,h,i) river discharges scenarios. Positive (negative) freshwater transport means
freshwater volume transport into (out of) the domain.

affects with more intensity the Ria de Vigo during high discharge. Otherwise, northward

winds have positive freshwater flux (inflow) in all sections, indicating that eastwards currents

bring water (on average) with a lower salinity than Sa (35.6). Conversely, when currents turn

westward the freshwater is transported to the east. When the winds blow with more intensity

(6 m s-1), the freshwater is flushed into the sections more rapidly than with the wind speed

of 3 m s-1.

During the high discharge event, in Ria de Vigo (Figure 6.10a), on the first day a

maximum freshwater transport of 0.035 Sv is obtained, corresponding to the plume intrusion

(Figure 6.5), which reduces to 0.02 Sv on the second day. During the following days, the

northward displacement of the plume continued and the plume intrusion is observed in the

Ria de Pontevedra (Figure 6.10b) on 5.5-6 days and in the Ria de Arousa (Figure 6.10c)

on 7-8 days. It is worth noting that the freshwater transport for the Rias de Pontevedra and

Arousa is more intense than for the Ria de Vigo. This situation can be explained by the size

difference of the Rias (Ria de Arousa is considerably wider), since the freshwater transport

is dependent on the area of the section.

In the moderate river discharge scenario (Figures 6.10d, 6.10e and 6.10f), the results

show that the southerly winds promote the introduction of the Minho estuarine outflow into
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the Ria de Vigo and Pontevedra and lead to a small introduction in Ria de Arousa. In the

low river discharge scenario (Figures 6.10g, 6.10h and 6.10i), only in Ria de Vigo, a small

influence of the Minho plume intrusion is observed (< 0.01 Sv) (Figure 6.10g), showing

that for these conditions, the Minho estuarine plume does not influence the Rias Baixas

circulation pattern.

Taking into account the previous results, events of moderate-to-high river discharge

combined with southerly winds result in plume intrusion into the Rias Baixas. As it was

previously mentioned in Chapter 5, this plume intrusion can reverse the normal estuarine

circulation of these estuaries. Thus, in order to analyse the necessary conditions for the

establishment of the reverse circulation, the along axis circulation at the mouth of Rias de

Vigo, Pontevedra and Arousa is also computed (Figures 6.11, 6.12, 6.13 and 6.14).

During the high river discharge scenarios (Figures 6.11 and 6.12), in the three

estuaries, a negative estuarine circulation with near surface water moving landward (positive

values) and near bed water moving seaward (negative values) is observed. However, this

negative estuarine circulation results in the propagation of the Minho outflow into the Rias.

In Ria de Vigo (Figure 6.12a), a negative estuarine circulation at surface layers is observed

during all period. When the weak winds blows northward, this pattern is observed in Ria de

Pontevedra from day 5.5 (Figure 6.11b), with the highest velocities (0.5 m s-1) between 0-10

m. After 1.5 days, the plume intrusion effect is observed in Ria de Arousa (Figure 6.11c),

with velocities reaching 0.4 m s-1 in the upper layers. When the wind increases (Figure

6.12), being the surface currents stronger (0.60 m s-1), the plume effect is observed earlier,

affecting deeper layers.

Over the moderate river discharge and both wind scenarios (Figures 6.13 and 6.14), the

obtained patterns are very similar to the simulation with high discharge with no significant

differences at the Ria de Vigo mouth (Figures 6.13a and 6.14a). The Ria de Pontevedra

(Figures 6.13b and 6.14b) also shows a similar pattern although, in this scenario, the surface

water moving landward is observed later (day 7). In addition, this pattern is more intense

than for the high discharge scenario, with positive values of the along axis current until 20 m

(wind of 6 m s-1), increasing in the plume influence area. The Ria de Arousa (Figures 6.13c

and 6.14c) presents a normal estuarine circulation, with water moving landward during flood

and moving seaward during ebb, for winds of 3 m s-1. Otherwise, for winds of 6 m s-1, the

plume intrusion is also observed in Ria de Arousa after 3 days (Figure 6.14c), reversing the

circulation pattern.

According to the results, different river discharges play an important role in the plume

intrusion into the Rias Baixas. Under moderate freshwater outflow, the plume intrusion

velocity tends to be lower than with high river discharges, revealing a reduction of the

stratification within the plume. However, the vertical plume area is larger (∼ 20 m) owing to

the increase of the water column stability.

