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ABSTRACT: In 2021, the energy sector was put at risk by extreme weather in many different ways:

North America and Spain suffered heavy winter storms that led to the collapse of the electricity

network; California specifically experienced heavy droughts and heatwave conditions, causing the

operations of hydropower stations to halt; floods caused substantial damage to energy infrastructure

in central Europe, Australia and China throughout the year, and unusual wind drought conditions

decreased wind power production in the United Kingdom by almost 40% during summer. The

total economic impacts of these extreme weather events are estimated at billions of USD. Here

we review and assess in some detail the main extreme weather events that impacted the energy

sector in 2021 worldwide, discussing some of the most relevant case studies and the meteorological

conditions that led to them. We provide a perspective on their impacts on electricity generation,

transmission and consumption, and summarize estimations of economic losses.
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1. Introduction26

The report published by the Intergovernmental Panel on Climate Change in August 2021 defines27

an extreme weather event as “an event that is rare at a particular place and time of year” (Seneviratne28

et al. 2021). It is well known that extreme weather has huge socioeconomic impacts (Lazo et al.29

2020; Liu et al. 2020) and that climate change is exacerbating it (Clarke et al. 2022). The study30

of extreme weather events (EWEs) has become a research field in itself, and the Bulletin of the31

American Meteorological Society (BAMS) has been publishing the annual series “Explaining32

Extreme Events” since 2012 (Peterson et al. 2012). Although weather attribution science is now33

done in a rapid way, most of the academic work analysing EWEs for 2021 have begun to appear34

only recently.35

The energy sector is critical in our society. Worldwide energy consumption increases steadily36

each year (IEA 2021), surpassing now 400 EJ. This consumption and electricity production are37

heavily connected to weather and climate (e.g., renewable generation, water availability and tem-38

perature for thermal power plants) (Troccoli et al. 2014; Añel 2015), transport, and demand (Baker39

et al. 1985). All these activities are tied to polluting emissions (CO2, CH4, etc.) and, therefore,40

to anthropogenic climate change, and air quality, which eventually result in health issues and eco-41

nomic impacts (Im et al. 2018). Because of this, understanding the relationship between weather42

and the energy sector is key: better knowledge and more awareness will lead to improvements in43

the way we can adapt to climate change.44

The impact of extreme weather on the energy sector is evident and has been reviewed in the45

literature (e.g., Troccoli et al. (2010); DOE (2013); Añel et al. (2017); Jackson and Gunda (2021)).46

When it comes to energy production, geographical location matters, and different regions of the47

world suffer different types of EWEs. The viability of a power generation plant must take into48

account this type of event, from a crude extraction well to a hydropower station.49

For example, high temperatures increase the resistance of power transmission lines and increase50

power losses (Bartos et al. 2016). High temperatures also affect generation by reducing the51

efficiency of gas and oil-based generation plants. Situations can also be induced in which generation52

must be stopped due to being above the temperature limit thresholds allowed for a generation facility.53

Such incidents have happened in recent years in France with nuclear power plants due to excessively54

warm temperature of the water used for cooling. This phenomenon is becoming more frequent55
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due to climate change and could cause an average annual generation loss of up to 2.4% by the end56

of this century (Ahmad 2021). Low temperatures, heavy snow, and ice build up can cause icing57

of wind turbines and the failure of overhead lines and transmission towers, causing disruptions58

to the grid. They can also reduce electrical output by causing electrical breakdowns. Strong59

winds during storms can cause failure and damage to the overhead transmission and distribution60

lines, either by collapsing distribution towers or by debris falling on the lines (Donaldson et al.61

2023). On the other hand, prolonged periods of calm wind conditions negatively affect generation62

by limiting wind production. Flooding during storms can also impact sub-stations. Therefore,63

improved resilience of power generation plants is necessary to reduce weather-and climate-related64

risks. The study and knowledge of the relationships between meteorology, energy production, and65

the power system components make it possible to face situations (foreseen or not) more efficiently,66

optimising generation resources (Dubus et al. 2018). For this reason, a better understanding of67

the influence of weather in the energy sector will result in a better ability to forecast supply and68

demand.69

Here, we provide evidence of the relevance of this relationship by analysing the EWEs that70

happened in a recent year, 2021, and how they affected the energy sector. In 2021, 350 million71

people worldwide were affected by major energy outages (World Economic Forum 2023), many72

of them caused by a few remarkable meteorological phenomena. Cold waves in Texas and Spain73

were especially relevant, as were extreme floods in Australia, Central Europe and China. We74

saw a heatwave in the Pacific Northwest of North America, concurrent with a heavy drought in75

California and wildfires from May to October. Other less studied phenomena, such as a wind76

drought in Europe, were relevant too. Data is also provided from private companies in a sector77

where access to and publication of this type of information is not easy. We do not cover “regular”78

hurricanes, tornadoes, monsoons or typhoons here, but we focus on unusual high-impact EWEs79

that do not happen annually.80
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Fig. 1. Global distribution of the events here studied.
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The following sections outline the methodology used and provide examples of various cases of84

