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When doing numerics, one replaces the exact problem we
would like to solve:

Lu = f ,

by a series of approximate problems (the numerical scheme):

LhUh = Fh,

that can be solved numerically, hoping that

Uh is close to u.



What is consistency?

When doing numerics, one replaces the exact problem we
would like to solve:

Lu = f ,

by a series of approximate problems (the numerical scheme):

LhUh = Fh,

that can be solved numerically, hoping that

Uh is close to u.



What is consistency?

The numerical scheme is said to be consistent provided:

the solution Uh of the approximate problems,

is an approximate solution of the exact problem:

LUh = f +O(hr).



What is consistency?

The numerical scheme is said to be consistent provided:

the solution Uh of the approximate problems,

is an approximate solution of the exact problem:

LUh = f +O(hr).



Why is consistency important?

Consistency is important because:

If the numerical scheme

LhUh = Fh

is both

consistent & stable

then it is convergent:

Uh converges to u as h goes to zero.



Why is consistency important?

Consistency is important because:

If the numerical scheme

LhUh = Fh

is both

consistent & stable

then it is convergent:

Uh converges to u as h goes to zero.



SPH

Start with a kernel function:

W(y), y ∈ Rd.

that is non-negative, smooth, radial, and satisfies:∫
Rd

W(y)dy = 1.

From this construct an approximation to the Dirac delta point
mass:
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SPH

One starts by considering a (large) number of points in Rd, the
particles:

x1,x2, ... xN,

with masses:
m1,m2, ... mN.

One then approximates a scalar field u(x) by

Uh(xi) = 〈u〉h (xi) :=
N∑
j=1

mj

ρj
u(xj)Wh(xi − xj).

The parameter h is the effective interacion range between
particles.
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SPH discretization is a two-scale numerical method

The volume associated to each of the particles satisfies:

mj

ρj
≈ εd

where ε is the average nearest-neighbor distance. In practice:

ε ∝ 1

N1/d
.

Therefore the SPH discretization is in fact an approximation to:

〈u〉h (xi) ≈
∫
Rd

u(y)Wh(xi − y)dy.

We refer to this as the continuous formulation of SPH.
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Differential operators and SPH

On then uses this idea to obtain discretizations of differential
operators: gradients, Laplacian, divergence, etc.

For instance, the gradient is approximated by:
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operator has a continuous formulation.



Differential operators and SPH

On then uses this idea to obtain discretizations of differential
operators: gradients, Laplacian, divergence, etc.

For instance, the gradient is approximated by:

〈∇u〉h (xi) =
N∑
j=1

mj

ρj
u(xj)∇Wh(xi − xj).

This arises from the continuous formulation:

〈∇u〉h (xi) ≈
∫
Rd

u(y)∇Wh(xi − y)dy.

One always has that the SPH discretization of a differential
operator has a continuous formulation.



Consistency of SPH

It turns out that SPH is a consistent numerical method

provided work on Rd, i.e. no boundaries are involved.

Possible inconsistencies can only appear at the continuous
level. The discrete step does not cause any troubles.

For instance, the continuous formulation of the gradient is
exact:

〈∇u〉h (xi) = ∇u((xi).

One has similar results for the discretization of divergences,
Laplacians, etc.
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SPH and Boundary Conditions

This is no longer the case if we replace infinite space Rd by

Ω a (bounded) region (usually the fluid domain).

In most interesting cases, the field u(y) is only defined for
y ∈ Ω and one imposes on the boundary ∂Ω a boundary
condition:

u(y) = UB, for y ∈ ∂Ω.

For fluid fields one usually has: no-slip, free slip, Robin B.C.



SPH and Boundary Conditions: truncation

The naive way: replace integrals over Rd by integrals over Ω:

〈∇u〉h (xi) ≈
∫

Ω
u(y)∇Wh(xi − y)dy.

This is completely inconsistent!!!

One is missing a (usually big) term coming from the
integration by parts, and most importantly, the fraction of
volume of the kernel range tends to zero as we approach the
boundary.
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SPH and Boundary Conditions: boundary integrals

First solution: include the term coming from integration by
parts and renormalize the SPH kernel.

An example. Pressure gradient on an interval Ω = (a,b):〈
dp

dx

〉
h

(x) =
1

γh (x)

∫ b

a
p
(
x′
) dWh

dx

(
x−x′

)
dx′+

1

γh (x)
[p (b)Wh (x− b)− p (a)Wh (x− a)]

where the normalization factor is defined as:

γh (x) :=

∫ b

a
Wh (x− y)dy.
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SPH and Boundary Conditions: boundary integrals

Similar ideas go back to Shepard, Belytshcko, etc....

F. Macià, L.M. González, J.L. Cercós-Pita, and A. Souto-Iglesias.
A boundary integral SPH formulation: consistency and
applications to ISPH and WCSP. Progress in Theoretical
Physics, 128(3) (2012), 439–462.

In the same line of ideas: Ferrand et al., Amicarelli et al., and
many others.

Main drawback. It is not so easy and efficient to implement
the computation of boundary integrals. Can get complicated
in 3-d.
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SPH and Boundary Conditions: ghost particles

One introduces a (thin) layer of non-physical particles outside
Ω close to the boundary ∂Ω. The so-called ghost particles.

In the continuous formulation of SPH this amounts to
extending the field u(x) for x outside Ω in order to obtain an
extended field:

u(x), defined for x ∈ Rd.

And then, one applies usual SPH.
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There are many ways to do that:

I Constant extension.

I Symmetric extension.

I Antisymmetric extension.

I Takeda’s method

among others.

Advantages: very easy to implement!
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SPH and Boundary Conditions: ghost particles

In

F. Macià, M. Antuono, A.Colagrossi, and L.M. González.
Theoretical analysis of the no-slip boundary condition
enforcement in SPH methods. Progress in Theoretical Physics,
125(6) (2011), 1091–1121.

we analyze the consistency of enforcing B.C. using this
approach in a simple setting (unidirectional fields, flat
boundaries).

It turns that none of these extension methods gives
simultaneously a consistent discretization for all the
differential operators one needs to discretize the
Navier-Stokes system.
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SPH and Boundary Conditions: ghost particles

Consistency of the ghost particle method is tightly related to
the differentiability properties of the extended field u(x) at
points x of the boundary ∂Ω.

In general, big derivatives (or more precisely, big modulus of
continuity) of the extended fields at points close to the
boundary gives rise to inconsistencies.

Making this precise is a bit technical, though.
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SPH and MPS: consistency goes both ways

Our continuous formulation/two-scale approach to the
analysis of SPH has allowed us to prove that the
Moving-Particle Semi-Implicit Method is essentially equivalent
to SPH.

The main difference is that MPS uses different kernels Wh to
compute the discretizations of the gradient and the Laplacian.

There is a precise “dictionary”, that allows to translate any
consistency result on SPH to a result on MPS, and the other
way round.
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SPH and MPS: consistency goes both ways

Results in this direction can be found in:

1. A. Souto-Iglesias, F. Macià, L.M. González, and J.L.
Cercós-Pita. On the consistency of MPS. Computer
Physics Communications, 184(3) (2013), 732–745.

2. A. Souto-Iglesias, F. Macià, L.M. González, and J.L.
Cercós-Pita. Addendum to: "On the consistency of MPS".
Computer Physics Communications, 185(2) (2014),
595–598.


