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Abstract

This study analyzes the influence of sea surface temperatures (SSTs) on the second mode of atmospheric variability in the
north Atlantic/European sector, namely the East-Atlantic (EA) pattern, for the period 1950–2012. For this purpose, lead-lag
relationships between SSTs and the EA pattern, ranging from 0 to 3 seasons, were assessed. As a main result, anomalies of
the EA pattern in boreal summer and autumn are significantly related to SST anomalies in the Indo-Pacific Ocean during the
preceding seasons. A statistical forecasting scheme based on multiple linear regression was used to hindcast the EA-
anomalies with a lead-time of 1 to 2 months. The results of a one-year-out cross-validation approach indicate that the
phases of the EA in summer and autumn can be properly hindcast.
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Introduction

Seasonal forecasts are potentially of great benefit for a wide

range of socio-economic activities such as agriculture [1], health

[2], energy [3,4] or finance [5]. However, the corresponding

forecasting systems are known to have limited skill in the mid-

latitudes and any improvement in this field would be of great

interest [6].

Since the de-correlation time (or memory) of the tropospheric

circulation in the mid-latitudes is limited to about 2 weeks at the

utmost, slowly varying boundary systems like sea-surface temper-

atures [7–14], soil-moisture [15], sea-ice [16] and snow cover [17–

19] are potential sources of seasonal predictability since they 1) are

more persistent than the tropospheric circulation and 2) are

coupled to the latter, making it potentially predictable.

The present study assesses the lead-lag relationships between

SSTs around the entire globe and the extratropical circulation in

the North-Atlantic/European sector [11,20–22]. In contrast to

previous studies [23,24], the focus is not put on the predictability

of the north Atlantic Oscillation [25,26], but on the second mode

of inter-annual variability of the tropospheric circulation in that

area, namely the East Atlantic (EA) pattern [27,28]. Particularly in

southern Europe, the EA pattern is at least as important as the

NAO for explaining inter-annual variations of sensible climate

variables such as air temperatures, sea-surface temperatures,

precipitation and wind [29–36], which in turn affect regional- to

local-scale ecosystems [37–39]. Hence, the predictability of the

EA-index is of considerable interest for the development of

seasonal forecasting schemes and their applications [6].

The present study is outlined as follows: The applied data sets

and the methodology are described in Section 2, the results are

presented in Section 3 and a general discussion, including possible

dynamical pathways for the detected empirical relationships, is

given in Section 4, which also provides the concluding remarks.

Data and Methods

Serving as predictor variables, the extended reconstructed sea

surface temperature (ERSST) dataset version 3 is used in the

present study [40]. The data were retrieved from http://www.esrl.

noaa.gov/psd/data/gridded/data.noaa.ersst.html and are provid-

ed as monthly anomalies on a regular grid of 2 6 2 degrees.

As predictand variable, the EA-index provided by the Climate

Prediction Center (http://www.cpc.noaa.gov/data/teledoc/nao.

shtml) is used. This index is the Principal Component time series

of the second EOF obtained from Rotated Principal Component

Analysis, calculated upon monthly anomalies of the geopotential at

500 hPa in the north Atlantic/European sector (20uN–90uN) [27].

For both the predictor and predictand variables, seasonal

averages were calculated upon the monthly values. January-to-

March is referred to as Winter, April-to-June as Spring, July-to-

September as Summer and October-to-November as Autumn.

The time period under study is 1950–2012 (n = 63). To eliminate

the long-term trend, all series used are linearly detrended and

normalized by the corresponding standard deviation prior to the

statistical analysis.

Seasonal lags are used in the correlation analyses, e.g. ‘‘lag 10

refers to the correlation between wintertime-mean SST anomalies

and the springtime-mean EA index.
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Figure 1. Correlation map between SSTs and the EA pattern in winter. Each subplot represents a different lag, from left to right and from up
to down the lag go since 0 to 3.
doi:10.1371/journal.pone.0086439.g001

Figure 2. Correlation map between SSTs and the EA-pattern in spring. Each subplot represents a different lag, from left to right and from up
to down the lag go since 0 to 3.
doi:10.1371/journal.pone.0086439.g002
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The methodology used in this work is the same one used by

Philips and McGregor [41] and Lorenzo et al. 2010 [14]. The

Pearson correlation coefficient is applied to measure the linear

association between the SST at each grid-box of a spatial domain

covering the entire globe and the EA index. The significance of the

coefficients is assessed by a two-sided Student’s t-test. To

additionally take into account that positive serial correlation, e.g.

caused by SST-anomaly re-emergence [42], might artificially

lower the p-values [43], the latter are optionally calculated upon

the effective sample size (see equation 31 in [44] for the formula

used to calculate the latter). Since this procedure yielded similar

results than applying the standard t-test, which neglects the effect

of serial correlation on the p-value, it is reasonable to assume that

the time series applied here are temporally independent (see

additional material for review).

Since the t-test is applied thousands of times in the present

study, significant correlation coefficients are expected to arise by

chance for a certain fraction of grid-boxes. For instance, if the local

test level is set to 5% and the spatial autocorrelation of the SST

time series is assumed to be zero (which is not the case), false

rejections of the null hypothesis (type-one errors) are expected to

occur in 5% of all test cases.