EWEs that have impacted different parts of the energy sector. This aims to give an overview of the85

different types of EWEs that have occurred during 2021, attempting to integrate meteorological86

factors with their societal impacts: such an integration is not commonly found in current literature.87

2. Methodology88

We performed an extensive search for EWEs in 2021 that impacted the energy sector. For89

it, we used an already-tested method for searches using keywords (Bayo-Besteiro et al. 2022)90

and search engines (Google and Google Scholar). Figure 1 and Table 1 list some of the most91

remarkable EWEs impacting the energy sector in 2021. We have chosen these case studies based92

on the rationale of the representativeness of different meteorological phenomena associated with93

different variables. In this way, we present temperature-related phenomena (both cold and heat94

waves), precipitation (including snow and floods) and wind. This allows us to provide a broad95

picture of different extreme phenomena occurring throughout the year in different seasons. Also,96

selecting these events provides comprehensive geographical coverage, showing impacts all around97

the Northern Hemisphere. Finally, we consider that including a wind drought in our analysis is98

of utmost relevance, as it is a phenomenon of great importance for the energy transition, barely99

studied in the literature and especially striking in 2021.100

3. Case studies101

a. Filomena and Uri winter storms102

The beginning of 2021 featured two major winter storms, separated by one month and in different103

parts of the Northern Hemisphere. The first one was “Filomena”, which affected the Iberian104

Peninsula. The other one was “Uri”, which affected several North American states, but especially105

Texas. “Uri” is now probably one of the best-studied EWEs with impacts on the energy sector106

because of the significant shocks it produced, including deaths. Common to both of these storms107

was heavy snow accumulation and freezing weather. The relationship with climate change in these108

episodes is unclear; however, it is known that for the case of Uri, the estimations of the Electric109

Reliability Council of Texas (ERCOT) regarding peak electricity demand clearly underestimated110
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the risks that winter storms pose in the current scenario of climate change and EWEs (Lee and111

Dessler 2022).112

1) Meteorological context113

The meteorology associated with Filomena has been well-explained by AEMET (2021a). It was114

an extratropical cyclone in origin that formed on the 1st of January near the U.S.A. east coast,115

experienced an excursion to subtropical latitudes near the Canary Islands, and then, with moistened116

air, moved north to the Iberian Peninsula. In this sense, Filomena was different from the usual snow117

episodes on the Iberian Peninsula, which are typically associated with excursions of cold polar air118

masses. On 8 and 9 of January, the warm moist air that Filomena brought after its subtropical119

excursion, extended over cold polar air previously brought over the Iberian Peninsula. As a result,120

snow depths of 0.30-0.53 m were recorded (AEMET 2021b). After it, a cyclone situated over the121

Iberian Peninsula produced a cold spell for one additional week, with temperatures plummeting to122

values ranging between -2 °C and -26.5 °C (and lower in unofficial stations), the lowest recorded123

in the previous twenty years (AEMET 2021a; Smart 2021). Figure 2 shows the anomalies of the124

mean 2-meter temperature for 7-10 January 2021 and the historical records of 4-day accumulated125

snowfall, putting into context how extraordinary Filomena was.126

The meteorology associated with Uri has been explained too, and the U.S. National Weather127

Service has published a good account of it (NWS 2021). On the 10th of February, a cold front moved128

over Texas, and three days later, an Arctic cold front reached the region too. The situation evolved129

to precipitation in the form of snow and sleet and freezing temperatures between the 14th and 16th130

of February. Without these conditions ending, another winter storm with freezing rain joined,131

worsening the conditions, which lasted four days more. However, the situation is acknowledged to132

have had a stratospheric precursor, and it has been shown that vertically propagating Rossby waves133

disrupted the stratospheric polar vortex (Liberato et al. 2007; Castanheira et al. 2009; Millin and134

Furtado 2022), ending in a Major Sudden Stratospheric Warming (SSW) (Lee 2021; Lu et al. 2021).135

The weakening of the stratospheric polar vortex allowed cold polar air and high pressures to establish136

over Canada and then move southward because of the wavy behaviour of the jet stream (Bolinger137

et al. 2022). Additionally, it resulted in a negative pattern of the Northern Annular Mode (NAM),138

usually associated with major SSWs and cold episodes over North America (de la Torre et al. 2006;139
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Lee 2021) as well as a cold pattern (phase 7) of the Madden-Julian Oscillation (MJO) affecting the140

region (Lu et al. 2021). Moreover, it has been shown that existing La Niña conditions favoured the141

event (Albers et al. 2022).142

Recent research has suggested that the temperature extremes combined with their duration have143

return periods exceeding 50 years (Doss-Gollin et al. 2021; Albers et al. 2022). Although these144

events are unusual in Texas, making it difficult to establish a trend, climate change is not expected145

to favour them (Nielsen-Gammon et al. 2021).146

2) Consequences154

For the storm Filomena, in the region of Castilla-La Mancha (southeast of Madrid), up to 27,000155

clients suffered blackouts because of fallen transmission lines (RTVE 2021a), although most of156

these were minor incidents, and only a few remained without electricity for up to four days (RTVE157

