

UNIVERSIDAD DE VIGO

DEPARTAMENTO DE FÍSICA APLICADA

Environmental Physics Laboratory

PhD Thesis

DualSPHysics: Towards High Performance Computing

using SPH technique

Memoria Presentada por

José Manuel Domínguez Alonso

para obtar al título de DOCTOR POR LA UNIVERSIDAD DE VIGO

CON MENCIÓN INTERNACIONAL

Septiembre, 2014

Acknowledgements / Agradecimientos

En primer lugar me gustaría mostrar mi agradecimiento a Moncho por

abrirme las puertas del apasionante mundo de la investigación, por su confianza y

su tiempo. A él le debo gran parte de las nuevas experiencias vividas estos años,

los lugares que he visitado, las cosas que he aprendido. Aunque también las

noches sin dormir tratando de ir siempre un poco más allá.

A Alex, mi director, compañero y amigo. Gracias por su ayuda inestimable

y todo su tiempo, tanto en el trabajo como fuera. Sin él, gran parte de lo

conseguido no hubiera sido posible.

A todos mis compañeros de ahora y antes: Anxo, Orlando, Fran, Angel,

Xurxo, Isabel, Alex y Maruxa, que siempre logran hacer del trabajo un lugar

ameno. Sin olvidar a toda la gente del laboratorio.

To people in Manchester: Ben, Georgios, Athanasios and Abouzied, for

their hospitality and help when I was away from home.

A mis amigos de Orense: Diego, Noe, Sandra, Noelia, Victor, Dani, Carlos,

Edu y Marta, por estar siempre ahí y hacer imposible que me sintiese solo en esta

ciudad.

A mis amigos de siempre: David, Hugo, Eva, Txatxo, Arancha, Nuria,

Borja, Vero, Alberto, Mar, Dosy, Lucy, Dulci, Juan, Fernando, Ester y Toni, por

los innumerables días y noches que he disfrutado de su compañía.

A Patricia por su cariño, su apoyo, su paciencia… por aguantarme que Dios

sabe que no es fácil.

Muy en especial a mi madre, mi padre y mi hermana, que sin ellos no sería

nada. Por ese amor incondicional que por mucho que lo intente, nunca podré

devolverles en la misma medida en que lo recibo.

This work was partially supported by Xunta de Galicia under Axudas de

apoio á etapa predoutoral do Plan Galego de Investigación, Innovación e

Crecemento 2011-2015, Axudas a grupos de investigación do Campus de

Ourense (INOU2013), project Programa de Consolidación e Estructuración de

Unidades de Investigación Competitivas (Grupos de Referencia Competitiva),

funded by European Regional Development Fund (FEDER) and Ministerio de

Economía y Competitividad under project BIA2012-38676-C03-03.

Abstract

Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly

used in Computational Fluid Dynamics (CFD). SPH is an ideal technique to

simulate free-surface flows. Its range of application is very wide, including

sloshing and flooding events, the design of coastal defences, dams or devices to

generate renewable energies… The technique can also be used for engineering

purposes in those problems involving the complex interaction between water and

structures. In general, all these problems involve large domains that should be

solved with fine resolution, which makes the model expensive in terms of

computational requirements. This is the reason why these codes should be

optimized and accelerated as much as possible.

The aim of this work is to use High Performance Computing to improve a

Smoothed Particle Hydrodynamics model in order to develop a SPH code

capable of performing simulations of real-life applications at a reasonable time.

The main goal is to develop an optimized version of the open-source code

DualSPHysics (http://dual.sphysics.org), which can be used both on classic CPUs

(Central Processing Unit) and novel GPUs (Graphics Processing Units).

DualSPHysics has been designed to be run on multi-core CPUs, which is a

relatively common resource, but also on GPUs. The GPU technology has

experienced a rapid development during the last few years and constitutes a fast

and cheap alternative to classical computation on CPUs. Nevertheless, a single

GPU is not enough to run large domains due to memory requirements and huge

execution times. Thus, a multi-GPU version of the code has also been developed.

In addition, pre-processing and post-processing tools have been developed to

take advantage of DualSPHysics capabilities.

SPH codes like DualSPHysics can be split into three main steps; (i)

generation of a neighbour list, (ii) computation of forces between particles and

(iii) integration in time of the physical quantities of all particles. The step

devoted to compute forces consumes more than 90% of the total execution time,

whereby it is the key step to be accelerated. However, its implementation and

performance depends greatly on the previous step (neighbour list generation)

therefore a study about different neighbour list approaches was first carried out.

The use of Cell-linked list and Verlet list with several variations is compared,

being the Cell-linked list chosen to be implemented since it provides the best

balance between performance and usage of memory.

Four optimizations are implemented for the CPU code in DualSPHysics.

The first one applies symmetry in particle interactions, the second one divides the

domain into smaller cells, the third one uses SSE instruction and the fourth one

uses OpenMP to implement multi-core executions. Three different approaches of

the multi-core implementation are presented. The most efficient OpenMP

implementation outperforms the single-core by 4.6 using the available 8 logical

cores provided by the CPU hardware used in this study.

CUDA (Compute Unified Device Architecture) is used to exploit the huge

parallel power of present-day GPUs and several optimizations are presented for

the GPU implementations; maximization of occupancy to hide memory latency,

reduction of global memory accesses to avoid non-coalesced memory accesses,

simplification of the neighbour search, optimization of the interaction kernel and

division of the domain into smaller cells to reduce code divergence. The GPU

parallel computing developed here can accelerate serial SPH codes with a

speedup of 56.2x when using the Fermi GPU, but this speedup rises to 148.8x

using the latest GPU GTX Titan. Finally, the speedup of the latest GPU over a

multi-core CPU is more than 33x when using an optimised multi-threaded

approach.

The multi-GPU approach includes CUDA and MPI (Message Passing

Interface) programming languages to combine the parallel performance of

several GPUs in a host machine or in multiple machines connected by a network.

The multi-GPU implementation has shown an efficiency close to 100% using

128 GPUs of the Barcelona Supercomputing Center, when 8 million particles per

GPU have been simulated. Moreover, an application with more than 10
9
 particles

is presented to show the capability of the code to handle simulations that would

require large CPU clusters or supercomputers otherwise.

Finally, an efficient solution was implemented to avoid some problems of

precision that can appear when the simulation involves a very large domain and

very high resolution.

