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Comparison of the WRF dynamic downscaling using 

continuous and daily simulations for the year 2014

Conclusion

The reinitialized method, offering approximately 30 times lower

computational cost, is the preferred choice when its results match or

surpass those of continuous downscaling. It enables efficient high-

resolution climate modeling without sacrificing accuracy in most cases.

W10: Both methods excel in marine regions but are less reliable in

mountainous areas. They correlate well climatically with reference data in

coastal and land areas, though instantaneous correlation is moderate.

T2 and DPT2: Both yield excellent overall results, except in coastal

regions, where the continuous method shows moderate performance.

RAIN: Climatological performance is excellent, but instantaneous results

are moderate.

PSFC: Both methods perform well, particularly over oceans, but are

unreliable in mountainous areas.

RSDS: Good results overall, with the continuous simulation slightly

ahead.

IVT: Both methods achieve excellent and comparable results in all

scenarios.

1Centro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab)
2Galicia Supercomputing Center (CESGA) 3CESAM, Departamento de Física, Universidad de Aveiro

B. Thomas1,*, JC Fernández-Alvarez2,1,3, X. Costoya1, M. deCastro1, M. Gómez-Gesteira1, R. Nieto1, L. Gimeno1

T2

DPT2

PSFCRSDS

IVT

W10

RAIN

Results

Tables. OP and NRMSE between WRF and ERA5 for

the continuous and reinitialized simulations, spatially

averaged according to the soil type, and standard

deviation.

Figures (a). Difference in OP between the reinitialized

and continuous simulations.

Figures (b). Difference in NRMSE between the

continuous and reinitialized simulations.

Introduction

Climate models are invaluable tools for understanding the potential impacts of climate change on the atmosphere. While General Circulation Models (GCMs) are

particularly effective for providing future climate projections, their high computational demands result in coarse spatial resolution, limiting their use for regional

studies. To bridge this gap, dynamical downscaling employs Regional Climate Models (RCMs) driven by GCM data to produce finer-scale simulations for

specific areas. Validating these models is essential to ensure they accurately replicate atmospheric trends in a region. This process involves comparing historical

model outputs with observational data. Models closely aligned with observations are deemed reliable for predicting future trends. Dynamical downscaling often

uses continuous simulations, but these can accumulate errors over time as models diverge from their initial input data. Techniques like spectral nudging help

address this drift by selectively adjusting large-scale features to align with reference data. Alternatively, a series of independent, short simulations can be

conducted, preventing error accumulation and reducing modelling time through parallel processing. However, this approach may limit the development of long-

term processes, such as surface hydrological cycles, due to frequent resets of the model's memory. This study aims to evaluate the performance of dynamical

downscaling using the WRF model with ERA5 forcing, comparing continuous simulations with spectral nudging against daily reinitialized runs. The

goal is to assess which approach better represents meteorological variables such as wind speed, temperature, humidity, precipitation, atmospheric

pressure, and solar radiation.

Data & Methods

WRF model setup

The WRF-ARW v4.3.3 model was used for dynamical downscaling, with initial

and boundary conditions provided by the ERA5 reanalysis dataset. While ERA5

offers 0.25º spatial resolution, input data were selected to achieve a 1º resolution

by sampling one out of every four grid points. Similarly, only data at 00:00,

06:00, 12:00, and 18:00 UTC (6-hour intervals) were used for model

initialization. The model was configured with a single domain of 20-km spatial

resolution, covering -115ºW to 40ºE in longitude and 60ºN to 20ºS in latitude,

although only data above 20ºN was analysed. This focus aligns with the WRF

parametrization's effectiveness in subtropical and extratropical regions. The study

considered the year 2014, a typical year without extreme regional variability

patterns like the North Atlantic Oscillation or El Niño–Southern Oscillation.

Dynamical downscaling methods

Two dynamical downscaling methods were applied. First, a continuous

simulation for 2014 was conducted, employing spectral nudging for waves

longer than 1000 km to reduce disruptions to large-scale circulation caused by

interactions between the model solution and lateral boundary conditions. This

simulation included a one-month spin-up period starting on 2013-12-01 at

00:00 UTC and was run on a single core. Second, the year was simulated as

365 independent daily runs, each preceded by a 12-hour spin-up period to

allow the model to reach equilibrium. Each simulation spanned 36 hours,

starting at 12:00 UTC on the preceding day, with the first 12 hours discarded.

These daily runs were executed in parallel using 40 cores, significantly

reducing computational time compared to the continuous method.

Variables under study 

Various variables were analysed to assess the performance of both simulation

methods. Instantaneous variables, recorded every 6 hours, included wind speed

at 10 meters above the surface (W10), air temperature at 2 meters above the

surface (T2), dew point temperature at 2 meters above the surface (DPT2), and

surface atmospheric pressure (PSFC). Accumulated variables, such as

precipitation (RAIN) and surface shortwave solar flux downwards (RSDS,

referred to as solar radiation), represented the total accumulation over the 6

hours preceding each timestamp. These variables were direct outputs from the

WRF simulations. Additionally, the integrated moisture vertical transport (IVT)

was post-processed using the eastward and northward wind components and

specific humidity for the atmospheric column between 1000 and 300 hPa. Lastly,

the results were averaged across the study area based on soil type. "Ocean"

refers to grid cells entirely over sea, while "Coast" includes cells with both land

and sea. Grid cells below 1000 m altitude are labelled "Land," and those above

1000 m are categorized as "Mountain."

Validation

The simulations were fed with data from ERA5 with a 1º spatial resolution,

then dynamically downscaled to a 20-km spatial resolution and lastly

compared with data from ERA5 with a 0.25º spatial resolution. Using the

same dataset - with different spatial resolutions for input and comparison

- allowed for an assessment of the reinitialized and continuous simulation

techniques' ability to perform dynamical downscaling. To facilitate this

validation, the WRF model’s 20-km output grid was bilinearly interpolated

onto the 0.25º grid of the ERA5 data. This ensured that the variables from

both datasets could be directly compared at the same grid points. Additionally,

only the 6-hourly ERA5 data for 2014 were utilized to match the temporal

resolution of the WRF outputs. To evaluate both simulation methods, several

metrics were applied.

One essential metric was the Overlapping Percentage (OP), calculated at each

grid point by comparing the WRF outputs with ERA5 data. The process

involves generating the probability density function for each dataset using a

specified number of bins and increments. The OP is then computed at each

grid point using formula (1), where n is the number of bins, and Zi is the

frequency of occurrence of the variable’s value corresponding to the bin (i),

from the WRF or ERA5 dataset. This metric allows for a comparison of the

overall distribution of simulated values with the reference dataset. A higher

value indicates a greater similarity between the two datasets. Next, the

Normalized Root Mean Square Error (NRMSE) was employed to validate the

dynamical downscaling results at each grid point. It is calculated using

formula (2), where T is the number of time steps (1460 for the year 2014 with

a 6-hour temporal resolution), xt is the value of the variable at time step (t),

from the WRF or ERA5 dataset, and xmin
ERA and xmax

ERA are the minimal and

maximal values from the ERA data, considering all time steps, at the specific

grid points. This metric normalizes the RMSE by the range of the ERA5

signal, capturing the instantaneous differences between the simulated and

reference values. Lower NRMSE values indicate smaller discrepancies

between datasets. To compare the performance of the reinitialized and

continuous dynamical downscaling methods, the difference in metrics (OP and

NRMSE) was computed using formulas (3) and (4). Positive Δ values for

both metrics indicate that the reinitialized method produces more

accurate results, while negative values favour the continuous method.
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