The results presented in this section suggest that a moderate river discharge combined
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Figure 6.11: Along estuarine circulation at stations located at mouths of Rias de Vigo (a),
Pontevedra (b) and Arousa (c), considering high river discharge and southerly winds of 3 m
s-1. Positive (negative) current velocity means water moving landward (seaward). Black line
corresponds to 0 m s-1.

Figure 6.12: Along estuarine circulation at stations located at mouths of Rias de Vigo (a),
Pontevedra (b) and Arousa (c), considering high river discharge and southerly winds of 6 m
s-1. Positive (negative) current velocity means water moving landward (seaward). Black line
corresponds to 0 m s-1.
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Figure 6.13: Along estuarine circulation at stations located at mouths of Rias de Vigo (a),
Pontevedra (b) and Arousa (c), considering moderate river discharge and southerly winds of
3 m s-1. Positive (negative) current velocity means water moving landward (seaward). Black
line corresponds to 0 m s-1.

Figure 6.14: Along estuarine circulation at stations located at mouths of Rias de Vigo (a),
Pontevedra (b) and Arousa (c), considering moderate river discharge and southerly winds of
6 m s-1. Positive (negative) current velocity means water moving landward (seaward). Black
line corresponds to 0 m s-1.
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with weak southerly winds only influence the Rias de Vigo and Pontevedra circulation

patterns, while for wind speed up to 6 m s-1 its influence is also observed in Ria de Arousa.

Independently of wind speed, a high discharge combined with southerly winds may change

the circulation pattern of the all the Rias Baixas. Chao [1988b], Soares et al. [2007] and

Marques et al. [2009] observed that southerly winds weakens and reverses the surface

current in their studies for La Plata River and Patos Lagoon, promoting the vertical mixing

processes and destratification of the water column.

6.3.3 Water exchange and mixture between Rias Baixas

The modelling results of the Lagrangian particles trajectories are depicted in Figure 6.15,

showing the position evolution and time since launch of particles released close to the Minho

river mouth during two days, under various forcing conditions. As the Minho estuarine plume

can be classified as a surface-advected-plume, the particles were released at the surface

layer.

In general, as would be expected, a pattern of younger particles close to the Minho

river mouth is observed and older particles are kept farther from it. During the entire

time period shown, the obtained model results represent the advection of individual water

parcels, indicating that freshwater discharge and wind has a significant impact on the

transport of released particles, which relates to the plume intrusion discussed before. For

example, the surface plume has a relatively large size under weak wind forcing scenario

and more particles move to the coastal ocean, floating far from the river mouth. This result

is consistent with the findings obtained in the Columbia estuary plume studies [Banas et al.,

2009].

For the high flow scenario (Figures 6.15a and 6.15d), the particles are advected

northwards and confined close to the coast, corroborating the previous results. They are

rapidly transported, reaching the Rias Baixas 1.5 days after being released. The particles

trajectory includes not only the Rias de Vigo, Pontevedra and Arousa, but also extends to

the Ria de Muros. Concerning the other freshwater outflow scenarios, the trajectories of the

particles are not so different from this situation, however there are interesting features that

must be pointed out. Under low-moderate flows and weak southerly winds (Figures 6.15b

and 6.15c), the particles become limited to the Rias de Vigo and Pontevedra. However,

when the wind increases (Figures 6.15e and 6.15f), particles are more tightly confined along

the coast and less will reach the coastal ocean due to the increase of the surface current

(Figures 6.8 and 6.9). In addition, many particles are concentrated in Ria de Arousa where

the southerly winds in combination with the change in the coastline orientation hamper the

northward displacement. The results reveal that the particles take longer (> 2 days) to reach

the Rias under the low freshwater condition.
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Figure 6.15: Trajectories and time since launch of particles released continuously close to
the Minho river mouth, considering different southerly winds and river discharges.

Taking into account Figure 6.15, some particles that cross the Ria de Vigo mouth can

turn way and cross the Rias de Pontevedra or Arousa. The fraction of particles arriving at

Rias de Vigo, Pontevedra and Arousa (Figure 6.16) is computed considering the sections

defined in Figure 6.2 (sections II, III and IV), in order to assess the water renovation and

mixture between estuaries.