Table of contents

i

TABLE OF CONTENTS

TABLE OF CONTENTS .. I

LIST OF FIGURES ... V

LIST OF TABLES ..XI

NOMENCLATURE .. XIII

1. INTRODUCTION .. 1

1.1 NUMERICAL MODELING ... 1

1.2 SMOOTHED PARTICLE HYDRODYNAMICS ... 2
1.3 HIGH PERFORMANCE COMPUTING ... 3

1.3.1 OpenMP (Open Multi-Processing) .. 4

1.3.2 MPI (Message Passing Interface) .. 5
1.3.3 GPGPU (General-Purpose Computing on Graphics Processing Units) . 5

1.4 DUALSPHYSICS PROJECT .. 7

1.5 THESIS OULTINE ... 10

2. SPH FORMULATION .. 13

2.1 THE SMOOTHING KERNEL ... 14
2.2 MOMENTUM EQUATION ... 16

2.2.1 Artificial Viscosity ... 16
2.2.2 Laminar viscosity and Sub-Particle Scale (SPS) Turbulence 16

2.3 CONTINUITY EQUATION .. 18
2.4 EQUATION OF STATE.. 19
2.5 PARTICLE MOTION .. 19

2.6 SHEPARD FILTER ... 20
2.7 TIME STEPPING... 20

2.7.1 Verlet Scheme .. 21
2.7.2 Symplectic Scheme .. 21

2.7.3 Variable Time Step .. 22

2.8 BOUNDARY CONDITIONS .. 23
2.8.1 Dynamic Boundary Condition ... 23
2.8.2 Periodic Open Boundary Condition ... 23
2.8.3 Pre-imposed Boundary Motion .. 24

2.8.4 Fluid-driven Objects .. 24

3. NEIGHBOUR LIST IMPLEMENTATION.................................... 27

Table of contents

ii

3.1 STEPS OF THE SPH CODE ... 28

3.2 TESTCASE ... 29
3.3 DIFFERENT APPROACHES OF NEIGHBOUR LIST .. 30

4. CPU ACCELERATION .. 41

4.1 CPU OPTIMIZATIONS ... 41
4.1.1 Applying symmetry to particle-particle interaction 41

4.1.2 Splitting the domain into smaller cells ... 42
4.1.3 Using SSE instructions ... 43

4.2 OPENMP IMPLEMENTATION ... 44
4.3 RESULTS ... 46

5. GPU ACCELERATION .. 49

5.1 CUDA PROGRAMMING MODEL ... 49
5.2 CUDA IMPLEMENTATION .. 51

5.3 GPU OPTIMIZATIONS ... 57
5.3.1 Maximizing the occupancy of GPU ... 57
5.3.2 Reducing global memory accesses .. 59

5.3.3 Simplifying the neighbor search .. 59

5.3.4 Adding a more specific CUDA kernel of interaction 60
5.3.5 Division of the domain into smaller cells .. 61

5.4 RESULTS ... 61
5.5 PERFORMANCE WITH THE LATEST GPU (AUGUST 2014) 65

6. MULTI-GPU ACCELERATION ... 69

6.1 MPI IMPLEMENTATION ... 71
6.1.1 Subdivision of the domain ... 73

6.1.2 Communication among processes .. 75

6.1.3 Dynamic load balancing ... 77

6.2 RESULTS ... 79
6.2.1 Testcases and hardware .. 79
6.2.2 Applying dynamic load balancing in a homogeneous cluster 81
6.2.3 Applying dynamic load balancing in a heterogeneous cluster 82

6.2.4 Efficiency and scalability ... 83
6.2.5 Bottlenecks: Loss of efficiency .. 86
6.2.6 Memory requirements .. 88

6.3 APPLICABILITY TO REALISTIC PROBLEMS .. 89

7. DOUBLE PRECISION .. 93

7.1 THE PROBLEM OF PRECISION... 93
7.2 SOLUTIONS USING DOUBLE PRECISION .. 96

7.2.1 Solution FullDouble ... 96

7.2.2 Solution PosDouble .. 96

7.2.3 Solution PosCell ... 96
7.2.4 Solution PosDoubleFast ... 98

7.3 PERFORMANCE ... 99

8. CONCLUSIONS AND FUTURE WORK 103

8.1 CONCLUSIONS .. 103
8.1.1 Neighbour List ... 103

Table of contents

iii

8.1.2 CPU Acceleration .. 104

8.1.3 GPU Acceleration .. 104
8.1.4 Multi-GPU Acceleration .. 105
8.1.5 Issue of precision ... 106

8.2 FUTURE WORK ... 106

A. DUALSPHYSICS DOCUMENTATION 107

A.1 SOURCE FILES ... 107
A.2 COMPILATION .. 110
A.3 FILES AND FORMAT .. 110
A.4 RUNNING DUALSPHYSICS ... 112

B. PRE-PROCESSING TOOLS .. 115

B.1 PARTICLE GENERATION ... 116
B.1.1 Predefined objects .. 118

B.1.2 External objects .. 118
B.1.3 Filling algorithm .. 119
B.1.4 Other design tools .. 120

B.2 FLOATING OBJECTS.. 122
B.3 INITIAL CONDITIONS .. 123
B.4 MOVEMENT DEFINITION .. 125

B.5 NORMAL VECTORS ... 126
B.6 EXAMPLES AND PERFORMANCE ... 127

B.6.1 Testcase Sink .. 128

B.6.2 Testcase Mixer ... 129
B.6.3 Testcase Pump .. 130
B.6.4 Testcase Mini Cooper .. 130

B.7 REMARKS ... 131

C. POST-PROCESSING TOOLS ... 133

C.1 PARTVTK .. 133

C.2 MEASURETOOL .. 134
C.3 ISOSURFACE ... 135

C.4 DECIMATE .. 136
C.5 BOUNDARYVTK ... 137
C.6 MEASUREBOXES .. 138

C.7 TRACERVTK .. 139

BIBLIOGRAPHY ... 141

LIST OF PUBLICATIONS .. 153

List of figures

v

LIST OF FIGURES

Figure 1-1. Floating-Point Operations per Second for the CPU and GPU (source:

CUDA Programming Guide v6.5). ... 6

Figure 1-2. DualSPHysics website. .. 9

Figure 1-3. Number of code lines in the programs of DualSPHysics project. 10

Figure 1-4. Number of individual files in the programs of DualSPHysics project.

 .. 10

Figure 2-1 Cubic Spline kernel and its derivative divided by the dimensional

factor
D 15

Figure 2-2. Quintic kernel and its derivative divided by the dimensional factor

D 15

Figure 3-1. Conceptual diagram summarising the implementation of a SPH code.

 .. 27

Figure 3-2. Different instants of the dam break evolution using 300,000 particles.