2021b). On the other hand, despite the cold weather, low solar power production, high natural158

gas prices, and the associated high demand for electricity that brought rising prices (Figure 2),159

wind farms contributed substantially, with peaks of power production covering up to 47% of the160

electricity demand in the country (REVE 2021).161

Despite this, during Filomena, the Spanish electricity system showed remarkable resilience, with162

only 50 incidents reported on transmission lines, mainly in the centre of the Iberian Peninsula.163

Increases in demand were up to 13% compared to previous weeks. However, these were satisfied164

by energy imports from other countries (REE 2021). There is no estimation of costs specific to165

the energy sector beyond the impact on the prices of electricity, which were prohibitive for many166

people; however, Filomena caused an estimated 1.2 billion USD of damage (AON plc 2021).167

In the case of Uri, the load on the electricity system increased from around 40 GW to over 70168

GW. This marked the highest winter peak demand recorded in Texas and the first time when the169

state experienced a greater winter than summer peak demand (Skiles et al. 2023). Uri resulted in170

a shortage of power generation, the need for rolling blackouts that affected more than 4 million171

people (some extending up to four days), and prices spiking around 9000 $/MWh. The shortage172

of power production was a consequence of the incorrect estimation of the generation capacity by173

ERCOT (Busby et al. 2021; Lee and Dessler 2022), frozen coal and gas power plants, gas supply174

infrastructure, and water pumps in nuclear power stations (NRC 2021) after temperatures reached175
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Fig. 2. (a) Anomalies (°C) of the mean 2-meter temperature for 7-10 January 2021 with respect to the historical

mean (1979-2019) for the same days, data from the ERA5 reanalysis hourly means (Hersbach et al. 2020). (b)

4-day accumulated snowfall vs snow-covered area of all winters from 1979 to 2019 in the Iberian Peninsula

(IBP). The red point represents the period 7-10 January 2021 (Filomena), label E2 marks the period 2-5 January

1997 and E3 the period 28-31 January 1986 (figure from Zschenderlein and Wernli (2022).) (c) Evolution of

the demand and prices of electricity in Spain for the month before and after Filomena (source: Red Eléctrica

Española.)
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below -8.8 °C and down to -10.9 °C (Gruber et al. 2022). Nearly 20% of the total U.S. refinery176

capacity was shut down (D.O.E. 2021). The economic cost of the power outages and disruptions in177

Texas has been estimated in a range between 26.1 and 130 billion USD (AccuWeather, Inc. 2021;178

NOAA National Centers for Environmental Information (NCEI) 2023).179

b. Pacific Northwest heatwave and drought180

Prolonged drought conditions have been suffered in California (U.S.) several times over the last181

three decades. Some have lasted multiple years such as from 2012 to 2015 (Olsen et al. 2023)182

(and references therein). Southwestern North America is a region that has been proven to be183

historically prone to megadrought (drought events of exceptional length) conditions, and climate184

change exacerbates them (Williams et al. 2020). Also, EWEs have led to substantial socioeconomic185

impacts in this region of the world. In 2021 the Pacific Northwest suffered an episode of drought186

that lasted nearly a year, combined with heatwave conditions over the summer (White et al. 2023).187

In this region, 2021 was the hottest year of the last millennium (Derouin 2023). The city of188

Sacramento broke its record for consecutive days without rainfall, with 211 days, and Death Valley189

recorded the highest temperature on Earth since 1930 (WMO 2022). Moreover, compound EWEs190

are recurrent now in California (Pu et al. 2022), and the region faces worsening conditions of191

drought and heatwaves under climate change. Recent research has estimated that these extended192

conditions over 2020 and 2021 increased six-fold because of anthropogenic climate change and La193

Niña conditions (Hoell et al. 2022).194

1) Meteorological context195

The meteorological situation for this event has now been well described in the literature, es-196

pecially for the heatwave during June-July 2021 (Overland 2021; McKinnon and Simpson 2022;197

Schumacher et al. 2022; White et al. 2023). An omega-blocking situation developed; however, this198

was not enough to explain the extraordinary situation, where the dryness of the soil played a key199

role, and the transport of latent heat contributed to warming the middle troposphere (Schumacher200

et al. 2022). The 500-hPa geopotential height was greater than usual, with peak values over British201

Columbia (Loikith and Kalashnikov 2023). A Canadian national maximum temperature record202

was set in Lytton, British Columbia, on three consecutive days (27-29 June), peaking at 49.6 °C.203
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Fig. 3. (a) Anomaly of mean annual precipitation in western North America for 2021 compared to the historical

mean for 1971-2020 (values over the ocean are not plotted). Data source: ERA5 monthly mean total precipitation.