Therefore, in the present study, the field significance test

described in [45] is applied to calculate the fraction of significant

correlation coefficients arising by chance, which takes into account

the spatial autocorrelation of the SSTs. For this purpose, the EA-

index time series was replaced by random Gaussian noise

generated from a normal distribution whose mean and variance

is identical to the observed time series of the EA-index. The

resulting percentage of significant correlations (arising from

chance) is saved and the process is repeated 11074 times. The

90th percentile of the resulting sample is then taken as the critical

value above which the percentage of significant correlations

obtained from the EA-index time series is globally significant at a

test level of 10%. This critical value was found to be approximately

15%.

In case global/field significance is obtained, the following

procedure is applied: First, those ocean areas where the SST-EA

link is locally significant at a test-level of 10% for both the lag-1

and lag-2 correlations are identified. Within these areas having a

significant predictive potential for both lags, a maximum of 3

clusters of highest correlations are identified and, for each cluster,

the spatial mean SST is calculated for each timestep/season. The

resulting time series are then used as predictor variables in a

multiple linear regression model. Note that a maximum of 3

clusters/predictors is used in order to limit the parameters of the

regression model. To additionally avoid a potential overfit [43],

the statistical models are validated in a one-year cross-validation

framework [46], i.e. n-1 predictor-predictand pairs are used to

obtain the regression equation, which is then used to predict the

withheld predictand value. This process is repeated for each

predictor-predictand pair, thereby obtaining a hindcast EA-index,

which is finally validated against its observed counterpart by using

the Pearson correlation coefficient.

Following [47,48], a multi-category contingency table was used

to verify the hindcast EA time series which is categorized into

positive (+), neutral and negative phase (2) values using a

threshold value of 60.5 standard deviations from the mean for

defining the three categories. The attention will be mainly focused

in the positive and negative phases of EA.

Results

In Figure 1, the lead-lag relationships between SSTs in and the

wintertime-mean EA-Index are shown for the SSTs leading by 0

to 3 seasons. The corresponding results for the spring-, summer-

Figure 3. Correlation map between SSTs and the EA-pattern in summer. Each subplot represents a different lag, from left to right and from
up to down the lag go since 0 to 3.
doi:10.1371/journal.pone.0086439.g003

Seasonal EA Predictability by SST Means
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Figure 4. Correlation map between SSTs and the EA-pattern in autumn. Each subplot represents a different lag, from left to right and from
up to down the lag go since 0 to 3.
doi:10.1371/journal.pone.0086439.g004

Figure 5. Locations of the clusters used for predicting the EA-pattern in each season.
doi:10.1371/journal.pone.0086439.g005
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and autumn-mean EA-index are displayed in Figures 2 to 4

respectively.

A strong positive correlation between the EA-index in winter

and the SSTs in the tropical Pacificand Indian Ocean is observed,

whereas the corresponding correlation with the north Atlantic

SSTs is predominantly negative (see Figure 1). Both relationships

weaken if the lead-time is increased.

If the spring-mean EA-index is used instead of the winter-mean,

the magnitude of the correlation coefficients in the tropical Pacific

is larger for lag 1, 2 and 3 than for lag 0, indicating that the EA-

index is clearly led by preceding SST anomalies (see Figure 2).

For the EA pattern in summer (see Figure 3), areas of significant

correlations re-appear over the north Atlantic, as was the case for

the EA in winter. However, in contrast to the latter, the

relationship is predominantly positive for the EA in summer

(compare Figure 3 to Figure 1). At lag 0 and 1, the pattern of

significant positive correlations covers both the Tropical- and the

north Atlantic Ocean, resembling the well-known tripole- and

horseshoe patterns documented in previous studies. For lags 2 and

3, the strength of the relationship is more pronounced in the

tropical than in the extra-tropical Atlantic, which confirms the

findings of [49] who suggested that SSTs in the north Atlantic are

led by SSTs in the tropical Atlantic via an ‘‘atmospheric bridge’’.

When considering the autumn-mean EA pattern as predictand

variable (see Figure 4), large areas of significant correlations are

again found over the tropical Pacific and Indian Ocean at lag 0. At

longer lags, however, significant correlations are yielded over the

tropical Pacific Ocean only.

Figure 5a displays the 3 SST clusters yielding highest

correlations with the EA-pattern in winter at both, lag 1 and 2

(seasons). These clusters are located in the tropical Pacific and

Indian Ocean (positive relationship), as well in the mid-latitudinal

eastern north Atlantic (negative relationship), the latter region

being in qualitative agreement with the results of [50]. In

comparison with the other seasons, the cluster for the EA in

spring are less pronounced (see Figure 5b). The clusters for the EA

in summer (see Figure 5c) are located over the north Atlantic

Ocean, forming a horseshoe pattern, and over the western

Tropical Pacific, also covering the entire Malay Archipelago.

The relationship is positive at any grid-box.