 .. 29

Figure 3-3. Sketch of the Cell-linked list (CLL). ... 32

Figure 3-4. Sketch of the Verlet list (VL). ... 34

Figure 3-5. Computational runtime of different approaches for neighbour list. .. 35

Figure 3-6. Memory requirements of different approaches for neighbour list. 35

Figure 3-7. Improvement in time using VLC and VLX compared to CLL. All cases

were calculated with N=31,239. ... 36

Figure 3-8. Allocated memory in CLL, VLX and VLC. All cases were calculated

with N=31,239. ... 36

Figure 3-9. Improvement comparison between VLX and VLC referred to CLL. ... 37

Figure 3-10. Comparison between VLX with and without kernel gradient

correction (KGC). The improvement is referred to CLL. 38

List of figures

vi

Figure 4-1. Interaction cells in 3D without (left) and with (right) symmetry in

particle interactions. Each cell interacts with 14 cells (right) instead of 27 (left).

 .. 42

Figure 4-2. Sketch of 3D interaction with close cells using symmetry. The

volume searched using cells of side 2h (left panels) is bigger than using cells of

side h (right panels). ... 43

Figure 4-3. Sketch Pseudocode in C++ showing the force computation between

the particles of two cells without vectorial instructions (up) and grouping in

blocks of 4 pair-wise of interaction using SSE instructions (down). 44

Figure 4-4. Example of dynamic distribution of cells (in blocks of 4) among 3

execution threads according to the execution time of each cell. 45

Figure 4-5. Speedup achieved on CPU for different number of particles (N) when

applying symmetry, the use of SSE instructions. Two different cell sizes (2h and

2h/2) were considered. .. 47

Figure 4-6. Speedup achieved on CPU for different number of particles (N) with

different OpenMP implementations (using 8 logical threads) in comparison with

the most efficient single-core version that includes all the previous optimizations.

 .. 48

Figure 5-1. Grid of thread blocks in CUDA (source: CUDA Programming Guide

v6.5) .. 50

Figure 5-2. Memory hierarchy (source: CUDA Programming Guide v6.5) 51

Figure 5-3. Conceptual diagram of the partial (left) and full (right) GPU

implementation of the SPH code. ... 52

Figure 5-4. Example of the Neighbour list procedure. ... 54

Figure 5-5. Pseudocode of the System update procedure implemented on CPU

and GPU. .. 55

Figure 5-6. Pseudocode of the Particle interaction procedure implemented on

CPU and GPU. .. 56

Figure 5-7. Occupancy of the GPU for different number of registers with a

variable and a fixed block size of 256 threads. .. 58

Figure 5-8. Interaction cells in 3D without symmetry but using 9 ranges of three

consecutive cells (right) instead of 27 cells (left). .. 60

Figure 5-9. Computational runtimes (in seconds) using GTX 480 for different

GPU implementations (partial, full and optimized) when simulating 500,000

particles. .. 63

Figure 5-10. Memory usage for different GPU versions implemented in

DualSPHysics. .. 65

Figure 5-11. Runtimes for different CPU and GPU implementations. 65

List of figures

vii

Figure 5-12. Runtime for CPU and different GPU cards. 66

Figure 5-13. Speedups of GPU against CPU simulating 1 million particles. 67

Figure 5-14. Computational runtime distribution on CPU and GPU simulating 1

million particles. Neighbour List corresponds to blue bars, Particle Interaction to

red bars and System Update to the green bars. ... 67

Figure 5-15. Maximum number of particles simulated with different GPU cards

using DualSPHysics code. .. 68

Figure 6-1. Scheme of technologies and its scope of application. 70

Figure 6-2. Domain subdivision in four processes. .. 73

Figure 6-3. Example of subdivision of a domain (halos and edges). 74

Figure 6-4. Scheme of the communications among 3 MPI processes. 76

Figure 6-5. Example of the dynamic balancing scheme between 2 GPUs. 78

Figure 6-6. Testcase1: Dam break flow impacting on a structure........................ 79

Figure 6-7. Testcase2: Dam break flow. .. 80

Figure 6-8. Different instants of the simulation of testcase1 when using the

dynamic load balancing according to the number of particles. 81

Figure 6-9. Distribution of the fluid particles and execution times of force

computation among the 3 GPUs of system #1a using load balancing according to

the number of particles. .. 82

Figure 6-10. Distribution of the fluid particles and execution times of force

computation among the 3 different GPUs of system #1b using load balancing

according to the number of particles. ... 82

Figure 6-11. Distribution of the fluid particles and execution times of force

computation among the 3 different GPUs of system #1b using load balancing

according to the computation time. .. 83

Figure 6-12. Execution times of the 3 GPUs of the system #1b used individually

and together applying dynamic load balancing. ... 83

Figure 6-13. Speedup for different number of GPUs using strong and weak

scaling with the hardware systems #1a, #2 and #3. .. 85

Figure 6-14. Percentage of time dedicated to tasks exclusive of the multi-GPU

executions using the system #3. ... 86

Figure 6-15. Percentage of the computational time dedicated to specific MPI

tasks simulating 16M particles using different number of Tesla M2050 GPUs

(left) and simulating different number of particles with 16 Tesla M2050 (right).

 .. 87

List of figures

viii

Figure 6-16. Percentage of time dedicated to tasks exclusive of the multi-GPU

executions including the latest improvements (using the system #2). 88

Figure 6-17. Maximum number of particles that can be simulated for the

testcase2 with the systems #1a, #2 and #3. .. 89

Figure 6-18. Realistic dimensions of the oil rig simulated in the application. 90

Figure 6-19. Different instants (2.2s, 3.2s and 10s) of the simulation of a large

wave interacting with an oil rig using more than 109 particles............................ 90

Figure 7-1. Testbed to study problems of precision. .. 93

Figure 7-2. Different instants of the simulation of the testbed. 95

Figure 7-3. Relative error in the distance between two particles interacting using

double and single precision for different particle positions. 95

Figure 7-4. Different instants of the previous simulation improving precision in

the position of the particles. .. 97

Figure 7-5. Relative error in the position of the particles for different distances to

zero and using different approaches. .. 98

Figure 7-6. Loss of efficiency compared with simple precision simulations using

a 3D dam-break with 4M particles. .. 99

Figure 7-7. Percentage of occupancy according to the number of registers and

compute capability of GPU. ... 100

Figure B-1. Generation of a 2D triangle. .. 117

Figure B-2. Discretization accuracy for different number of particles.The

absolute measures of the object are 0.39 x 0.46 x 0.42. 117

Figure B-3. Some predefined objects: box, sphere, cylinder, prism,… 118

Figure B-4. Basic shapes “solid” and “face”. ... 118

Figure B-5. Mixer: 3D model (left) and point distribution (right). 119

Figure B-6. Filling an irregular beach with fluid. .. 120

Figure B-7. Example of rotation and scaling of a 3D model. 121

Figure B-8. Creating a balustrade starting from a primitive element. 121

Figure B-9. Merging objects with different label. .. 121

Figure B-10. Gravity center and inertia (lower pannel) computed starting from

different particle distributions (upper pannel). ... 122

Figure B-11. Different initial configurations depending on the value of lattice for

