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Main idea

Motivation

Summary

In CFD, particle-based methods take care of convection

The price to pay is that a mesh is hard to define

So, can’t we somehow project onto a lattice, do our things there,
then back?

Numerics: much numerical work (e.g. decomposition) can be done at
the beginning of the simulation, then used all over, perhaps even save
it for future simulations

Attribution: Dr. Monaghan, SPH meeting 2015, who called it
“embedded particle”. Then pFEM-2 actually follows this idea

Results are relevant for any remeshing: particle splitting and merging,
field smoothing . . .
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Main idea

Projecting from the particles

Definition

The particles move about, so we want to interpolate values of fields onto
the lattice nodes
This may be achieved with particle basis functions (I know, this usually
still requires a mesh)
SPH shape functions may be tried (they must!), but for this talk I’m using
p-FEM functions, and an “quad” extension of them
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Main idea

FEM functions

FEM shape functions can be built on particle arrangements at every time
step, on the Delaunay triangulation (the dual of the Voronoi diagram)
These will interpolate “linearly” between nodes

Figure : Taken from graphnow
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1D results

1D results

In 1D, FEM means just linear interpolation
Let’s try our idea, computing the Laplacian of a sine function (periodic
b.c.s)
Results are good for the Poisson problem: h′′(x) = f (x) given f
Results are not too good for the direct problem: g(x) = f ′′(x) given f
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1D results

1D results, FEM — second derivatives
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Figure : Original function f (x) on particles
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1D results

1D results, FEM — second derivatives
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Figure : Second derivative g(x) = f ′′(x) in lattice

D Duque (CEHINAV) Do it on the lattice IberSPH 2015 8 / 19



1D results

1D results, FEM — second derivatives

0.0 0.2 0.4 0.6 0.8 1.0
x/L

−150

−100

−50

0

50

100

150
g(
x
)

Figure : Second derivative g(x) = f ′′(x) back on particles
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1D results

1D results, FEM — second derivatives
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Figure : Second derivative g(x) = f ′′(x), exact result
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Quadratic interpolation

Quadratic interpolation

Projection from particles to the lattice seems to be the main culprit
We hereby introduce our (Pep Español, de la Torre, myself) procedure to
go from linear to quadratic (sent to journal):

ψi (r) = φi (r) +
∑
j ,k

Aijkφj(r)φk(r)

Results are better now
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Quadratic interpolation

1D results — two bases
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D Duque (CEHINAV) Do it on the lattice IberSPH 2015 10 / 19



Quadratic interpolation

1D results — two bases
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Quadratic interpolation

1D results — two bases
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Figure : quad
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2D results

Going to 2D

The whole procedure generalizes to 2D in a straight manner (it would to
3D too). Let’s try f (x , y) = sin(πx).
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2D results

Taylor-Green vortex sheet

Navier-Stokes for an incompressible fluid:

du

dt
= −∇(p/ρ) + ν∇2u (1)

∇ · u = 0 (2)

Taylor-Green solution:

ux = A(t) sin(πx) cos(πy) (3)

uy = −A(t) cos(πx) sin(πy) (4)

A(t) = u0 exp(−2π2νt) (5)

p =
1

4
A(t)2 (cos(2πx) + cos(2πy)) (6)
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2D results

Numerical procedure

1 Set up initial conditions

2 Move particles according to ut
3 Project onto lattice

4 Compute u∗ = ut + (dt)ν∇2ut
5 Solve PPE ∇2(p/ρ) = 1/(dt)∇ · u∗

6 Compute ut+1 = u∗ − (dt)∇(p/ρ)

7 Project back onto particles

8 Go to 2
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2D results

TG vortices – movie

lattice vs particles Link

quad vs FEM Link

quad vs pFEM Link

Everything looks “nice”, but we need to quantify convergence!
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2D results

Convergence analysis

Since we know the exact u = ū:

L2 :=

∑
i |ūi − ui |2∑

i |ūi |
2
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2D results

Performance analysis
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Concluding remarks

Conclusions

The idea of projecting the particles’ data seems to be viable for large
enough systems

As long as the interpolation from particles to lattice is good !

The application to explicit integration is an open question

As is the treatment of the free surface !
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Concluding remarks

Conclusions

Thanks

For the audience and the organizers

Research has received funding from the Spanish Ministry for Science and Innovation under grant TRA2013-41096-P
“Optimización del transporte de gas licuado en buques LNG mediante estudios sobre interacción fluido-estructura.”
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VIDEOS

https://youtu.be/bVhnFxMANa0

https://youtu.be/r0LWsaKLjqQ

https://youtu.be/P3SsOS7oVtI

https://youtu.be/bVhnFxMANa0
https://youtu.be/r0LWsaKLjqQ
https://youtu.be/P3SsOS7oVtI
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