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Variety of research topics:

Regional and urban climate modeling
Air quality

Atmospheric chemistry

Turbulence

Chaos and nonlinear processes
Middle atmosphere

Gravity waves and atmospheric dynamics



Outline

Selected features of internal gravity waves (GWs) in the atmosphere known from
observations.

Chemistry-climate models (CCMs).

The role of parameterized OGWD for the large-scale dynamics and transport in CCMs.

Role for Brewer-Dobson circulation?



al gravity waves are
ubiquitous in the atmosphere.
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I Gravity waves in ocean.
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Gravity
waves In
the Earth’s

core.
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Summary

If undertones (internal gravity waves in the Earth's liquid outer core) exist then
they occur at such long periods that the full theory of Earth dynamics in a
rotating reference frame is required for their description.



Internal gravity waves

Dispersive buoyancy waves that propagate to all cardinal directions.

Restoring force is the gravity.

Horizontally and vertically transport energy and momentum from disturbances.
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Multiscale phenomenon — need to be paramterized even in current high-resolution global simulations of O(3 km)!!!



Internal
gravity waves

Ubiquitous but also intermittent,
multi-scale phenomenon in the
atmosphere.

Sources: Orography, convection,
jets and fronts, imbalances in the
flow..

Dissipation at all atmospheric levels
— from near surface to the upper
atmosphere (secondary, terciary
generation completely neglected
process in the parameterizations)
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Gravity wave importance —an open guestion
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Gravity wave importance
—an open question

* For illustration — around 460m/s
is the speed of rotation of the
surface near equator, 350 m/s in
midlatitudes.

* The angular momentum of the
atmosphere is incredibly
efficiently coupled with the
solid Earth (turbulence, waves,
molecular diffusion).
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Chemistry-climate models

Increasing Climate Model Components

Mid-1970s  Mid-1980s FAR SAR TAR AR4 AR5

Atmosphere( ‘ ‘

Land
Surface

T
v

Dynamic | 1 ) &

Ocean &
Sea Ice

N
|
|
\/

Aerosols ‘

Carbon Cycle

Dynamic
Vegetation

J
)@ =
s

Atmospheric
Chemistry

Land Ice

ea

rMmOOZ MHAX»EZ—rO OoOmrocoo

Mid-1970s  Mid-1980s FAR SAR TAR AR4 AR5

RS
‘i‘(___ — _>§ Dynamic ocean |

| carbon cycle | \ Primary prod.

But increasing complexity does not mean improvement...



Chemistry-
climate models

e Capturing the chemistry-
dynamics-radiation-
circulation and transport
interactions is essential for
reliable future climate
projections.

* The atmospheric model is
coupled with the interactive
chemistry model via model
winds and temperature in
the one way and
concentrations in the other.
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Global circulation models (atmospheric models)

* Dynamical core that solves the equations of motion and parameterization schemes.

* Parameterization in a weather or climate model is a method of replacing processes that
are too small-scale or complex by a simplified process.

* Parameterizations for -

e -turbulence

* -convection

e -orographic drag and gravity waves
* -non-orographic gravity waves

e -radiation

* -microphysics and clouds.



Orographic gravity wave parameterizations
and simplifications used — sourcing.

* Model| * Reality A spectrum of GWs is launched,
pUN h? high spatial and time variability.

/ \ ' Our modification: Add the variability to the
resolved wind field.

orography.

Elliptical mountain is assumed, one or two monochromatic

modes launched.

Novel approaches include Fourier transform of SSO, however not yet
operational.

a) b)
h is a measure of a standard deviation of the subgrid ‘
c) Il d) II



Orographic gravity wave parameterizations
and simplifications used — propagation.

* Model

Strictly vertical

Instantaneous (infinite speed of propagation) up to
the dissipation level, which is diagnosed from the

saturation hypothesis

_pUﬂﬂf
=

Tg

No consideration of non-dissipative effects.

e “Reality”
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Orographic gravity wave parameterizations
and simplifications used — dissipation.