fluid (blue points) and boundary (black points) particles. 123

List of figures

ix

Figure B-12. Initial density distribution. .. 124

Figure B-13. Mixing of two fluids. .. 124

Figure B-14. Different instants of a pendulum movement (rotational, circular and

rectilinear sinusoidal). .. 125

Figure B-15. Mixer as an example of hierarchy of movements. 126

Figure B-16. Normal vector (n) computation for a triangle. 126

Figure B-17. Normal vector computation for a 3D object. 127

Figure B-18. Sink with floating object (polygons and particles). 128

Figure B-19. Execution runtimes for the Sink. .. 129

Figure B-20. Mixer (polygons and particles). .. 129

Figure B-21. Execution runtimes for the Mixer. .. 129

Figure B-22. Pump (polygons and particles). ... 130

Figure B-23. Execution runtimes for the Pump. .. 130

Figure B-24. Mini Cooper (polygons and wire). .. 131

Figure B-25. Execution runtimes for the Mini Cooper. 131

Figure C-1. Visualisation of density from a fluid block of particles. 133

Figure C-2. Example of graph with wave elevation at a specific position. 134

Figure C-3. Visualises the wave elevation for a slice of fluid. 134

Figure C-4. Conversion of points to surfaces, from particles to isosurface. 135

Figure C-5. Original isosurface of fluid (left) and simplified isosurface by

Decimate program with a reduction to 10%. .. 136

Figure C-6. Floating body movement represented using a box. 137

Figure C-7. Appliaction of MeasureBoxes to measure a flow at complex terrain.

 .. 138

Figure C-8. Waves interaction with a coastal structure consisting of antifers and

trajectories of fluid particles between antifers. .. 139

List of tables

xi

LIST OF TABLES

Table 3-1. Comparison of Cell-linked list (CLL) and Verlet list (VL): percentage

of the total runtime of the dam-break simulation using 300,000 particles. 31

Table 4-1. Speedup achieved on CPU simulating 300,000 particles when using 4

and 8 threads compared to the single CPU version. ... 48

Table 5-1. Technical specifications of GPUs according to the compute capability.

 .. 58

Table 5-2. List of variables needed to calculate forces. 59

Table 5-3. Improvement achieved on GPU simulating 1 million particles when

applying the different GPU optimizations using GTX 480 and Tesla 1060. 62

Table 5-4. Results of the CPU and GPU simulations. .. 64

Table 5-5. Specifications of different execution devices. 66

Table 6-1. Features of the different systems used. ... 80

Table 6-2. Formulae to measure efficiency and scalability.................................. 84

Table 7-1. Double precision implementations ... 98

Table A-1. List of source files of DualSPHysics code. 107

Table A-2. List of source files of DualSPHysics code not related to the SPH

solver. ... 108

Table A-3. List of source files of DualSPHysics code for the SPH execution. . 108

Table A-4. List of source files of DualSPHysics code for the SPH execution on

CPU. ... 109

Table A-5. List of source files of DualSPHysics code for the SPH execution on

GPU. ... 109

Table A-6. List of execution parameters of DualSPHysics................................ 113

List of tables

xii

Table B-1. Features of the cases. .. 127

Nomenclature

xiii

NOMENCLATURE

Symbol Definition

F Abitrary function.

c Speed of sound.

dp Particle spacing.

f Force per unit mass.

g Gravity force.

h Smoothing length.

a Particle where the interpolation is performed.

b Neighbouring particle.

i,j,k Unit vectors

m Particle mass

M Mass of the floating object

P Particle pressure

q Non-dimensional distance between particles (r/h)

r Distance between particles

r Position vector

R0 Centre of mass of the floating object

t Time

v Velocity

W Smoothing kernel

W
~

 Zeroth order corrected kernel

α Artificial viscosity parameter

αD Kernel normalisation factor
 Polytropic index

δ Dirac function

t Time step
μ Dynamic viscosity

ν0 Laminar kinematic viscosity

 Artificial viscosity term
 Particle density

0 Reference density

Ω Rotational velocity of the floating object

Chapter 1. Introduction

1

1. INTRODUCTION

In this first chapter, a general overview of the numerical methods and, more

specifically, of the Smoothed Particle Hydrodynamics (SPH) method is provided.

The advantages and disadvantages of the SPH methods when compared with

other methods are also described. Furthermore, different High Performance

Computing techniques are presented to accelerate the SPH method. Finally, the

DualSPHysics code is presented.

1.1 NUMERICAL MODELING

Nature can be modelled looking for analytical solutions of the equations that

define a system (or mathematical model). Once the equations are validated, the

behaviour of the system can be predicted tuning some parameters and imposing a

set of initial conditions. The numerical modelling looks for solving these

equations in a numerical way instead of analytically. So that, designing

algorithms that use numbers and simple mathematical rules that can simulate

complex processes of the real world. The numerical simulation is a powerful tool

that allows for understanding the behaviour of complex systems and even for

predicting their evolution starting from initial conditions. Numerical modelling

becomes more important with the arrival of the computers since these machines

can perform thousands of million mathematical operations per second. This

allows for the simulation of very complex systems in few time using simple

mathematical operations.

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that studies

the behaviour of the fluids using numerical modelling. The main advantage of

this technique is the capability to simulate complex scenarios and provide

physical data that can be difficult, or even impossible, to measure in a real model.

Despite of the accuracy of the numerical models, these cannot replace the

Chapter 1. Introduction

2

construction of scale models, but they can reduce significantly the number of

physical tests. This leads to an important saving since the construction of

physical models is very expensive and slow.

There are two numerical approaches to describe the fluid motion; Eulerian and

Lagrangian. The Eulerian approach solves the equations at the fixed nodes of a

mesh. In the Lagrangian description, the positions where equations are solved

move with the fluid and a fixed mesh is not used. The meshbased methods (finite

elements, finite differences and finite volumes) are currently very robust, well

developed and have been applied to a wide range of applications providing

highly accurate results. These meshbased methods are ideal for systems where

the domain is perfectly defined and for simulations where the boundaries remain

fixed. However the creation of the mesh can be very inefficient if the system is

complex. In recent years, numerous meshless methods have appeared and grown

in popularity as they can be applied to problems that are highly nonlinear in

arbitrarily complex geometries and are difficult for mesh-based methods. Within

the meshless methods now available, Smoothed Particle Hydrodynamics (SPH)

is, possibly, the most popular and has attained the required level of maturity to be

used for engineering purposes.

1.2 SMOOTHED PARTICLE HYDRODYNAMICS

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless method that

is increasingly used for an extensive range of applications within the field of

Computational Fluid Dynamics (CFD). Originally invented for astrophysics

during the seventies [Lucy, 1977; Gingold and Monaghan, 1977], it has been

applied in many different fields including fluid dynamics and solid mechanics.