Finally, the clusters obtained for the EA in autumn (see

Figure 5d) resemble an El Niño-like pattern, with positive

Figure 6. Time series of observed (blue circles) and hincast (red asterisk) EA-Index for (a) winter, (b) spring, (c) summer and (d)
autumn. Successful hindcasts of the positive and negative phases of the EA are marked by filled circles. Note that the hindcasts are obtained from
one-year-out cross-validation.
doi:10.1371/journal.pone.0086439.g006
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correlations over the central to eastern tropical Pacific, flanked by

negative ones over the central-north and central-south Pacific

Ocean.

For each of the SST clusters displayed in Figure 5, the spatial-

average time series was calculated for a lead time of 1 and 2

seasons, thereby obtaining a maximum of 6 predictor variables (3

for each lag) entering the regression model.

A visual comparison between the hindcast time series obtained

from cross-validation and their corresponding observed time series

is provided by Figure 6 for each season of the year. The

correlation between hindcasts and observations, hereafter referred

to as ‘‘hindcast correlation’’, is 0.44 for predicting the EA-pattern

in summer and autumn, which is significant at a test-level of 1%.

Note that the corresponding critical value is 0.32 (using a two sided

t-test with 61 degrees of freedom).

The results of the contingency analysis (see Table 1 and Table 2)

reveal that the phases of the EA-pattern in summer and autumn

are successfully hindcast, (see value of PC in Table 2). Albeit the

corresponding percentages for winter and spring are lower. The

corresponding false alarm rate (see value of F in table 2) for

positive and negative phase are below 30%.

Table 1. Contingency Tables using equations of multiple linear regression models to forecast EA phases.

EA WINTER Observed

Positive Phase Neutral Phase Negative Phase Total

Forecast Positive Phase 8 6 5 19

Neutral Phase 10 8 9 27

Negative Phase 3 8 5 16

Total 21 22 19 62

EA SPRING Observed

Positive Phase Neutral Phase Negative Phase Total

Forecast Positive Phase 8 4 4 16

Neutral Phase 7 14 6 27

Negative Phase 7 5 8 20

Total 22 23 18 63

EA SUMMER Observed

Positive Phase Neutral Phase Negative Phase Total

Forecast Positive Phase 14 4 2 20

Neutral Phase 4 13 8 25

Negative Phase 4 6 8 18

Total 22 23 18 63

EA AUTUMN Observed

Positive Phase Neutral Phase Negative Phase Total

Forecast Positive Phase 11 7 4 22

Neutral Phase 6 9 8 23

Negative Phase 5 3 10 18

Total 22 19 22 63

doi:10.1371/journal.pone.0086439.t001

Table 2. Verification measures of the Contingency Tables.

Winter Spring Summer Autumn

Positive Phase

PC 0.61 0.65 0.78 0.65

F 0.27 0.20 0.15 0.27

HSS 0.12 0.18 0.50 0.23

Neutral Phase

PC 0.47 0.65 0.65 0.62

F 0.47 0.32 0.30 0.32

HSS 0.0 0.27 0.26 0.15

Negative Phase

PC 0.60 0.65 0.68 0.68

F 0.26 0.28 0.22 0.20

HSS 0.0 0.17 0.22 0.27

PC =Percentage of correct forecasts; F = False Alarm Rate; HSS =Heidke Skill
Score.
doi:10.1371/journal.pone.0086439.t002
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Discussion and Conclusions

The physical rationale linking tropical Pacific SSTs/the ENSO

phenomenon to subsequent climate anomalies in the north

Atlantic/European sector have been discussed in many previous

studies (see e.g. [51] and references therein). One possible

explanation is that ENSO is coupled to the stratospheric polar

vortex in winter, whose anomalies are known to propagate

downward [52], thereby influencing the tropospheric circulation

in the north Atlantic/European sector [53]. This dynamical

pathway, however, is bounded to the lifetime of the polar vortex,

and a detectable influence on the European climate was found for

the (late) winter season only [54]. Consequently, the dynamical

pathway involving the polar stratospheric vortex cannot explain

the statistical links found here for the EA pattern in other seasons.

An alternative physical explanation is provided by the theory

that the SSTs in different ocean basins are linked by an

‘‘atmospheric bridge’’ [49]. Following this theory, SST anomalies

in the north Atlantic during spring and summer, which are known

to be informative predictors of the autumn and winter climate in

Europe [11,20,55], are led by SST anomalies in the tropical

Pacific [56], which is consistent to the findings presented here.

This study has revealed that sea surface temperatures in the

tropical Pacific- and Indian Ocean as well as in the north Atlantic

are informative statistical predictors for the phase of East Atlantic

Pattern in summer and autumn, which is known to be associated

with concurrent climate anomalies (as e.g. represented by

precipitation and temperature) in southern Europe. Statistical

predictions based on multiple linear regression, which are

validated in a one-year-out cross-validation framework, reveal

that approximately 20% of the inter-annual variability of the EA

in summer and autumn can be explained by the above mentioned

predictors and that the phase of the EA in these seasons can be

correctly hindcast in at least 65% of all cases.
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