(b) Drought index for Butte County (% of the county under drought conditions), California, for 2020-2021, being

the darker colors the indicators of greater drought level. Source: U.S. Drought Monitor (USDM). (c) Lake

Oroville Storage Levels from October 2020 to September 2022 (in acre-feet). The blue line shows the historical

mean storage. Source: California Department of Water Resources. (d) Satellite view of Oroville Lake in June 4,

2019 (left) and June 19, 2021 (right). Images from Landsat 8. NASA Earth Observatory.
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According to the U.S. Drought Monitor (see Figure 3), the drought conditions in California began204

in February 2021 with a D0 category (abnormally dry) and worsened through the year, reaching a205

D4 value (exceptional drought) by the end of November 2021, when conditions began to improve.206

The compound interaction of heatwave and drought has been pointed out, suggesting that the dry207

conditions, with low evapotranspiration, were also crucial for the extreme heat during June (Philip208

et al. 2022).209

Additionally, several wildfires happened: In British Columbia, by late June and early July, after217

those days of extreme heat, dry storms and more than 700,000 lightning strikes sparked more218
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than 180 wildfires. In Beckwourth (Plumas County, California), lightning also caused another219

wildfire, which lasted from 2nd July-1st August. Another one, the Dixie Fire, began on the 13th of220

July, expanded through five counties, and merged with the Fly wildfire on the 22nd of July. This221

merged wildfire lasted until the 30th of October, burning 187.562 ha, the second-largest wildfire222

ever recorded in California. The Bootleg wildfire (Beatty, Oregon) began on the 6th of July and223

was contained on the 1st of October, burning an area of 1674 km2 and had days of generating224

pyrocumulus and therefore, its own weather (Amici et al. 2022).225

2) Consequences226

The drought led to a significant reduction in hydropower production. In 2020 the generation227

from this source in California was 13.6% of California’s total power mix, which was 44% lower228

than in 2019 (California Energy Commission 2021), and then in 2021 was even lower, at 10.2%.229

The water storage levels in reservoirs in California were very low. The Oroville Reservoir (Butte,230

California) was below average throughout the hydrological year (see Figure 3), reaching values231

below 30% by June, and staying at such low levels until January 2022. The Hyatt hydropower232

station (which the previous year had supplied 60% of the power for Butte County, California) was233

stopped for the first time since it became operational in 1968, because Lake Oroville reached values234

of approximately 35% of its storage capacity and 45% of its historical average, the minimum levels235

under which the station can operate. The station became operational again on 4th February 2022236

(L. Whitmore, California Department of Water Resources, 2021, personal communication). A side237

effect was that the deficit of hydropower generation was covered with natural gas.238

During the wildfire in Lytton, 90% of all the structures, including power stations, were destroyed.239

This occurred during a peak in demand for electricity, mainly for air conditioning (Beugin et al.240

2023). During the Bootleg wildfire, several transmission lines supplying power to California were241

destroyed (Amici et al. 2022). The most significant problems happened on July 8th. On this day,242

the California power network was saturated (and exacerbated by the fact that a gas power station243

(Russell City Power Center), with a capacity to supply 600,000 homes, became inoperative on May244

27th after an explosion), on the brink of scheduled rotating outages. Three lines of the Oregon-245

California interconnection network fell, reducing the imported energy by 4,000 MW (almost 10%246

of the peak demand on that day) (California Energy Commission 2021). The capacity transported247
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by the Pacific DC Interconnection, which runs through the state from north to south, also had to248

be limited to prevent that line from suddenly falling. Due to this, the deficit between the available249

energy and the peak demand rose to 5,500 MW.250

During the nights (without solar power production), hydropower was used; however, its availabil-251

ity was limited because of the drought. Lithium-ion batteries that stored energy from solar power252

were used, providing between 500 and 1,000 MW over several hours. However, it was not enough,253

and a state of emergency was declared, asking private utility companies to prepare for continued254

blackouts. Air pollution requirements were relaxed to let utilities resort to other fossil sources,255

such as diesel backup generators, during grid stress. Measures such as constructing temporary gas256

plants and improving existing ones were approved to deal with the continuous energy shortage. At257

the same time, the California Independent System Operator (CAISO) called on the public to reduce258

power consumption at peak demand hours when price spikes were expected. Finally, the primary259

generation sources (natural gas and nuclear plants) did not fail, and by relying on non-renewable260

sources, rotating blackouts were avoided. However, some renewable energy curtailments were261

necessary because of the instability in power. During this situation, it was feared that the same262

thing would happen as the previous year, 2020, when CAISO was forced to make rotating blackouts263

during a heatwave on 14th-15th August (which affected some two million customers). In that case,264

some industries had to stop operating because of outages. Also, there was an economic impact on265

clients, as electricity prices in California reached 1500 USD/MWh on 16th August 2021 (CAISO266

2021).267

In British Columbia, record-breaking temperatures also triggered a record power demand. Ac-268

cording to the British Columbia Hydro and Power Authority (BC Hydro), on June 28th, all-time269

records for peak summer demand were broken, with a peak of 8,568 MW (600 MW more than270

the previous peaks) and 35% higher than the seasonal average. The unplanned outages because271

of excess demand skyrocketed on June 28th, reaching 400 outages and affecting more than 40,000272

customers, compared to a daily average in the week before the heatwave of around 50 outages with273

1,000 customers affected. The resilience of the British Columbia power production system (where274