The method uses particles to represent a fluid and these particles move according

to the governing dynamics. More complete description of the SPH formulation is

found in Chapter 2. When simulating free-surface flows, the Lagrangian nature

of SPH allows the domain to be multiply-connected, with no need of a special

treatment of the surface, making the technique ideal for studying violent free-

surface motion.

SPH has been used to describe a variety of free-surface flows (wave propagation

over a beach, plunging breakers, impact on structures and dam breaks).

[Monaghan, 1994] presented the first attempt to study free-surface flows.

Monaghan also studied the behaviour of gravity currents ([Monaghan, 1996]),

Chapter 1. Introduction

3

solitary waves ([Monaghan et al., 1999]) and wave arrival at a beach ([Monaghan

and Kos, 1999]). Later on, the model was applied to the study of the wave-

structure interaction such as in [Colagrossi and Landrini, 2003] that considered

the study of interfacial flows. The classical dam-break problem was also studied

in 3D by [Gómez-Gesteira and Dalrymple, 2004]. Within the area of coastal

engineering, SPH was firstly employed to study wave-breakwater interaction in

[Gotoh et al., 2004] and [Shao, 2005], and to predict wave impact pressure due to

sloshing waves in [Khayyer and Gotoh, 2009].

However, the high computational cost is an important drawback of this

technique. Thus, a short period of physical time applications requires a large

execution time when running on a single Central Processing Unit (CPU) due to

the large number of interactions for each particle at each timestep. This has

hindered the development of SPH and its industrial use to solve real problems.

Hence, the ability to perform computations involving millions of particles in a

reasonable time is essential to perform simulations that are industrially relevant.

However, this is only possible if some hardware acceleration techniques are

employed.

1.3 HIGH PERFORMANCE COMPUTING

High Performance Computing (HPC) is a very dynamic field that deals with the

study and usage of new computational resources and technologies. Its aim is to

solve very complex problems that require high computational capacity so that

cannot be solved with conventional computer systems, making necessary the use

of clusters or supercomputers. A supercomputer is a computer with a very high

computational speed dedicated on the execution of parallel operations and

designed for intensive computation. These are extremely expensive machines. On

the other hand, a cluster is a collection of computers connected through a high

speed network and considered as a single machine. This is a cheaper option as it

can be integrated by more conventional machines, which currently have high

performance at very low prices. They also offer the possibility to extend their

computing capacity, theoretically unlimited, by simply adding more computers.

HPC includes multiple techniques of parallel computing and distributed

computing. In the main, parallel computing consists of executing several

operations simultaneously.

Chapter 1. Introduction

4

This parallelism can be applied at instruction-level, since current processors

divide the execution of an instruction in several stages, so they can keep running

several instructions at different stages (instruction pipelines). In addition, the

superscalar microprocessors can execute multiple instructions simultaneously

when there is no data dependency among them. The task-level parallelism

consists of dividing a volume of data into different computing nodes to perform

the same set of operations. Finally, the task-level parallelism distributes the

execution of different computations, on the same or different data, among

multiple processing units.

Parallel computing can be applied with hardware of shared memory in which a

machine has one or more processors that use the same memory space. In this case

the more extended tools of programming are pthreads [Buttlar et al., 1996] and

OpenMP [Chandra et al., 1996; Chandra et al., 2002] that can be considered as

the standard for this kind of systems with shared memory, due to the advantages

over other standard parallel-programming models [Dagum and Menon, 1998].

Parallel computing can be also applied with systems of distributed memory in

which each processor is associated with a memory space and cannot directly

access to the memory associated with other processors. In these systems, the data

exchange between processors must be carried out explicitly using a message

passing model. The most common options for this kind of programming are

PVM [Geist et al., 1994], BSP [Bisseling, 2004] and MPI [Pacheco, 1996; Snir et

al., 1998; Gropp et al., 1999] that is the standard one.

It is also important to note that in recent years, the use of special-purpose

processors as general purpose parallel systems are becoming increasingly

important in HPC. Hence, Processing Graphics Units (GPU), Digital Signal

Processors (DSP), Field Programmable Gate Array (FPGA) and other systems

are used as scientific computer systems rather than for its original purpose.

The following explains in more detail the main HPC techniques used to

accelerate SPH.

1.3.1 OpenMP (Open Multi-Processing)

OpenMP [http://www.openmp.org] is a model of parallel programming for

systems of shared memory. It provides an Application Program Interface (API)

in C, C++ and Fortran applications. OpenMP is a portable and flexible

programming interface where multiple threads of execution perform tasks

Chapter 1. Introduction

5

defined by OpenMP directives. Its implementation does not involve major

changes in the code. Using OpenMP, multiple threads for a process can be easily

created. These threads are distributed among all the cores of the CPU sharing the

memory. Thus, there is no need to duplicate data or to transfer information

among threads. For these reasons OpenMP is the best option to optimize the

performance of the multiple cores of the current CPUs [Clark, 1998].

1.3.2 MPI (Message Passing Interface)

MPI is a message-passing library specification for parallel computers and

clusters where a distributed memory system is used. MPI is not a language or a

compiler or a specific implementation, it simply defines a library of functions

that can be called from C, C++, and Fortran programs. In this parallel

programming model, an execution consists of one or more processes that

communicate by calling routines of a library to send and receive messages

among processes. Although designed for distributed memory systems, its use

with shared memory systems can lead to an improvement since MPI encourages

memory locality. The use of MPI is typically combined with OpenMP in clusters

by using a hybrid communication model. In this way, within each machine, the

processors directly access the shared memory and the message exchange with

MPI is used to share information among processes of different machines.

The first implementation of MPI standard was MPICH [http://www-

unix.mcs.anl.gov/mpi/mpich1]. Other implementations are LAM-MPI

[http://www.lam-mpi.org/] and more recently, OpenMPI [http://www.open-

mpi.org] that is an open-source distribution of the MPI2 specification.

1.3.3 GPGPU (General-Purpose Computing on Graphics

Processing Units)

GPGPU involves the study and use of parallel computing ability of a GPU to

perform general purpose programs. Graphics Processing Units are powerful

parallel processors originally designed for graphics rendering. Due to the

development of the video games market and multimedia, their computing power

has increased much faster than CPUs (see Figure 1-1). Therefore GPUs can be

used for scientific applications achieving speedups of 100x or more. This joined

to their very low cost and that GPUs can be used on a personal computer made

GPGPU very popular in recent years [Owens et al., 2007; Nickolls and Dally,

2010]. In fact, new computation centres based on GPUs are emerging driven by

Chapter 1. Introduction

6

their computing power and comparatively low energy costs per FLOP (Floating-

point Operations Per Second) [McInstosh-Smith et al., 2012]. Indeed, the current

number two of the TOP500 List of the world’s top supercomputers released in

June 2014 [http://www.top500.org/lists/2014/06] is Titan, a Cray XK7 system

that has 560,640 processors, including 18,688 Nvidia K20x accelerator GPU

cards.

