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1. Motivation & background

Verification assessment determines if the 
programming and computational implementation of the 
conceptual model is correct. It examines the 
mathematics in the models through comparison to 
exact analytical results. Verification assessment 
examines for computer programming errors.

Validation assessment determines if the computational 
simulation agrees with physical reality. It examines the 
science in the models through comparison to 
experimental results.

NPARC Alliance CFD Verification and Validation site
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more concise.....

Verification is the process of determining that a model 
implementation accurately represents the developer’s 
conceptual description of the model and the solution to 
the model.

Validation is the process of determining the degree to 
which a model is an accurate representation of the 
real world from the perspective of the intended uses of 
the model. 

 1998 AIAA Guide, Ref. [1] (on computational models)
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Do we clearly distinguish these aspects 
when looking at results from our SPH sims 
and compare them with..............................

other simulations, analytical results, 
experiments?
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My aim with this presentation is to critically 
discuss two sets of experimental results (in 
which i was involved) in order to increase 
their usability for SPH code  validations..
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Famous dam-break of Zhou et 
al  1999 (in journal by Lee et al 
2002) revisited in a campaign 

in spring-summer 2012 in 
Madrid with Libor...., leading to:
Lobovský, L., Botia-Vera, E., Castellana, F., Mas-Soler, J., and
 Souto-Iglesias, A. (2014). Experimental investigation of dynami
c pressure loads during dam break. Journal of Fluids and Structu
res, 48:407-434.

 

https://www.researchgate.net/publication/253954233_Experimental_investigation_of_dynamic_pressure_loads_during_dam_break?ev=prf_pub
https://www.researchgate.net/publication/253954233_Experimental_investigation_of_dynamic_pressure_loads_during_dam_break?ev=prf_pub
https://www.researchgate.net/publication/253954233_Experimental_investigation_of_dynamic_pressure_loads_during_dam_break?ev=prf_pub
https://www.researchgate.net/publication/253954233_Experimental_investigation_of_dynamic_pressure_loads_during_dam_break?ev=prf_pub
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http://canal.etsin.upm.es/papers/lobovskyetalj
fs2014/VIDEOS/Fig06_test_91.m4v

http://canal.etsin.upm.es/papers/lobovskyetaljfs2014/VIDEOS/Fig06_test_91.m4v
http://canal.etsin.upm.es/papers/lobovskyetaljfs2014/VIDEOS/Fig06_test_91.m4v
Fig06_test_91.m4v
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Issues with Zhou et al  1999

1)No repeatability analysis.
2)Huge load cells (9 cm diameter)
3)peak pressure is due to back flow



12Lee et al 2002 
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http://canal.etsin.upm.es/papers/lobovskyetalj
fs2014/VIDEOS/Fig13_rail_video.m4v

http://canal.etsin.upm.es/papers/lobovskyetaljfs2014/VIDEOS/Fig13_rail_video.m4v
http://canal.etsin.upm.es/papers/lobovskyetaljfs2014/VIDEOS/Fig13_rail_video.m4v
Fig13_rail_video.m4v
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http://canal.etsin.upm.es/papers/lobovskyeta
ljfs2014/VIDEOS/Fig09_test_101.m4v

http://canal.etsin.upm.es/papers/lobovskyetaljfs2014/VIDEOS/Fig09_test_101.m4v
http://canal.etsin.upm.es/papers/lobovskyetaljfs2014/VIDEOS/Fig09_test_101.m4v
Fig07_test_101.m4v


15Let's see registers from one exp...
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Lee et al peak is in back flow with 

large confidence interval.
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lower sensors display larger repeatability...

you can plug your own data in the fig. files 
provided..
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A SDOF dynamical system, mimicking 
sloshing+roll motion, which allows to 
"eliminate" uncertainties from forcing 

term, external damping, etc.. and obtain 
forces and energy transfers from 

kinematics is devised, built, tested and 
analysed (Bulian et al, 2010, Bouscasse 

et al, 2014a,b, 
SPHERIC benchmark number 9)

http://canal.etsin.upm.es/ftp/SPHERIC_BENCHMARKS/case_2/
http://canal.etsin.upm.es/ftp/SPHERIC_BENCHMARKS/case_2/LinkedDocuments/a100_h93_ww0_water.avi
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Comparison with empty tank

http://dx.doi.org/10.1063/1.4869234.1
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Coupled dynamical system
● The shifting mass
● The moving part of the sloshing rig
● The fluid
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Equations
Torque created by the sliding mass on the tank

Friction contribution:

Angular momentum equation (for simulation):



24

Equations

Torque fluid tank (from experiments) :

You can get the fluid loads from kinematics!!!!!!!
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Energy balances (1)
● Multiplying the angular momentum equation by 

angular velocity
● Integrating over a period 
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Energy balance (2)

In time periodic state (steady-state) the value of 
the dissipation can be obtained from experiments

Deduced
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Experiments
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Am=0.05 m

http://dx.doi.org/10.1063/1.4869234.2
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Am=0.15 cm

http://dx.doi.org/10.1063/1.4869234.4
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Theoretical analysis (main outcomes)

                             models that part of total fluid energy 
(kinetic plus gravitational potential)  available to be lost in 
breaking 
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Experiments analysis



this problem can be useful to 
challenge your solver

http://canal.etsin.upm.es/aquagpusph/gallery/picture.php?/11/category/4


this problem can be useful to challenge 
your solver (Cercos-Pita, 2015, Colagrossi 
et al., 2011, 2013)
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Final remarks

1. taking dam-break as validation 
case suggests the need to pay 
attention to confidence intervals of 
experimental pressure data. 

2. coupling makes sloshing inspiring, 
challenges free-surface flow solvers 
by demaning efficient long sims.
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THE END

?

THANK YOU OURENSE 
SPH GROUP!!!
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