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e T 575 s T e — 35t Climate models are invaluable tools for understanding the potential impacts of climate change on the atmosphere. While General Circulation Models (GCMs) are
Lot | 515120 s3siria| 1verss  irseve particularly effective for providing future climate projections, their high computational demands result in coarse spatial resolution, limiting their use for regional
Mountain 62.6 £ 18.9 64.2 +19.1 295+23.1 28.2+21.8

studies. To bridge this gap, dynamical downscaling employs Regional Climate Models (RCMs) driven by GCM data to produce finer-scale simulations for
specific areas. Validating these models is essential to ensure they accurately replicate atmospheric trends in a region. This process involves comparing historical
model outputs with observational data. Models closely aligned with observations are deemed reliable for predicting future trends. Dynamical downscaling often
uses continuous simulations, but these can accumulate errors over time as models diverge from their initial input data. Techniques like spectral nudging help
address this drift by selectively adjusting large-scale features to align with reference data. Alternatively, a series of independent, short simulations can be
m uo conducted, preventing error accumulation and reducing modelling time through parallel processing. However, this approach may limit the development of long-
wio (%) term processes, such as surface hydrological cycles, due to frequent resets of the model's memory. This study aims to evaluate the performance of dynamical

L N A downscaling using the WRF model with ERAS5 forcing, comparing continuous simulations with spectral nudging against daily reinitialized runs. The
goal 1s to assess which approach better represents meteorological variables such as wind speed, temperature, humidity, precipitation, atmospheric
pressure, and solar radiation.
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Data & Methods

T2 OP (%) NRMSE (%)
Reinitialized Continuous | Reinitialized Continuous
Ocean 93.0+2.7 923+53 41+1.5 48+2.2 - -
Sl IS WRF model setup Dynamical downscaling methoas
Mountain | 87.0£3.0  876+28 | 63+2.1 5.6+ 1.6 _ _ o _ _ _ _ ]
Aoe., (%) The WRF-ARW v4.3.3 model was used for dynamical downscaling, with initial Two dynamical downscaling methods were applied. First, a continuous

and boundary conditions provided by the ERAS reanalysis dataset. While ERA5 simulation for 2014 was conducted, employing spectral nudging for waves
offers 0.25° spatial resolution, input data were selected to achieve a 1° resolution longer than 1000 km to reduce disruptions to large-scale circulation caused by
by sampling one out of every four grid points. Similarly, only data at 00:00, Interactions between the model solution and lateral boundary conditions. This
06:00, 12:00, and 18:00 UTC (6-hour intervals) were used for model simulation included a one-month spin-up period starting on 2013-12-01 at
initialization. The model was configured with a single domain of 20-km spatial 00:00 UTC and was run on a single core. Second, the year was simulated as
resolution, covering -115°W to 40°E in longitude and 60°N to 20°S in latitude, 365 Independent daily runs, each preceded by a 12-hour spin-up period to
although only data above 20°N was analysed. This focus aligns with the WRF allow the model to reach equilibrium. Each simulation spanned 36 hours,
parametrization's effectiveness in subtropical and extratropical regions. The study starting at 12:00 UTC on the preceding day, with the first 12 hours discarded.
considered the year 2014, a typical year without extreme regional variability These daily runs were executed in parallel using 40 cores, significantly
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patterns like the North Atlantic Oscillation or El Nifo—Southern Oscillation. reducing computational time compared to the continuous method.
DPT2 Reinitializoez (%()hntinuous Reinitizljlgle\gSE(g::l)tinuous Va'l ida'tion Va-ria-b IeS u nder Stu dy
Ocean 89.9+3.0 87.6 £5.7 54+1.2 7.0+£2.3 ] ] ] . - - - - - -
Coast | S81T3s oo odias N The simulations were fed with data from ERAS with a 1° spatial resolution, Various variables were analysed to assess the performance of both simulation
Mownaln | FR7esc e I RPe M= then dynamically downscaled to a 20-km spatial resolution and lastly methods. Instantaneous variables, recorded every 6 hours, included wind speed
AOP (%)

compared with data from ERA5 with a 0.25° spatial resolution. Using the at 10 meters above the surface (W10), air temperature at 2 meters above the
same dataset - with different spatial resolutions for input and comparison surface (T2), dew point temperature at 2 meters above the surface (DPT2), and
- allowed for an assessment of the reinitialized and continuous simulation surface atmospheric pressure (PSFC). Accumulated variables, such as
techniques' ability to perform dynamical downscaling. To facilitate this precipitation (RAIN) and surface shortwave solar flux downwards (RSDS,
m ; ol validation, the WRF model’s 20-km output grid was bilinearly interpolated referred to as solar radiation), represented the total accumulation over the 6
per2 (%) onto the 0.25° grid of the ERA5 data. This ensured that the variables from hours preceding each timestamp. These variables were direct outputs from the