Over high flow scenario and moderate southerly winds as shown, in Figures 6.16a,

6.16b and 6.16c, about 38.5% of the particles released in the Minho River are transported to

the Ria de Vigo (Figure 6.16a) after 5 days, while 37.2% and 59.4% of the particles cross the

Rias de Pontevedra (Figure 6.16b) and Arousa (Figure 6.16c), respectively. Nevertheless,

only 20.4% and 40.5% of the particles that remain in Rias de Pontevedra and Arousa come

directly from the Minho river. These results reveal that there is water exchange between the

different estuaries, hence each estuary cannot be considered independent. A similar trend

is observed for weak winds , reaching 18.1%, 4.4% and 10.4% of the total particles in Rias
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Figure 6.16: Fraction of particles released close to the Minho river mouth arriving at Rias de
Vigo (II), Pontevedra (III) and Arousa (IV) under high (a,b,c), moderate (d,e,f) and low (g,h,i)
river discharges scenarios. Dashed line corresponds to the particles that cross Rias mouth
directly from Minho river.

de Vigo, Pontevedra and Arousa, respectively.

In the Ria de Vigo (Figures 6.16a, 6.16d and 6.16g), no significance differences

between river discharges and weak wind scenarios are found. The model results indicate

that as the river discharge values decrease, the fraction of particles inside the Rias de

Pontevedra (Figures 6.16b, 6.16e and 6.16h) and Arousa (Figures 6.16c, 6.16f and 6.16i)

is reduced significantly. Consequently, as results of the lower surface currents, particles

spread on a larger area, not being so confined to the coast. This pattern of particle transport

is consistent with the previous conclusions that freshwater outflow and wind has important

effects on material exchanges.

According to these results, it is important to emphasize that the implementation of a

particle tracking model could reveal the significant impact that a continuous emission of

a certain pollutant may have, affecting the estuary and its neighbouring coastal ocean,

turning this kind of applications a useful tool to marine scientists and managers. Another

interesting aspect of these results is the strong effects that wind stress has on particle

dispersal, determining the mixing processes during extreme events in this coastal area.
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6.4 Conclusions

The main objective of this chapter was to investigate the necessary conditions for the

establishment of the reverse circulation pattern in the Rias Baixas and evaluate its impact

on Rias Baixas physical properties. Numerical experiments were conducted testing several

scenarios with different river discharges, wind directions and intensity. The dispersion

and potential pathways of particles released at the Minho river mouth was also assessed

according to the previous scenarios. The numerical results obtained from this analysis

suggest the following:

• The dispersal of the Minho estuarine plume responds rapidly to wind variations and is

also influenced by the bathymetry and morphology of the coastline, being the Minho

estuarine plume classified as a surface advected plume and heavily influenced by the

wind.

• Under high discharge events, without wind forcing, the plume expands offshore,

creating a bulge in front of the river mouth. Then, the low salinity waters are advected

to the right due to the Coriolis effect and after the establishment of the geostrophic

balance, the plume water extends northward (along the coastline). When the wind

blows southwards, the main feature is the offshore extension of the plume. Otherwise,

northward wind spreads the river plume, towards the Rias Baixas. The plume is

confined close to the coast, reaching the mouth of the Ria de Vigo after 1.5 days

and influences its hydrographic and circulation properties. Westward wind is more

effective at pushing freshwater out of the mouth of the Minho River than any other

wind condition.

• The response of the Minho estuarine plume to the wind forcing takes less than 1

day, and moderate wind conditions under high river discharge reverse the circulation

pattern in Rias Baixas.

• The Minho River discharge and wind stress are the most important factors influencing

the size and shape of the Minho estuarine plume.

• Under Minho River discharges higher than 800 m3 s-1 and southerly winds of 3 m s-1

only the Rias de Vigo and Pontevedra circulation patterns are reversed, while for wind

speed higher than 6 m s-1 the plume influence is also observed in Ria de Arousa. On

the other hand, independently of southerly wind speed, under Minho River discharges

higher than 2100 m3 s-1 the circulation patterns are reversed in all Rias Baixas.
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• The presented particle tracking model was successfully coupled to the hydrodynamic

model, giving an overview of the transport patterns along the Western Galician coast.

The freshwater discharge and wind has a significant impact on the transport of

released particles.

• Over a period of 5 days, under high river discharge and moderate southerly winds,

38.5%, 37.2% and about 60% of the particles initially in Minho River are exported to

the Rias de Vigo, Pontevedra and Arousa, respectively. However, only about 20% and

40% of the particles that remain in Rias de Pontevedra and Arousa come directly from

the Minho River, showing the water exchange between the different estuaries. This

confirms that the Rias Baixas cannot be considered as independent estuaries.
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Chapter 7

Final conclusions

The general objective of this dissertation was to study the propagation of the Minho

estuarine plume and its influence on Rias Baixas circulation and hydrography, and

consequently to develop and explore an innovative numerical model application, integrating

estuarine and coastal models. With this purpose, two numerical models were implemented.