80% of energy production comes from hydropower plants and which had not experienced severe275

droughts in many years) meant that the increase in demand did not imply significant changes in276
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energy production, nor did it have to resort to non-renewable sources, which could have worsened277

the situation.278

Without specific estimations about the economic impact on the energy sector, it is estimated that279

the drought cost about 9.1 billion USD, and wildfires from June 2021 accounted for another 10.8280

billion USD (NOAA National Centers for Environmental Information (NCEI) 2023).281

c. U.K. wind drought282

Wind droughts are phenomena that are getting increasing attention over the last few years because283

of their relevance for wind power production. As the number of wind farms continues to rise and284

expand worldwide, periods of low wind speed become more evident, as recent research has shown285

that in many regions, the most severe wind droughts occurred before the expansion of wind power286

made them relevant (Antonini et al. 2023a,b). Related to it, under climate change projections,287

globally, wind speeds at 10 m are expected to be lower (Deng et al. 2022), although the impacts of288

climate variability often far outweigh the magnitude of the climate change signal (Bloomfield et al.289

2021a), and factors such as multidecadal climate variability or land use change are as relevant as290

anthropogenic emissions (Wohland et al. 2021).291

One of the problems related to the lack of studies on these phenomena is that there is no consensus292

definition of a wind drought. For this case study, we focus on an overall decrease in wind speeds,293

a meteorological variable relevant because of the long period for which it happened and quite294

obvious all along 2021. However, the few existing studies on wind droughts focus primarily on295

other issues, which may be more significant from the perspective of energy generation such as296

percentiles of wind power generation, the two curtailment speeds (high and low) that render the297

turbines inoperative, or the duration of a period with low power generation (e.g., Brown et al.298

(2021); Liu et al. (2023); Potisomporn et al. (2024)).299

Some work has been done on energy droughts from renewable sources in the U.K., finding300

that wind droughts (events with total power production from wind lower than the 10𝑡ℎ percentile)301

affecting the U.K. are quite common, with between 6-12 events per season, and lasting for 6-11302

days (Otero et al. 2022). In summer 2021, a wind drought affected most of Europe, especially the303

U.K., and the wind speed records in the British Isles were substantially lower than the historical304

record average (1960-2020). By the beginning of September 2021, wind power accounted for 7%305
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of the electricity production mix in the U.K., to a total of 14% by the end of the year, compared to306

25% in 2020 and 26.8% in 2022 (Fortune 2021; National Grid 2023; Statista 2023).307

1) Meteorological context308

Wind power production in the U.K. has been demonstrated to be strongly related to teleconnection309

patterns (Brayshaw et al. 2011; Zubiate et al. 2017; van der Wiel et al. 2019; Bloomfield et al.310

2020b). During the period in which this wind drought event occurred, the North Atlantic Oscillation311

(NAO) index (Hurrell et al. 2003) showed mainly negative values, which explains the persistent312

anticyclonic circulation over the British Isles and the low wind speeds. Figure 4 shows how313

negative NAO index values are well negatively correlated to low values of wind energy production.314

During the months where production has been lower (as seen in the graph, July has been the most315

notable month), the values for the East Atlantic (EA) and Scandinavia (SCAND) teleconnection316

patterns (Barnston and Livezey 1987) also show high values. From April to September, the317

correlation of wind power production in Scottish Power farms was a remarkable -0.92 and -0.84318

with the SCAND and EA patterns, respectively, and -0.77 with NAO.319

2) Consequences325

In the United Kingdom, wind power production was considerably reduced for most of 2021,326

especially from April to September. According to SSE plc, which operates in the United Kingdom327

and Ireland, renewable power production (including hydropower) was 32% lower than expected328

for this period mainly driven by the wind drought (SSE plc 2021). According to Iberdrola/Scottish329

Power, anomalies in production in their wind farms in July were 43% below the historical monthly330

average for 1990-2019 (note that the wind speed data reported here was not used to calculate the331

wind power output), being the second year with lower production of the data series. The U.K.332

Government reported that wind power contributed 14% less in 2021 than in 2020, despite the pro-333

duction capacity rising by 5.3%, due to lower wind speeds (0.6 m/s below the average) (Department334

of Business, Energy and Industrial Strategy 2022). As a result, the lack of wind power had to be335

covered by other sources, including the restart of a coal plant, which resulted in increased CO2336

emissions (Fortune 2021). At the same time, there were problems with the French interconnector337

which was offline due to a line failure, so regular night-time supply from France was not available338

to support the challenging conditions. It also had an impact on electricity prices, as the demand339
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a)

Fig. 4. (a) Wind rankings for 2021 and different seasons over Europe (Source: (C3S/ECMWF 2022) (b) (Navy

and Blue) Average wind power production in Scottish Power wind farms in the U.K. for 1990–2019 and wind

power production in the U.K. in 2021, respectively (Green) NAO index, (Red) EA index, and (Orange) SCAND

index in 2021 (data for the indexes obtained from NOAA). Data for the indexes were obtained from NOAA.