Figure 1-1. Floating-Point Operations per Second for the CPU and GPU (source:

CUDA Programming Guide v6.5).

GPUs are optimized for floating-point parallel operations, it is important to note

that not all applications are suitable for GPU, only those that exhibit a high

degree of parallelism. In addition, the features of the GPU architecture need to be

taken into account to obtain the maximum performance. While CPUs are

designed for an efficient random memory access, GPUs provide a more

restrictive memory access and a careful usage of the memory hierarchy is

fundamental. This requires a new implementation of the algorithms used in CPU

for an efficient use in GPUs.

Much of the success of GPGPU is the appearance of general purpose

programming languages and APIs such as Brook and CUDA since they provided

an easier access to the computing power of these devices. Brook was a compiler

and runtime implementation of a stream programming language for modern

graphics hardware of ATI Technologies. CUDA (Compute Unified Device

Chapter 1. Introduction

7

Architecture) is both a programming environment and language for parallel

computing specifically for Nvidia GPUs [Nickolls et al., 2008; CUDA

Programing Guide]. Currently CUDA is the most popular programming graphics

model due to the large amount of documentation and utilities that can be found in

the CUDA web (https://developer.nvidia.com/cuda-zone).

The framework called OpenCL (Open Computing Language) [Khronos, 2009] is

becoming increasingly important in GPGPU. OpenCL is a framework to code

programs that are executed across heterogeneous platforms including GPUs,

CPUs, DSPs, FPGAs and other processors. It is an open standard maintained by

Khronos Group and adopted by the most important technology companies such

as Intel, AMD and Nvidia.

1.4 DUALSPHYSICS PROJECT

SPHysics was an open-source SPH model developed by researchers at the Johns

Hopkins University (US), the University of Vigo (Spain), the University of

Manchester (UK) and the University of Rome, La Sapienza. The software is

available to download from www.sphysics.org, a complete guide of the

FORTRAN code is found in [Gómez-Gesteira et al., 2012a; Gómez-Gesteira et

al., 2012b]. The SPHysics code was validated for different problems of wave

breaking [Dalrymple and Rogers, 2006], dam-break behaviour [Crespo et al.,

2008], interaction with coastal structures [Gómez-Gesteira and Dalrymple, 2004]

or with a moving breakwater [Rogers et al., 2010]. A shallow water version was

also developed [Vacondio et al., 2012; Vacondio et al., 2013a]. Although

SPHysics allows modelling problems with high resolution, the main problem for

the application to real engineering problems is its high computational cost,

therefore SPHysics is rarely applied to large domains. Hardware acceleration and

parallel computing are required to make codes such as SPHysics more useful and

versatile.

The code DualSPHysics has been developed by starting from the FORTRAN

SPH formulation implemented in SPHysics, this code was considered robust and

reliable but not optimised for large simulations. DualSPHysics is implemented in

C++ and CUDA and is designed to launch simulations either on multiple CPUs

using OpenMP or on a GPU. The GPU portion of DualSPHysics implements the

most appropriate parallelisation to maximise speedup during particle interaction

computation.

Chapter 1. Introduction

8

The code can be executed either on the CPU or on the GPU since all

computations have been implemented both in C++ for CPU simulations and in

CUDA for the GPU simulations. The philosophy underlying the development of

DualSPHysics is that most of the source code is common to CPU and GPU

which makes debugging straightforward as well as the code maintenance and

new extensions. This allows the code to be run on workstations without a

CUDA-enabled GPU, using only the CPU implementation. On the other hand,

the resulting codes should be necessarily different since code developers have

considered efficient approaches for every processing unit. As explained below,

the same programming strategy can be efficient on a CPU but inefficient on a

GPU (or vice versa). Thus, comparisons between the performances of both

approaches are more reliable since appropriate optimisations have been

considered for every case.

The first rigorous validation of the GPU implementation of DualSPHysics code

was presented in [Crespo et al., 2011]. The code has been developed to simulate

real-life engineering problems using SPH models such as the computation of

forces exerted by large waves on the urban furniture of a realistic promenade

([Barreiro et al., 2013]) or the study of the run-up in an existing armour block sea

breakwater ([Altomare et al., 2014a]). Other recent examples of the study of

wave-structure interaction, by means of the DualSPHysics model, are the works

of [Ren et al., 2014], where the SPH model is validated against other available

numerical results and against experimental data for wave damping over porous

seabed with different levels of permeability. Other recent example is the work of

[St-Germain et al., 2014] to investigate the hydrodynamic forces induced by the

impact of rapidly advancing tsunami like hydraulic bores.

DualSPHysics is an open-source code developed and redistributed under the

terms of the GNU General Public License as published by the Free Software

Foundation (www.gnu.org/licenses/). The software is available to free download

at www.dual.sphysics.org (Figure 1-2). Along with the source code,

documentation that describes the compilation and execution of the source files is

also distributed. This documentation has been created using the documentation

system Doxygen (www.doxygen.org). One of the purposes of this code is to

encourage other researchers to try SPH. Most downloads to date have been

registered by researchers and students that have conducted their research on fluid

dynamics using SPH models. Furthermore, the code has been downloaded not

Chapter 1. Introduction

9

only by students and researchers from universities and institutes but also by

companies with industrial interests.

Figure 1-2. DualSPHysics website.

DualSPHysics package includes not only the source files of the SPH solver but

also some advanced pre-processing tools to create more complex geometries and

post-processing tools to analyse easily numerical results. Any complex geometry

can be loaded from different format files such as .cad, .3ds, .stl, .ply, .dwg, .dxf,

.shp, .igs, .vtk, .csv... and then converted into SPH particles. For example, a CAD

file is converted into particles representing the boundary starting from a

triangulation of the object’s surface, followed by a filling algorithm. The post-

processing tools allow the computation of magnitudes of interest such as vorticity

at different planes, forces exerted on different objects, maximum wave heights or

just plotting the different physical quantities of the particles.

In order to give an idea about the size of the DualSPHysics project, Figure 1-3

and Figure 1-4 shows the number of code lines and files (.cpp, .h, .cu) that are

integrated in the DualSPHysics project. This includes the SPH solver (Appendix

A) and pre-processing (Appendix B) and post-processing (Appendix C) tools. It

can be noticed that most of the developed code is shared among several codes

being 172 different files with around 80,500 code lines.

Chapter 1. Introduction

10

0 10,000 20,000 30,000 40,000

TracerVTK

MeasureBoxes

BoundaryVTK

Decimate

IsoSurface

MeasureTool

PartVTK

GenCase2

DualSPHysics3

Code lines

Shared code

Exclusive code

Figure 1-3. Number of code lines in the programs of DualSPHysics project.