The first one is an estuarine model, comprising the whole Minho River estuary and the

second one is a 3D baroclinic nested model for the NW Iberian Coast, including the adjacent

Rias Baixas. Whereas summary conclusions were presented at the end of each Chapter,

an overview of the main results as well as some suggestions that need further research are

given in this conclusion section.

In Chapter 2, the hydrographic features of the mouth of each Ria were evaluated. The

Rias Baixas are estuarine systems, that have in their downstream area a set of small islands

affecting the circulation and hydrography patterns. Due to the existence of these islands, two

mouths are considered for each Ria: northern and southern mouths. The results reveal that

when comparing both mouths of each Ria, the water temperature is lower at the southern

mouth than at the northern one. At the southern mouths, the influence of the upwelling and

Minho River discharge is more intense, while at the northern mouths, due to its shallowness,

the air temperature acquires a major importance influencing the water temperature. A major

conclusion of this Chapter is that the water temperature is weakly dependent on the Minho

river discharge and closely related to the air temperature pattern, and that the salinity is

closely related to wind variability and to the Minho River discharge. In fact, as in many

estuarine and coastal environments, the water temperature follows a daily cycle similar to

the air temperature cycle.

In Chapter 3, an assessment of wind data was carried out, allowing to evaluate the

applicability to study the dispersal of the Minho estuarine plume. Thus, a comparative

analysis between offshore QuikSCAT satellite and in situ land meteorological wind data

was performed. This comparison showed that the offshore wind from QuikSCAT represents
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adequately the wind patterns at land meteorological stations. The results of an weather

forecast model (WRF) were also added in the previously study, since the numerical

model used throughout this dissertation requires wind data with high spatial and temporal

resolution close to the coast. The analysis reveals that the WRF model and QuikSCAT

satellite data are consistent tools to obtain representative wind data near the coast, showing

good results when comparing with in situ wind observations from oceanographic buoys. The

results showed that the wind speeds derived from QuikSCAT and the WRF model are similar

along the coast, with errors ranging from 1.5 m s-1 to 2 m s-1. However, QuikSCAT data

tend to overestimate wind speed when compared to the buoys measurements. Regarding

the wind direction, the RMSE values are about 35° for the stations under analysis. The

bias presents a similar pattern between satellite and modelled data, with positive values

at the western coast and negative values at the middle and northern coasts. The satellite

data always presents lower absolute values than the model results. A spatial comparison

between QuikSCAT and WRF data was also performed over the whole Galician coast to

evaluate the differences between the two datasets. This comparison showed that the

modelled wind speed tend to be lower than satellite winds over the entire domain, with

the highest RMSE and bias values found for the wind speed and direction observed near

shoreline.

Due to the near-coastal land contamination of satellite values and the lack of

anemometers in the whole coastal region, the weather forecast model presents clear

advantages in the representation of the near-shore wind regime. Thus, the wind model

predictions becomes a useful tool to analyse the Galician coast, helping to better understand

the wind induced phenomena which take place in this region. In fact, the accuracy of

the model predictions makes them suitable to perform the precise study of the physical

processes driving several coastal phenomena. For example, the study of ocean chlorophyll-

a concentration distribution and evolution requires the knowledge of accurate wind fields,

since chlorophyll-a is highly sensitive to changes in wind forcing [Alvarez et al., 2012] and its

seasonal variability is mainly related to upwelling events during spring and summer seasons.

The study of the dispersal of river plumes also needs the knowledge of accurate wind fields,

since estuarine plumes respond rapidly to wind variations, which determine the horizontal

buoyancy dispersal pattern [Choi and Wilkin, 2007; Otero et al., 2008; Vaz et al., 2009b].

