Introduction to SWASH model: theory and hands-on session Ourense, 9th May 2014 Tomohiro Suzuki

Flanders Hydraulics Research

SWASH model

- SWASH : Simulating WAves till SHore
- Wave-flow model
- Time domain
- Based on non-linear shallow water equation with non-hydrostatic pressure (fully nonlinear)

Easy-to-use

- Open source, available at Sourceforge.net
- Accessible:
 - Fortran 90
 - Parallel computing
 - Simple data structure, easy-to-understand
 - Easy to install
- The same "touch and feel" as SWAN SWAN : spectrum domain wave model ~almost the same input

Input is simple; Just 50 lines in this case (Wenduine case)

```
2
  $↓
 3 $ Wenduine physical model, Test_125↓
 4|$↓
 5 PROJ '₩EN 125 INC' '01'↓
 6|$↓
 8|$ Water level↓
 9 SET LEVEL 6.92↓
10 MODE NONST ONED↓
11
  ÷.
12|$ Coordinates (1D) ↓
13|CGRID 0. 0. 0. 1300.0 0. 2600 0 ! Flume physical total:64 m, SWASH: 52 m, NGrid 2600 (dx=0.5 m)↓
14|VERT 1 ! 1 layer↓
15
  1
16|$ Bottom (1D)↓
17 INPGRID BOTTOM 0. 0. 0. 2600 0 0.5 0.4
18 READINP BOTTOM -1. 'WEN_125.bot' 1 0 FREE ! Slope 1/35, depth -16.88 m↓
191
  . I.
20 $ Initial state↓
21 INIT zero↓
22
  Ŧ
23 $ Wave conditions↓
24 BOU SIDE ₩ CCW BTYPE WEAK CON SERIES 'WEN_125_INC bnd'↓
25 BOU SIDE E CCW BTYPE RADIATION↓
26
  ÷.
27 $ Physics↓
28 FRIC MANN 0.014
29|Break↓
30 NONHYDROSTATIC↓
31
  T.
32|$ Numerics↓
33 DISCRET UPW MOM↓
34 TIMEI 0.1 0.5↓
35 $1
36
  1
38 $1
39 POINTS 'WG'
                FILE 'out_wg.loc'
                                    ! Wave gauges↓
40 TABLE 'WG' NOHEAD 'WEN_125_INC_OUT.tbl' TSEC WATL OUTPUT 000000.000 0.2 SEC↓
41 POINTS 'LAYER' FILE 'out_layer.loc' ! Overtopping layer depth and speed↓
         'LAYER' NOHEAD 'WĒN_125_INC_OUT.Itn' TŠEC DIST BOTL WATL OUTPUT 000000.000 0.2 SEC↓
42 TABLE
         'LAYER' NOHEAD 'WEN_125_INC_OUT.Isp' TSEC DIST BOTL VEL OUTPUT 000000.000 0.2 SEC↓
43 TABLE
                FILE 'out_surf.loc' ! Water surface↓
44 POINTS 'WGO'
                NOHEAD 'WEN 125 INC OUT.sur' TSEC WATL OUTPUT 031355.000 0.2 SEC↓
45 TABLE
         'WGO'
46
  1
47 $↓
48 TEST 1 0↓
49 COMPUTE 000000.000 0.02 SEC 032355.000↓
50 STOP [EOF]
```

Basic philosophy

 Provide an efficient and robust model that allows a wide range of time and space scales of surface waves and shallow water flows in complex environments

-> NS model (e.g. VOF mode) is too expensive to simulate in 3D domain and number of waves (e.g. 1000 waves)

Most of the coastal application, one layer calculation is enough (kh<1)

Principle behind non-hydrostatic waveflow modeling

- Simplest modeling for wave transformation: NLSW
- NLSW-type models are able to deal with breaking/bore capturing
- Non-hydrostatic pressure enable to model many other wave phenomena (dispersion, surf beat, triads, etc.).
- Water depth can be divided into a number of layers: improvement of dispersion relation

Main uses

- Predicting wave transformation
 - Offshore to beach
 - Agitation in ports and harbor
 - Transmission over porous structure
 - Overtopping over a dike (e.g. Wenduine)
- Predicting flow

- Rapidly changing topography, typically found in coastal flooding (e.g. dike breaks, tsunamis and flood waves)

• Others

- Ocean circulation, tides and storm surges

Physics

- Propagation, frequency dispersion, shoaling, refraction, reflection and diffraction,
- flooding, wave run-up,
- nonlinear wave-wave interactions (surf beat, triads),
- wave-induced currents and wave-current interaction,
- wave breaking,
- bottom friction, and
- subgrid turbulence and vertical mixing.