0 20 40 60 80 100 120

TracerVTK

MeasureBoxes

BoundaryVTK

Decimate

IsoSurface

MeasureTool

PartVTK

GenCase2

DualSPHysics3

Code files

Shared files

Exclusive files

Figure 1-4. Number of individual files in the programs of DualSPHysics project.

1.5 THESIS OULTINE

The thesis provides a description of the DualSPHysics code and its

implementation using different acceleration approaches. It is organized in a total

of 8 chapters that are briefed as follows:

Chapter 1 introduces background knowledge of numerical simulation. The main

features of the SPH method are briefed. Some general ideas of HPC are

described. DualSPHysics code associated with this thesis is introduced.

Chapter 2 provides fundamentals and basic concepts of the SPH method such as

integral interpolants, smoothing kernels, the governing equations, time step

algorithm and solid boundaries treatment.

Chapter 1. Introduction

11

Chapter 3 describes the main steps of the SPH simulation and its

implementation in DualSPHysics. More detailed is focused on the creation of the

neighbour list of the code, which is based on the journal paper [Domínguez et al.,

2011a].

Chapter 4 deals with different strategies for CPU optimizations applied to

DualSPHysics. Implementation following OpenMP is addressed and results of

the performance are shown. This chapter is based on the journal paper

[Domínguez et al., 2013a].

Chapter 5 deals with different strategies for GPU optimizations applied to

DualSPHysics. Some of the GPU optimizations applied here present not only the

suggested basic optimizations described in the CUDA manuals, but also other

GPU optimizations intrinsic to the SPH method. Their impact on the efficiency

achieved with different GPU architectures is also shown. GPU performance is

also compared to CPU multi-core. Implementation with CUDA is also described.

This chapter is based on the journal papers [Crespo et al., 2011] and [Domínguez

et al., 2013a].

Chapter 6 presents a novel SPH implementation that utilizes MPI and CUDA to

combine the power of different devices making possible the execution of SPH on

heterogeneous clusters. Specifically, the proposed implementation enables

communications and coordination among multiple CPUs, which can also host

GPUs, making possible multi-GPU executions. This chapter is based on the

journal paper [Domínguez et al., 2013b].

Chapter 7 addresses the issue of precision and solutions using double precision

are presented for GPU computing looking for the minimum loss of performance.

This chapter is based on the proceedings paper [Domínguez et al., 2014].

Chapter 8 draws together conclusions and ongoing research.

Appendix A contains all the DualSPHysics documentation with a summary of

the source files, how to compile and run the code and description of the input and

output files and their format. This appendix is based on the journal paper [Crespo

et al., 2014].

Chapter 1. Introduction

12

Appendix B describes the pre-processing tool that creates the configuration that

will be loaded by the SPH solver as initial condition for the simulation. This

appendix is based on the proceedings paper [Domínguez et al., 2011b].

Appendix C describes the post-processing tools that help to analyse the

numerical results and to visualise the simulation.

Chapter 2. SPH Formulation

13

2. SPH FORMULATION

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless method. The

technique discretises a continuum using a set of material points or particles.

When used for the simulation of fluid dynamics, the discretised Navier-Stokes

equations are locally integrated at the location of each of these particles,

according to the physical properties of surrounding particles. The set of

neighbouring particles is determined by a distance based function, either circular

(two-dimensional) or spherical (three-dimensional), with an associated

characteristic length or smoothing length often denoted as h. At each time-step

new physical quantities are calculated for each particle, and they then move

according to the updated values.

The conservation laws of continuum fluid dynamics are transformed from their

partial differential form to a form suitable for particle based simulation using

integral equations based on an interpolation function, which gives an estimate of

values at a specific point. Typically this function is referred to as the kernel

function (W) and can take different forms, with the most common being cubic or

quintic. Any function F(r) is defined at r' by the integral approximation

  '),'()()(rrrr'r dhWFF

(2.1)

The smoothing kernel must fulfil several properties [Monaghan, 1992; Liu,

2003], such as positivity inside a defined zone of interaction, compact support,

normalization and monotonically decreasing with distance and differentiability.

For a more complete description of SPH, the reader is referred to [Monaghan,

2005; Violeau, 2012].

The function F in Eq. 2.1 can be approximated in a non-continuous, discrete

form, based on the set of particles. In this case the function is interpolated at a

Chapter 2. SPH Formulation

14

particle (a) where a summation is performed over all the particles that fall within

the region of compact support, as defined by the smoothing length h

bba

b

ba ΔvhWFF),()()(rrrr 

(2.2)

where
bvΔ is the volume of a neighbouring particle (b). If

bbb mΔv  , with m

and ρ being the mass and the density of particle b respectively then Eq. 2.2

becomes

),()()(hW
m

FF ba

b b

b
ba rrrr 


(2.3)

2.1 THE SMOOTHING KERNEL

Performance of an SPH model depends heavily on the choice of the smoothing

kernel. Kernels are expressed as a function of the non-dimensional distance

between particles (q), given by hrq  , where r is the distance between any two

given particles a and b and the parameter h (the smoothing length) controls the

size of the area around particle a in which neighbouring particles are considered.

In the text that follows, only kernels with an influence domain of 2h  2q will

be considered. Within DualSPHysics, the user is able to choose from one of the

following kernel definitions:

a) Cubic spline

   






















20

212
4

1

10
4

3

2

3
1

3

32

q

qq

qqq

αhr,W D

(2.4)

where by
D is equal to 10/7πh

2
 in 2-D and 1/πh

3
 in 3-D.

The tensile correction method, proposed by [Monaghan, 2000], is only actively

used in the cases kernels whose first derivative goes to zero with the particle

Chapter 2. SPH Formulation

15

distance q. The shape of this function and its derivative can be observed in Figure

2-1.

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
q

Cubic-spline kernel

Derivative of the kernel

Figure 2-1 Cubic Spline kernel and its derivative divided by the dimensional

factor
D .

b) Quintic [Wendland, 1995]

    2012
2

1

4









 qq

q
αhr,W D

(2.5)

where
D is equal to 24/7 h in 2-D and 316/21 h in 3-D. The shape of this

function and its derivative can be observed in Figure 2-2.

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
q

Quintic kernel

Derivative of the kernel

Figure 2-2. Quintic kernel and its derivative divided by the dimensional factor

D .

Chapter 2. SPH Formulation

16

2.2 MOMENTUM EQUATION

The momentum conservation equation in a continuum is

Γg
v

 P
dt

d



1

(2.6)

where Γ refers to dissipative terms and g is gravitational acceleration.

DualSPHysics offers different options for including the effects of dissipation.