The modelling task performed throughout this work began by assessing the

configuration that better represents the Minho estuarine plume propagation (Chapter 4).Two

nested configurations (Configurations #1 and #2) with three levels one-way nested grids

and an estuarine model were implemented. The estuarine model runs offline and was

developed to reproduce the Minho estuary ocean-interaction. The used configurations only

differed in the source of the initial forcing conditions. Both applications were designed

using the numerical model MOHID through a downscaling approach, with a three-level

one-way nested scheme. The first model domain includes the whole Iberian Peninsula



115

coast, the second domain is a coarse representation of the Rias Baixas adjacent coastal

area, while the third includes the same area with a higher resolution. All domains present

realistic coastline and bottom topography. The model results were evaluated against several

databases of remote sensing covering the region under analysis and salinity and water

temperature in situ data collected close to the Ria de Vigo mouth. In the area of propagation

of the Minho estuarine plume, the configuration that uses the Levitus climatology as initial

condition (Configuration #1) presented a better agreement with the in situ data. For the

salinity, the RMSE value is close to 1 and the bias is close to zero. The measured water

temperature is also well represented by the Configuration #1, with RMSE and bias values

lower than 0.6 °C, revealing a good temporal representation of the hydrographic features of

this area.

A good validation of the nesting model was achieved (Chapter 5), revealing the ability in

reproducing the local hydrodynamics and thermohaline patterns over the Western Galician

coast. At the Minho estuary, the observed and predicted SSE follow a similar pattern, with

an average RMSE around 0.20 m and a predictive skill close to 1. The modelled water

temperature pattern showed a maximum RMSE about 30% of the local water temperature

amplitude, while for salinity the RMSE value was about 8%, showing a good agreement with

the in situ data. Also, at the Rias Baixas, a good agreement between model predictions

and in situ data was found. The observed and predicted SSE at both areas follow a similar

pattern, with an average RMSE around 0.06-0.20 m and the predictive skill close to 1.

The model predictions slightly overestimate salinity, with maximum RMSE values lower than

1.27, whereas the lowest difference between SST model predictions and satellite data (close

to zero) are observed in the plume propagation area.

The chosen period for the plume propagation model validation was the spring of 1998,

because a high Minho River discharge was reported, as well as favourable wind patterns

that spread the river plume towards the Rias Baixas. The importance of the Minho River

discharge and the wind forcing in the event of May 1998 was studied considering two

scenarios: one with a constant average discharge to evaluate the wind effects and the

second removing the wind from 1 to 13 May 1998 to evaluate the river discharge effects.

From the model results, it was found that a buoyancy intrusion (in the Rias Baixas) caused

by the Minho River reverses the normal estuarine longitudinal gradient of salinity and the

normal estuarine circulation of the Rias de Vigo and Pontevedra. Moreover, a continuous

moderate Minho River discharge combined with northwards winds is enough to produce

the negative circulation pattern in Rias Baixas, reducing the importance of the existence of

specific events of high runoff values.

The characterization of the Minho estuarine plume and the necessary conditions (in

terms of wind and river discharge) for the establishment of the reverse circulation pattern

in Rias Baixas were investigated in Chapter 6. For this purpose, several scenarios with

different river discharges (low, moderate and high), wind directions (north, south, west
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and east) and intensity (3 and 6 m s-1) were created. According to the Yankovsky and

Chapman [1997] and Whitney and Garvine [2005] formulations, the Minho estuarine plume

was classified as a surface-advected plume and it is heavily influenced by the wind patterns.

In the moderate-to-high river discharge scenarios, the results revealed that the southerly

winds promote the introduction of the Minho estuarine outflow into the Rias de Vigo and

Pontevedra and lead to a small influence in Ria de Arousa. In the low river discharge

scenario, a small influence of the Minho plume intrusion was observed in the Ria de Vigo,

showing that for these conditions, the Minho estuarine plume does not influence the Rias

Baixas general circulation pattern.

Independently of the wind speed, the response of the Minho estuarine plume to

the wind forcing takes less than 1 day and a high estuarine discharge combined with

southerly winds reverses the circulation pattern of all the Rias Baixas. However, a moderate

river discharge combined with weak southerly winds only reverse the Rias de Vigo and

Pontevedra circulation pattern, while for wind speed up to 6 m s-1 the plume influence is

also extended to the Ria de Arousa. This is an important feature, since, this negative

circulation tends to stop water exchange between the Rias and the shelf, increasing the

residence time and hence affecting water quality. On one hand, the high concentration of

nutrients from the Minho River can induce phytoplankton blooms at the shelf, contributing as

an extra feeding source for the main shellfish. One the other hand, the Rias Baixas are more

sensitive to freshwater input because the water renewal is lower in these systems, affecting

negatively its ecology. The Rias Baixas are recognized as a privilege area of production of

marine species of great economical interest [Tenore et al., 1995], especially mussels. The

existence of this negative circulation affects the exchange between the Rias and the ocean,

changing the input of nutrients.