Numerics

- Staggered grid in space and time
- Time stepping is done in combination with second order projection method
- Either SIP (depth-averaged mode) or (M)ILU-BiCGSTAB (multi-layered mode) iterative solver is employed for the solution of the pressure Poisson equation.

Comparison with Boussinesq model

- SWASH improves its frequency dispersion by increasing this number of layers rather than increasing the order of derivatives of the dependent variables
- SWASH is more robust and faster than Boussinesq-type wave model.
- SWASH does not have any numerical filter nor dedicated dissipation mechanism to eliminate short wave instabilities.
- Wave breaking in SWASH is not artificial
- Fully non-linear in SWASH

Computations

- SWASH computations can be made on a regular and an orthogonal curvilinear grid in a Cartesian or spherical coordinate system.
- SWASH runs can be done serial, i.e. one SWASH program on one processor, as well as parallel, i.e. one SWASH program on more than one processor using an MPI protocol.

Boundary conditions

- Wave boundary (weakly reflective)
 - Regular waves by means of Fourier series or time series
 - Irregular unidirectional waves by means of 1D spectrum (Defined spectrum, Pierson-Moskowitz, Jonswap or TMA).
 - Irregular multidirectional waves by means of 2D spectrum. (Defined spectrum, Pierson-Moskowitz, Jonswap or TMA) while the directional spreading can be expressed with the well-known cosine power or in terms of the directional standard deviation.
- Velocity or discharge
- Sommerfeld or radiation condition
- Sponge layers
- Periodic boundaries

Output (ASCII or binary Matlab files)

- water surface elevation
- depth-averaged velocity magnitude and direction
- layer-averaged velocity magnitude and direction
- vertical distribution of horizontal velocity
- turbulence quantities (k, ε and v_t)
- time-averaged turbulence quantities
- transport constituents (salt, heat and suspended sediment)
- time-averaged transport constituents
- layer-averaged pressure
- vertical distribution of pressure
- non-hydrostatic pressure
- significant wave height
- wave-induced setup
- maximum horizontal runup or inundation depth

```
2 $1
 3 $ Wenduine physical model, Test 125↓
 4|$↓
 5 PROJ 'WEN_125_INC' '01'4
 6|$↓
 8|$ Water level↓
 9|SET LEVEL 6.92↓
10 MODE NONST ONED↓
11 | ↓
12|$ Coordinates (1D) ↓
13|CGRID 0. 0. 0. 1300.0 0. 2600 0 ! Flume physical total:64 m, SWASH: 52 m, NGrid 2600 (dx=0.5 m)↓
14|VERT 1 ! 1 layer↓
15
16 $ Bottom (1D)↓
17 INPGRID BOTTOM 0. 0. 0. 2600 0 0.5 0.4
18 READINP BOTTOM -1. 'WEN_125.bot' 1 0 FREE ! Slope 1/35, depth -16.88 m↓
19 \downarrow
20|$ Initial state↓
21 INIT zero↓
22 1
23 $ Wave conditions↓
24 BOU SIDE ₩ CCW BTYPE WEAK CON SERIES 'WEN 125 INC bnd'↓
25 BOU SIDE E CCW BTYPE RADIATION↓
26 \downarrow
27 $ Physics↓
28 FRIC MANN 0.014
29|Break↓
30 NONHYDROSTATIC↓
31
32|$ Numerics↓
33 DISCRET UPW MOM↓
34|TIMEI 0.1 0.5↓
35 $
36
38 $1
39 POINTS 'WG'
                 FILE 'out_wg.loc'
                                     ! Wave gauges↓
40 TABLE 'WG' NOHEAD 'WEN_125_INC_OUT.tbl' TSEC WATL OUTPUT 000000.000 0.2 SEC↓
41 POINTS 'LAYER' FILE 'out_layer.loc' ! Overtopping layer depth and speed↓
         'LAYER' NOHEAD 'WEN_125_INC_OUT.Itn' TSEC DIST BOTL WATL OUTPUT 000000.000 0.2 SEC↓
42 TABLE
         'LAYER' NOHEAD 'WEN 125 INC OUT.Isp' TSEC DIST BOTL VEL_OUTPUT 000000.000 0.2 SEC↓
43 TABLE
         '₩GO'
                 FILE 'out_surf.loc' ! Water surface↓
44 POINTS
         'WGO'
                 NOHEAD 'WEN 125 INC OUT.sur' TSEC WATL OUTPUT 031355.000 0.2 SEC4
45 TABLE
46 \downarrow
47 $↓
48 | TEST 1 0↓
49 COMPUTE 000000.000 0.02 SEC 032355.000↓
50 STOP [EOF]
```