* Model

* Convective instability:

The portion of momentum flux exceeding
the saturation value is deposited.

e Critical level filtering is also included.

* How close to instability we allow the
waves to “grow” is controlled by a
tuneable parameter (f(Fi))

* Deceleration resulting from the dissipation
is communicated to the dynamical core.

* Reality

* Overturning across a wide range of scales, depositioi
of momentum intimately tied with mixing of particle [ o "9 Vortextubes and knots dynamics.
(not only vertical) and turbulence Fritts et al. (2019)




Parameterized GW
effects

* Mostly only the draginxandy
direction is parameterized (sometimes
also heating, but never mixing).

* Traditionally only two terms from the
Reynolds stress tensor are taken into
account.
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* Parameterized orographic GW drag in the middle (NH), and
visualization of the resolved GW field on the left and right for SH.
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Eme rgiNng * The dissipative drag deposition (the single parameterized GW
. . effect) is extremely hard to constrain from observations or GW
m eth Od O l Og|Ca | ISSUE resolving simulations, because there is no optimal

methodology for computing it from complex datasets in the
Eulerian framework

First issue — decompose the field (no optimal method exists to date).

' 2 r r
O((u) +u) + O (((“} +u) ) +0, ((w) +v) () +v)) For the sensitivity of the resulting GW drag estimates

+%32 (p ((u) + ') w') on the decomposition method please refer to the

) recent paper Prochdzkova et al. (2023, JAS).
= =500+ [ ((0) +v)

Second issue — the dissipative GW effects emerge in an “average” sense only. But how to define optimal averaging operator?

u = 0. versus W =(

3 MWD,, = —

For spatial averaging: MWD,, = — U o' dr
1
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Vertical distribution of
the wave drag in climate
models (CMAM).

e A) Ratio between
parameterized OGWD and
resolved wave drag, B)
resolved wave drag, C)
OGWD.
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How to compute the resolved wave drag?
(Resolved waves=Rossby waves)

Primitive equations - decomposition into zonal averages and corresponding perturbations.

Modification of the zonal mean meridional and vertical velocities:

— = 48 pov' e’ = 1 4 cos g v'd’
A dz( g acos ¢ de g,
* The resulting TEM zonal-mean momentum equation: e gF?
V-F=(acosd) '—a-‘;(F( cos¢;)+7z—
| (6 cosgr) _ _ V.-F .
i, +v* : fl+wou, = G,
: a COsch : Pl COSE :

F is the Elliassen-Palm flux and its divergence quantifies the resolved wave drag.

F® = poacos ¢(ii,v'0'/ 0. — v'u'),

F'¥ = pya cos ¢{[f — (a cos ¢) "' (ii cos (b)q&]ﬁ/ﬂz - :’E};



Zonal mean wind

nternal gravity wave
importance for

climate model
dynamics

Polar Night Jet

Jet stream

' pospheric Polar
% Vortex



Zonal average - average of pressure levels

C“mate I\/Iodel 100.0 hPa - 30.0 hPa, DJF
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Parameterized OGW
drag controls the
resolved dynamics
in the stratosphere

In CMIP6

Hajkova and Sacha, CliDyn, in review.
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* The influence of the parameterized OGW drag
in the models is to a large extent artificial.

* We must revisit our understanding of climate
GW effects.

* Informed by the previous step, we must
modify the parameterizations to mitigate the
uncertainty of future climate projections.

An example of a five planetary-wave pattern.
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Unravelling climate impacts of atmospheric internal
gravity waves (23-04921M)

* GW research group at KFA (2023-2027).
* https://kfa.mff.cuni.cz/?page id=2134&lang=en

* Aims at revisiting the climate GW effects based on the analysis of high-resolution simulations and use
this understanding to constrain and modify GW parameterizations.

* Keep your fingers crossed for us over the next 5 years!


https://kfa.mff.cuni.cz/?page_id=2134&lang=en

Brewer-
Dobson
circulation

Interhemispheric meridional

overturning circulation influencing the
middle atmospheric composition.
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The Brewer-Dobson Circulation During the Last Glacial Maximum

Qiang Fu i, Rachel H. White, Mingcheng Wang, Becky Alexander, Susan Solomon, Andrew Gettelman
David S. Battisti, Pu Lin

Many papers overinterpret the role
of waves:

One recent striking example from GRL (attracted already 13 citations).