In order to better understand the surface transport of passive tracers, a particle tracking

model was also implemented in Chapter 6. The Lagrangian model has proved to be an

useful tool for the study of dispersion phenomena along the Western Galician coast. It

was successfully coupled to the hydrodynamic model, allowing the tracking of the path of

individual particles released at Minho River mouth. The results of this application revealed

that in a time scale higher than 5 days, the particles released close to the Minho River mouth

enter both in Rias de Vigo, Pontevedra and Arousa, revealing a high exchange rate between

them (∼ 20%). This confirms that the Rias Baixas cannot be considered as independent

estuaries.

Overall, the outcome of this work shows that the reverse circulation pattern observed

in the Rias Baixas may be induced by a continuous moderate (> 800 m3 s-1) Minho

river discharge under northward winds. Due to the high frequency of these moderate

river discharge events, the methodology proposed in this dissertation produces sound and

thorough results, and proved to be useful and accurate enough to simulate the dynamics of

the Minho estuarine plume along the Galician coast, as well as its effects on Rias Baixas.
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The results of this dissertation as well as the methodologies developed are unlikely to

be unique for the Rias Baixas and it is suggested that similar modelling approaches could

be replicated to other comparable systems, such as Spencer Gulf, Oregon Washington

coast, Upper Gulf of California or Patos Lagoon, to improve understanding and characterize

coupled estuarine-near coastal systems.

All the aims established at the beginning of the work were fulfilled and even surpassed.

It remains for the future several numerical improvements in the numerical model yet to be

performed. In particular, the implementation of a model with higher resolution inside the

Rias Baixas, allowing an accurate description of the local bathymetry. This implementation

will result in more accurate predictions of the circulation and hydrographic features of the

Rias Baixas. Also, it should be interesting to add to the model the coastal currents forcing

(especially the IPC) to study its influence (or not) in the circulation in Rias Baixas.

Future research must also put an emphasis on the coupling between the hydrodynamic-

transport and ecological models, in order to understand the complex structure of the physical

and water quality variables.With this methodology it will be possible to study and analyse

the upwelling formation as well as the interaction between the Rias Baixas, and to identify

the potential risk sources (e.g. decrease of the oxygen in water column or increase of

the freshwater input) than can threat the local aquaculture productivity. This ecological

implementation will allow to study the effects of the harmful algal blooms generated in the

coastal waters, which are introduced into the Rias Baixas at times of downwelling or through

the reverse of circulation patterns.
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Instituto Español de Oceanografia, 4:107–120.

Pascual J. (1987b). The vertical and horizontal m2 tide in the Ria de arosa (Galicia, Spain

NW). Revista de Geofı́sica, Universidade Complutense Madrid, 57–64.



130 REFERENCES

Pawlowicz R., Beardsley B. and Lentz S. (2002). Classical tidal harmonic analysis including

error estimates in MATLAB using T-TIDE. Computers & Geosciences, 28(8):929–937.

Pearcy W.G. (1992). Ocean Ecology of North Pacific Salmonids. University of Washington

Press, Seattle, WA.

Peliz A., Dubert J. and Haidvogel D.A. (2003). Subinertial response of a density-driven

Eastern Boundary Poleward Current to wind forcing. Journal of Physical Oceanography,

33:1633–1650.

Peliz A., Dubert J., Santos A.M.P., Oliveira P.B. and LeCann B. (2005). Winter upper ocean

circulation in the Western Iberian Basin-Fronts, Eddies and Poleward Flows: an overview.

Deep-Sea Research I, 52:621–646.

Peliz A., Rosa T.L., Santos A.M.P. and Pissarra J.L. (2002). Fronts, jets, and counter-flows

in the Western Iberian upwelling system. Journal of Marine Systems, 35(1-2):61–77.

Penabad E., Alvarez I., Balseiro C.F., deCastro M., Gomez B., Perez-Munuzuri V.

and Gomez-Gesteira M. (2008). Comparative analysis between operational weather

prediction models and QuikSCAT wind data near the Galician coast. Journal of Marine

Systems, 72(1-4):256–270.

Pensieri S., Bozzano R. and Schiano M.E. (2010). Comparison between QuikSCAT and

buoy wind data in the Ligurian Sea. Journal of Marine Systems, 81(4):286–296.
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