Source of wind power production: Iberdrola S.A.
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had to be fulfilled with other fossil fuel sources, which had suffered marked price increases because340

of the post-pandemic increase in demand.341

d. Floods in Shanxi342

2021 was a year with several EWEs in China. It is estimated that convective weather events343

alone caused economic losses in the country of 4 billion USD (Li et al. 2022). At the beginning of344

October 2021, record-breaking precipitation and floods happened over northern China, estimated345

to have return periods of 1-in-1500 years (JBA Risk Management 2021). This extreme rainfall346

had huge impacts on the energy sector, mainly on coal extraction from mines and energy markets.347

The region most affected was the province of Shanxi. Over northern China, the rainy season has348

generally occurred during the summer; however, it has been observed that the usual rainy season349

in northern China has been extending into the autumn in recent years (Che et al. 2021). There350

are several different mechanisms causing the timing shift, including, for example, the phase of El351

Niño-Southern Oscillation and the Indian Ocean Dipole (Xu et al. 2016).352

During the rainy season (the transition to autumn), climate change projections indicate that there353

will be an increase in the amount of rainfall exceeding the 95𝑡ℎ percentile on a single day. Values of354

accumulated precipitation over five days, and the number of days with precipitation above 20 mm355

are expected to increase by 15%-20% by 2039-2058 (Qin et al. 2021). Also, recent work focusing356

on the episode of extreme precipitation for this region the month before this case study has shown357

that climate change increased their probability twofold (Hu et al. 2023b).358

1) Meteorological context359

During the first two weeks of October (1st to 14th October), torrential rains occurred in the360

Shanxi region (37.0°N, 112.0°E), with the heaviest rainfall happening between the 2nd and 7th.361

The precipitation anomalies were up to 450% above the historical mean (1980-2020) according362

to ERA5 (see Figure 5) (other sources report values of 300% (Li et al. 2022)). This precipitation363

came after a September in which it had already exceeded the historical mean in Northern China by364

300% (Sun et al. 2023), and catchments were saturated and susceptible to flooding.365

Synoptically there was a stable situation (it lasted for several days) over Shanxi with low pressures366

to the west and high pressures to the east (Liu 2022). The western Pacific subtropical high was367
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located abnormally far north, and its west ridge was abnormally far east, in a configuration which368

favoured the transport of warm and humid air to the region. This facilitated the precipitation for an369

extended period. An emergent La Niña event has been pointed out as an additional contributing370

factor (Che et al. 2021; Gu et al. 2022). The rainfall recorded between the evening of 2nd October371

and the morning of 7th October was 119.5 mm, exceeding historical maximums (Zhou et al.372

2022). According to JBA Risk Management (2021), in Taiyuan, the capital of the Shanxi region,373

cumulative precipitation of 185.5 mm was recorded in 12 hours. This is more than triple the374

historical maximum recorded between 1979 and 2021 and more than seven times the average375

October rainfall of 25 mm observed between 1981 and 2010. In Daning County, southwest of376

Shanxi, a cumulative precipitation of 285.2 mm was recorded in 12 hours, breaking the seasonal377

record by seven times. During this episode, many meteorological stations in the region recorded378

historical maximums of precipitation. The precipitation recorded in Shanxi in five days was more379

than triple the average monthly rainfall for October. The rainfall on the 2nd October caused the380

Fen River in Taiyuan to reach a maximum water flow of 1,100 m3/s, which is more than 20 times381

its usual rate and the highest since 1996. Because of this, several levees were breached, causing382

severe flooding in Yuncheng in southwestern Shanxi, near the confluence of the Fen He and Huang383

He rivers (Feng et al. 2022).384

2) Consequences388

With more than 600 coal mines in the region, 30% of the coal extracted in China comes from389

Shanxi. Because of the floods, approximately 10% had to stop operating, heavily stressing the390

supply chain in a pre-existing context of energy peak prices because of the industrial recovery391

after the COVID-19 pandemic (IEA 2021). Given the significant percentage that coal thermal392

power contributes to the electricity mix in China (almost 55% in 2021 (Ritchie et al. 2022)), as393

a consequence of the lack of coal, authorities had to implement electricity outages in 20 of the394

31 regions of China. Also, the coal market registered record prices because of global demand,395

peaking at $269.5/t on October 5 (see Figure 5).396

On October 15th, the situation worsened due to increased demand associated with an episode397

of low temperatures in most of China, with thermal power plants rushing to stock up on coal. In398

response to the situation, the Council of State requested mines increase their production, letting399
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Fig. 5. (a) Anomaly of precipitation for the Shanxi region for October 2021 compared to the historical mean

(1980-2020) for the same month. Data source: ERA5 total precipitation hourly data. (b) Evolution of spot coal

price in 2021 in USD per metric ton.

385

386

387

them surpass the maximum annual allowances. As a consequence, inflation rose by 0.91%, leading400

to a 1% rise in the producer price index and a rise of 0.5% in the consumer price index (Tianfeng401
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Securities Co. 2021). The total cost of the Shanxi floods is estimated to be between 770 and 707402

million USD (Khaama Press 2021; Zhou et al. 2022).403

4. Discussion404

EWEs pose a substantial risk to the energy sector, and climate change is increasing the number405

and risk of these events. Therefore, preparedness and adaptation are necessary. Here, we have406

reviewed some of the more relevant cases in 2021, showing that such events can be diverse and407

triggered by a range of different meteorological drivers. Some of the events show how seasonal and408

sub-seasonal forecasting represents an opportunity to prevent and mitigate their impacts, which409

has been extensively pointed out in previous research (e.g., Troccoli et al. (2014); Añel (2015);410