Key Points

* A state-of-the-art atmosphere model shows a slower Brewer-Dobson circulation
during the Last Glacial Maximum than the modern climate

* Compared to modern climate, the annual-mean tropical upwelling in the Last Glacial
Maximum is 14%, 14%, and 7% weaker at 100, 70, and 30 hPa, respectively

* Decrease in mass fluxes at 70 and 100 hPa is caused by weaker parameterized
orographic gravity wave and resolved wave drags, respectively

Many papers overinterpret the role
of waves:

One recent striking example from GRL (attracted already 13 citations).



Outstanding issue regarding long-term BDC

changes:

 Modeled BDC trends cannot be fully
matched with observations.

* Besides the uncertainty in driving of the
circulation, drivers of the trend are also
uncertain.

* Namely, there was a question how the
BDC trends overlap with structural
changes of the atmosphere.

Geophysical Research Letters

Research Letter (3 Free Access

Is the Brewer-Dobson circulation increasing or moving upward?

Sophie Oberlander-Hayn B4 Edwin P. Gerber, Janna Abalichin, Hideharu Akiyoshi
Andreas Kerschbaumer, Anne Kubin, Markus Kunze, Ulrike Langematz ... See all authors

06 February 2016 | https://doi.org/10.1002/2015GL067545 | Citations: 38



Tropical upwelling

e Useful scalar proxy for the BDC strength, given by (Rosenlof, 1995):

. : 2 [¥? %
[__.-,UET_ — 710 / PW  COS Y (l;
. l];',"l

* Our new approach including meridional transport:

- w2 -
U =27na / p (T, w") - dl

tl‘]‘:’jl

* Transport across two pressure levels (100 and 70 hPa) and the tropopause
is analyzed



What influences time changes in U?

f P2 e —
* Not only changes in the residual circulation! U =2ma / p (v, w) - dl
- 'T:Ij-

* Our idea is to split time changes in transport into individual kinematic
terms:

%: + o+ +



This is disentangled in Sacha et al.(GRL, in review) using a

methodology of decomposition to individual kinematic factors

influencing the change.

Figure 81. Schematic illustration of the contributions to the change of net upwelling
across a material line A (blue line) and B (red line). The net change consists of contribu-
tions from changes of the speed (size of the arrow) and direction (inclination of the arrow)
of the circulation, the width of the upwelling region, the vertical shift (height changes) of
the material line, changes in the shape of the material line controlling the effectivity of
meridional transport and of changing density of air that is connected with the spatially

variable temperature trends (stippled background).
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s the decomposition accurate?

* For pressure levels almost perfectly, for the tropopause there is a
small error
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Figure 3.2: Time evolution of the relative error of the decomposition method
applied to the ERA5 annual mean data for 1980-2014 at three material lines (70
hPa, 100 hPa, and tropopause).



MMD vs MRD:
(1979 — 2014)
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Conclusions

1. New methodology was successfully derived and implemented

2. Results underline that the net tropical upwelling is sensitive to all
detailed mechanisms connected to climate change (troposheric
warming and stratospheric cooling), but to different amounts at
different material lines

3. Larger spread is found among the reanalyses than models
regarding the net upwelling and individual contribution changes
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Multi-scale transport and exchange processes in the atmosphere over mountains — programme

will start in autumn and experiment
2024 and last for a full year.
Exchange over Exchange over
flat Mountain
Boundary Layer Boundary Layer
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Exchange processes govern the transfer of heat, momentum and mass between the ground, the

planetary boundary layer and the free atmosphere. Over mountainous terrain, exchange
processes include turbulent mixing, breeze systems, gravity wave propagation, and moist

convection.

TEAMX is an international research programme that aims at improving our understanding of
atmospheric processes specific to mountainous regions. TEAMx targets