2 w@lLaa both datasets could be directly compared at the same grid points. Additionally, WRF simulations. Additionally, the integrated moisture vertical transport (IVT)
only the 6-hourly ERAS5 data for 2014 were utilized to match the temporal was post-processed using the eastward and northward wind components and
resolution of the WRF outputs. To evaluate both simulation methods, several specific humidity for the atmospheric column between 1000 and 300 hPa. Lastly,
metrics were applied. the results were averaged across the study area based on soil type. "Ocean"
refers to grid cells entirely over sea, while "Coast" includes cells with both land
and sea. Grid cells below 1000 m altitude are labelled "Land," and those above
1000 m are categorized as "Mountain."
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One essential metric was the Overlapping Percentage (OP), calculated at each
grid point by comparing the WRF outputs with ERA5 data. The process

RAIN ... 0009 |  NEMSECH =~ Involves generating the probability density function for each dataset using a

Ocean | 844467 855462 | 70428 77428 specified number of bins and increments. The OP is then computed at each

gond | 029843 920e4d | B0wd2 BESE grid point using formula (1), where n Is the number of b!ns, and Z IS the C n | i n
ATE (%) frequency of occurrence of the variable’s value corresponding to the bin (i), ONCIUsSIO

from the WRF or ERAS dataset. This metric allows for a comparison of the
overall distribution of simulated values with the reference dataset. A higher
value Indicates a greater similarity between the two datasets. Next, the
Normalized Root Mean Square Error (NRMSE) was employed to validate the
dynamical downscaling results at each grid point. It i1s calculated using
formula (2), where T Is the number of time steps (1460 for the year 2014 with
a 6-hour temporal resolution), x, Is the value of the variable at time step (t),

from the WRF or ERA5 dataset, and x:32 and xERA are the minimal and
maximal values from the ERA data, considering all time steps, at the specific
grid points. This metric normalizes the RMSE by the range of the ERA5
signal, capturing the instantaneous differences between the simulated and

reference values. Lower NRMSE values indicate smaller discrepancies

The reinitialized method, offering approximately 30 times lower
computational cost, Is the preferred choice when its results match or
surpass those of continuous downscaling. It enables efficient high-
resolution climate modeling without sacrificing accuracy in most cases.
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W10: Both methods excel in marine regions but are less reliable In
mountainous areas. They correlate well climatically with reference data in
coastal and land areas, though instantaneous correlation is moderate.

T2 and DPT2: Both yield excellent overall results, except in coastal
regions, where the continuous method shows moderate performance.

OP (%) NRMSE (%) ween . T mpare th rforman f the reinitializ N : : : :
VT einiiaised  Continuous | Reinitnlised . Continuons between datasets. To compare the performance of the reinitialized and RAIN: Climatological performance is excellent, but instantaneous results
Ocean [ 8619 85320 [ 36413 47416 continuous dynamical downscaling methods, the difference in metrics (OP and are moderate
land O 913E20 012419 | 42414 46414 NRMSE) was computed using formulas (3) and (4). Positive A values for

both metrics indicate that the reinitialized method produces more
accurate results, while negative values favour the continuous method.

AOP,. (%)

PSFC: Both methods perform well, particularly over oceans, but are
unreliable in mountainous areas.

RSDS: Good results overall, with the continuous simulation slightly

OP (%) NRMSE (%) OP (%) NRMSE (%)
R S D S Reinitialized Continuous | Reinitialized Continuous P S F C Reinitialized Continuous | Reinitialized Continuous a h e ad
Ocean 82.4+4.0 85.3 + 3.9 93+ 1.4 7.8+ 1.2 Ocean 89.2 +3.7 89.1 +3.7 22+ 1.7 2.3+ 1.8 .
. Coast 83.0+5.6 85.8 + 3.9 9.6+ 2.0 8.8 +2.0 Coast 80.3+150 802+152 | 59+93 59493
ANRMSE ... (%) Land 80.3 + 6.5 83.3 + 4.5 93+2.7 9.0+2.7 Land 83.0+12.8 829+129 | 54+70 52+7.0
Mountain | 81.2+57 83.4+3.6 7.8+ 1.8 7.5+ 1.9 Mountain | 60.14+273  60.0+274 | 192+20.7 19.0+20.8 IVT: Both methods achieve excellent and comparable results in all
AOP s (%) AOPpspc (%) scenarios.
n
OP(%) = 100 * » minimum(Z}'}¥, ZiERAS) (1)
i=1
Tables. OP and NRMSE between WRF and ERAS for ANRMSE. (%) ANRMSE, . (%) T WRF ERANZ
the continuous and reinitialized simulations, spatially RSDS , thl X — Xi
: : T - T NRMSE((V) — ( ERA _ ERA (2)
averaged according to the soil type, and standard : J SR 0) — \ T Xmax — Xmin
deviation. o L e
Figures (a). Difference in OP between the reinitialized AOP(% ) — OPReinitialized _ OPContinuous (3)
and continuous simulations.

Figures (b). Difference in NRMSE between the
continuous and reinitialized simulations.

ANRMSE (% ) — NRMSEContinuous _ NRMSEReinitialized (4)