Orlov et al. (2020); Bloomfield et al. (2021b); Bayo-Besteiro et al. (2022); Domeisen et al. (2022)).411

Some others show how a better knowledge of the stratosphere and its coupling with the troposphere412

plays a role (Añel 2016). The fingerprint of La Niña is present in three of the EWEs studied, and413

other teleconnection patterns, such as NAM and the MJO, are linked to others. Previous research414

on the “Beast from the East” has already shown how the electricity demand in Europe can be415

driven by these and other teleconnection patterns, jointly with the phenomenon of polar vortex416

weakening and the associated excursion of polar air masses in midlatitudes (Beerli and Grams417

2019; Bloomfield et al. 2020a). This is similar to what happened for winter storm “Uri”. Also, it418

is obvious that climate change has a role in EWEs; however, for many of the cases presented here,419

the relationship has been studied, and it is obvious, but for others it is not so clear. There are even420

cases that could become less frequent, such us Filomena (Faranda et al. 2022).421

The case studies presented here were quite prominent in a year that featured an energy market422

struggling with generation and energy prices in a post-pandemic scenario with economic recovery423

and in a year with several relevant meteorological and climatic features such as droughts, heatwaves,424

floods, wildfires, winter storms, a Major SSW, and La Niña. However, one of the main problems425

when reviewing the impacts of extreme weather on power systems is in finding information on case426

studies from some regions. The lack of cases for which we have found information for the Global427

South is quite apparent and in stark contrast to the comprehensive literature available about the428

winter storm Uri. Forensic analysis of these events, both from the meteorological and technical429

sides, is necessary for good future planning, even more so under climate change, and no doubt430
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beneficial for any region and operator, not only those involved in the case studies. In this way, more431

openness in data and reports regarding the impacts of weather on the energy sector is desirable432

from stakeholders and researchers in other regions less studied.433

Other conclusions from this work are that despite existing warnings and research results, stake-434

holders’ efforts in adaptation can be clearly improved. In this regard, there are two aspects of grid435

resilience: meeting the electricity demand and ensuring that the infrastructure to deliver electricity436

is resilient to EWEs.437

For the first, meeting electricity demand, work published more than fifteen years ago had already438

pointed out how heatwaves under climate change can drive problems in the power supply in439

California because of excess demand (Miller et al. 2008). Diversification in power generation440

sources, adoption of renewable sources and improvements in interconnection in the electricity441

grid can increase resilience to EWEs and climate change. For example, during Filomena, the442

Spanish electricity generation and transmission system (with a substantial percentage of generation443

capacity in renewable sources) coped well with both generation and demand. However, the high444

reliance of Texas on thermal power plants and fossil fuels, with coal, nuclear, and gas accounting445

for almost 75% of the generation, and only 25% additional from wind power (solar and hydropower446

generation is minimal) (D.O.E. 2021) has been pointed out as one of the weaknesses that lead to447

the disastrous impact of Uri (Popik and Humphreys 2021). Additionally, it has been demonstrated448

that technologies such as photovoltaic power are resilient to climate change, which is unlikely449

to threaten their production (e.g., Jerez et al. (2015); Bayo-Besteiro et al. (2022)). Also, other450

technological solutions, such as using storage systems (e.g., batteries for short periods of time or451

reverse hydro-pumping reservoirs for long-term storage), could help alleviate phenomena such as452

renewable energy droughts (Rinaldi et al. 2021).453

Regarding the infrastructure, recommendations for weatherization and preparedness to EWEs454

in Texas had been made by the U.S.Federal Energy Regulatory Commission based on up to three455

previous EWEs, including an excursion of polar air masses similar to part of the Uri storm (FERC456

2021). Also, the adaptation of the generation systems, transmission lines and the market managed457

by ERCOT in Texas did not consider extreme weather or possibilities for peak demand during458

winter (Popik and Humphreys 2021), and this played a key role in the disaster caused by the Uri459

storm. In this vein, although very different in nature, the comparison between the impacts of460
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Filomena and Uri shows how the investment and preparation of the power generation system and461

interconnection of transmission lines can be key to improving the resilience of the energy system462

against EWEs. The economic viability of the winterization of systems to avoid cases produced463

by episodes such as the Uri winter storm has been studied (Gruber et al. 2022), showing that464

the social cost of inaction is tenfold the cost of adaptation. Increasing the use of forecasts on465

potential weather risks for the energy sector would be beneficial for adaptation. For example,466

the 2023 summer forecast of the North American Electric Reliability Corporation reports on the467

potential impacts of heatwaves and wildfires across the U.S. (Scharping 2023). However, even if468

the issues caused by EWEs are acknowledged, adaptation can still be a lengthy process. EWEs469

and climate change have begun to be incorporated into official energy system planning by utilities470

and governmental entities only in recent years, and it is a work in progress. Also, stranded assets471

play an important role in the energy sector, where investments in power generation plants and472

technologies need years to pay off, and building new generation facilities can be somewhat slow473

because of politics or local opposition. In this regard, adaptation and preparation of the energy474

sector for EWEs and climate change will benefit politics, favouring the deployment of renewable475

energy installations.476

Over the recent years, actions have begun to be carried out to adapt the energy sector to climate477

change and EWEs. The European Climate Adaptation Platform and the European Union policy478

include energy security through renewables as a key point (Climate-Adapt 2023). The International479