Examples

http://swash.sourceforge.net/

Check allstwav case

input

a11stwav.sws -> SWASH input file a11stwav.bot -> bathymetry file a11stwav.wlv -> incident wave file

Exercise

Case 1: a11stwav

Run a11stwav case

output a11stw01.tbl -> output water surface a11stw01.prt -> log file

SWASH run + mkplot (matlab file)

Case 2: Wenduine wave overtopping calculation


```
2 $↓
 3|$ Wenduine physical model, Test 125↓
 4 $↓
 5|PROJ '₩EN 125 INC' '01'↓
 6 $1
 8|$ Initial setting↓
9 SET LEVEL 6.92
                                        ! Water level↓
10 MODE NONST ONED
                                        ! 1D↓
11 ↓
12 $ Computation grid↓
13 CGRID 0. 0. 0. 1300.0 0. 2600 0
                                        ! x0,y0,dir,x_total,y_total,x_ngrid,y_ngrid↓
14 VERT 1
                                        ! 1 layer↓
15 ↓
16 $ Bottom file read↓
17 INPGRID BOTTOM 0. 0. 0. 2600 0 0.5 0. ! x0,y0,dir,x_ngrid,y_ngrid,dx,dy↓
18 READINP BOTTOM -1. 'WEN 125.bot' 1 0 FREE ! -1:coefficient, 1:idla, 0:n header↓
19 ↓
20|$ Initial state↓
21 INIT zero
                                        ! Starting from zero (no velocity)↓
22 1
23 $ Wave conditions↓
24 BOU SIDE W CCW BTYPE WEAK CON SERIES 'WEN_125_INC.bnd' ! west boundary Input incident wave time series / wave condition↓
                                                    ! east boundary Sommerfeld↓
25 BOU SIDE E CCW BTYPE RADIATION
26 1
27 $ Physics↓
28 FRIC MANN 0.01
                                        ! Bottom friction manning↓
29 Break
                                        ! Breaking on↓
30 1
31 S Numerics↓
32 NONHYDROSTATIC
                                        ! when VERT>6 then 'NONHYDROSTATIC standard'↓
33 DISCRET UPW MOM
                                        ! Up-wind↓
34 TIMEI 0.1 0.5
                                        ! Explicit↓
35|$↓
36 \downarrow
38 $1
39 POINTS 'WG'
                FILE 'out wg.loc'
                                                                                        Wave gauge locations↓
       '∦G'
                NOHEAD 'WEN 125 INC OUT.tbl' TSEC WATL OUTPUT 000000.000 0.2 SEC
                                                                                        initial time 000000.000; dt 0.2 SEC hhmmss format↓
40 TABLE
41 POINTS 'LAYER' FILE 'out layer.loc
                                                                                        Overtopping layer depth and speed output locations↓
42 TABLE
         'LAYER' NOHEAD 'WEN 125 INC OUT.Itn' TSEC DIST BOTL WATL OUTPUT 000000.000 0.2 SEC
                                                                                        initial time 000000.000; dt 0.2 SEC 🎍
         'LAYER' NOHEAD 'WEN 125 INC OUT.Isp' TSEC DIST BOTL VEL OUTPUT 000000.000 0.2 SEC
                                                                                        initial time 000000.000; dt 0.2 SEC 4
43 TABLE
                FILE 'out_surf.loc'
44 POINTS 'WGO'
                                                                                        Water surface output locations↓
        '₩ĞŎ'
45 TABLE
                NOHEAD 'WEN 125 INC OUT.sur' TSEC WATL OUTPUT 000000.000 0.2 SEC
                                                                                      ! initial time 000000.000; dt 0.2 SEC ↓
46 $1
47 TEST 1 0
                                                                                      ! error check↓
48 COMPUTE 000000.000 0.02 SEC 001000.000
                                                                                      ! Computation initial dt 0.02 SEC Endtime 001000.000↓
49 STOP↓
50 [EOF]
```

SWASH run + matlab (SWASH_ANA, SWASH_VIS)

Case 3: Coupling with SPH (WISE)

- Incident wave analysis (Wavelab) to make .bnd (incident wave time series) file
 *without bandpass
- Make .bot (bathymetry) file
- Run and check SWASH result represents physical model
- Modify .bot (bathymetry) file at WG X
- Run SWASH with the new bathymetry
- Pass calculated result to SPH