Atomic Energy Agency published a review in 2019 on adaptation to climate change, discussing the480

role of EWEs (IAEA 2019). Also, the U.K. Third National Adaptation Programme (Department for481

Environment and Affairs 2023) published in July 2023 specifies the mandate “to build climate and482

weather resilience” in the energy sector, and establishes floods, lack of water availability, and483

extreme temperatures as the main risks for energy security. Specific actions to adapt to these key484

risks are provided and some of them are needed in the very short-term. The focus on floods as485

one of the main risks for the energy sector over the coming years coincides with the direction and486

worries exposed by the International Energy Agency (Lim 2023). Additionally, recent actions to487

provide helpful climate services with the engagement of stakeholders have been deployed. These488

are an excellent way to adapt the energy sector against EWEs and climate change according to its489

needs (Goodess et al. 2019).490
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Many lessons have been learned from the cases reviewed in this paper and the actions to avoid491

them happening again. Preparedness against floods and an increase in the share of renewable492

energy in the mix are two of the main measures being deployed worldwide. Some cases have493

undergone “forensic” analysis, and measures have been proposed. For example, after the Uri494

storm, the city of Austin and Travis County requested a report (City of Austin Homeland Security495

and Emergency Management 2021); however, it focused on the emergency response. The references496

to the measurements regarding the disruptions in the grid are only from the side of the causes of497

disruption, and the recommendations are limited to increasing the existence of in-situ backup498

power generators that do not depend on external electricity sources. On the other hand, California499

publishes its climate adaptation strategy every three years, the last one in 2021; In April 2022, after500

the heatwave the previous year and public consultation in 2021, it released a separate extreme heat501

action plan (California Natural Resources Agency 2022). This plan contains a wide number of502

actions for the energy sector, such as continuing to include extreme heat and its impacts on energy503

demand into Integrated Energy Policy Report forecasts, to protect energy systems from the impacts504

of extreme heat and increase energy resilience during extreme heat events through improvements505

for grid reliability (some of which were already completed by the publication of the plan) and to506

increase “reserve margin” power resources. It also includes a goal to develop enhanced demand507

forecasts that consider the likelihood of EWEs.508

Finally, it should also be considered that the energy sector is one of the most vulnerable to risks509

derived from compound EWEs (Niggli et al. 2022) and that EWEs with energy sector impacts can510

also impact human lives and can exacerbate social inequalities (Nejat et al. 2022; Zanocco et al.511

2022). At the same time, improved EWE warning systems can help reduce CO2 emissions through512

a more efficient and safe use of energy. These are some of the reasons to devote efforts to studying513

EWEs and investing in increasing the resilience of the energy sector to them.514

This study elucidates (or illustrates) the impact of meteorology on society through the lens of515

Extreme Weather Events (EWEs) and their influence on the energy sector. We delve into the varied516

consequences of distinct events that unfolded in 2021, framing them within their meteorological517

context. A specific focus is the inclusion of phenomena such as wind droughts, an area that is518

relatively unexplored and emerging. Moreover, results are based on exclusive data from a private519

wind energy company, offering insights that are typically not readily accessible. Overall, this paper520
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provides a comprehensive overview of the pivotal meteorological events of the year 2021 and their521

implications for the energy sector.522

This study underscores the crucial role of weather forecasting in society, particularly within the523

energy sector. By considering potential risks, the adaptation and resilience of energy production524

and transmission systems are enhanced. These aspects not only present an opportunity to optimize525

the economic aspects of the energy system but also help in averting potential damage mitigation526

costs. Additionally, they provide a foundation for making informed political decisions geared527

towards system optimization. The tangible manifestation of this issue is observed on a global scale528

year after year. A notable instance is the 2023 floods in Libya (Nagraj and Benny 2023), a country529

heavily reliant on hydrocarbons for energy. Such extreme phenomena resulted in a significant spike530

in oil prices, showcasing the real-world implications of weather-related challenges. Events like fires531

have far-reaching impacts, evident in the USD 180 million losses incurred in the photovoltaic solar532

energy sector in the United States between January and March 2021. Such incidents underscore the533

need for robust fire prevention and extinguishing policies in areas lacking current measures. In the534

Indian context, Dumka et al. (2022) exemplify how Earth observation data, coupled with passive535

and active remote sensing techniques and model simulations, offers a realistic representation of536

atmospheric effects on solar energy production during fire periods. The phenomenon of a wind537

drought, or periods of stillness, demands dedicated study due to its adverse effects on the energy538

sector, particularly in reducing wind production. This issue is gaining prominence globally, as the539

International Energy Agency highlighted in its 2023 Energy Efficiency Report (IEA 2023). The540

report emphasizes the global relevance of weather-related challenges, exploring their implications541

and associated risks, especially in situations of exceptional warmth linked to surges in demand and542

the ensuing risks within the energy sector.543
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