2.2.1 Artificial Viscosity

The artificial viscosity scheme, proposed by [Monaghan, 1992], is a common

method within fluid simulation using SPH due primarily to its simplicity. In SPH

notation, Eq. (2.6) can be written as

g
v









  aba

b

ab

a

a

b

b
b

a W
PP

m
dt

d
22 

(2.7)

Where kP and k are the pressure and density that correspond to particle k (as

evaluated at a or b). The viscosity term Πab is given by
















00

0
ρ

μcα

abab

abab

ab

abab

ab

rv

rv
Π

(2.8)

where)ρ(ρ.ρ baab  50 , baab rrr  and baab vvv  with kr and kv being the

particle position and velocity respectively.)(22   abababab rh rv ,

)c0.5(cc baab  is the mean speed of sound,  is a coefficient that needs to be

tuned in order to introduce the proper dissipation and
22 01.0 h avoids

numerical divergence when the distance between particles tends to zero.

2.2.2 Laminar viscosity and Sub-Particle Scale (SPS) Turbulence

Laminar viscous stresses in the momentum equation can be expressed as [Lo and

Shao, 2002]

Chapter 2. SPH Formulation

17

  ab22

abba

abaab0

b

ba

2

0
)ηr)(ρ(ρ

W4υ
mυ v

r
v 














 

(2.9)

where υo is kinematic viscosity (typically 10
-6

 m
2
s for water). In SPH discrete

notation this can be expressed as

ab22

abba

abaab0

b

baba

b
2

a

a

2

b

b
b

a

)ηr)(ρ(ρ

W4υ
mW

ρ

P

ρ

P
m

dt

d
v

r
g

v

























 

(2.10)

The concept of the Sub-Particle Scale (SPS) was first described by [Gotoh et al.,

2001] to represent the effects of turbulence in their Moving Particle Semi-

implicit (MPS) model. The momentum conservation equation is defined as





ρ
υP

ρdt

d 11 2

0 vg
v

(2.11)

where the laminar term is treated as per Eq. 2.9 and 


 represents the SPS stress

tensor. Favre-averaging is needed to account for compressibility in weakly

compressible SPH [Dalrymple and Rogers, 2006] where eddy viscosity

assumption is used to model the SPS stress tensor with Einstein notation for the

shear stress component in directions i and j
2

2

t δ
3

2
δ

3

2
2

ρ
ijijIijij

ij
SCkS 













,

where
ij
 is the sub-particle stress tensor,   SΔl)(Cv St

2
 the turbulent eddy

viscosity, k the SPS turbulence kinetic energy, Cs the Smagorinsky constant

(0.12), CI=0.0066, Δl the particle to particle spacing and |S|=0.5(2SijSij) where Sij

is an element of the SPS strain tensor. [Dalrymple and Rogers, 2006] introduced

SPS into weakly compressible SPH using Favre averaging, Eq. 2.11 can be re-

written as

aba

b
2

a

a

ij

2

b

b

ij

b

ab

abba

abaab

b

b

aba

b
2

a

a

2

b

b
b

a

W
ρ

τ

ρ

τ
m

)η)(rρ(ρ

Wrυ
m

W
ρ

P

ρ

P
m

dt

d





















































v

g
v

22

04

(2.12)

Chapter 2. SPH Formulation

18

where the superscripts refer to particles a and b.

2.3 CONTINUITY EQUATION

Throughout the duration of a weakly-compressible SPH simulation (as presented

herein) the mass of each particle remains constant and only their associated

density fluctuates. These density changes are computed by solving the

conservation of mass, or continuity equation, in SPH form:

aba

b

abb
a Wm

dt

dρ
 v

(2.13)

Within DualSPHysics it is also possible to apply a delta-SPH formulation, which

introduces a diffusive term [Molteni and Colagrossi, 2009] to reduce density

fluctuations

2 2

1
2 1a a

b ab a ab b ab a ab

b b b ab

dρ ρ
m W h m c W

dt ρ η


 
     

 
 v

r

(2.14)

where)c(c.c baab  50
and δ is the delta-SPH coefficient. This technique is

designed to filter relatively large wave numbers from the density field while

solving for the conservation of mass of each particle, therefore reducing noise

throughout the system of particles. The term can be expanded into a first and

second order contributions, where the second order corresponds to its diffusive

nature and the first order is approximately zero if the kernel is complete

[Antuono et al., 2012]. However, at open boundaries, where a non-complete

interpolation kernel is inevitably present, the first order term originates a net

contribution. For this reason, it is advised that the delta-SPH scheme is disabled

for cases that rely on hydrostatic equilibrium. If the case represents a very

dynamic situation the term contributes with a force that may be several orders of

magnitude smaller than the pressure and viscous terms, not contributing to a

significant degradation of the solution. A delta-SPH (δ) coefficient of 0.1 is

recommended for most applications.

Chapter 2. SPH Formulation

19

2.4 EQUATION OF STATE

Following the work of [Monaghan, 1994], the fluid in the SPH formalism

defined in DualSPHysics is treated as weakly compressible and an equation of

state is used to determine fluid pressure based on particle density. The

compressibility is adjusted so that the speed of sound can be artificially lowered;

this means that the size of time step taken at any one moment (which is

determined according to a Courant condition, based on the currently calculated

speed of sound for all particles) can be maintained at a reasonable value. Such

adjustment however, restricts the sound speed to be at least ten times faster than

the maximum fluid velocity, keeping density variations to within less than 1%,

and therefore not introducing major deviations from an incompressible approach.

Following [Monaghan et al., 1999] and [Batchelor, 1974], the relationship

between pressure and density follows the expression























 1

ρ

ρ
BP

γ

0

(2.15)

where 7 , 0

2

0cB  where -3

0 m kg 1000 is the reference density and

   
oρ

oo ρP/ρcc  which is the speed of sound at the reference density.

2.5 PARTICLE MOTION

Particles are moved according to a method proposed by Monaghan and referred

to as XSPH [Monaghan, 1989]. This aims to move particles with a velocity close

to the average of the velocity of all particles in their neighbourhood in order to

assure a more ordered flow and to prevent penetration between continua,

particles are therefore moved using

abba

b ab

a
a W

ρ

m
ε

dt

d
b vv

r


(2.16)

where ε is a problem specific parameter ranging from 0 to 1 and)ρ(ρ.ρ baab  50 .

Chapter 2. SPH Formulation

20

2.6 SHEPARD FILTER

The Shepard filter is a correction to the density field that can be applied every Ms

time steps according to the following procedure

 
b

abb

b b

b
abb

new

a Wm
m

W
~~




(2.17)

where the kernel has been corrected using a zeroth-order correction




b b

b
ab

ab
ab m

W

W
W



~

(2.18)

In cases where the delta-SPH method is in use, it may not be sensible to apply

the Shepard density filter as well, however it is possible for both methods to be

used simultaneously within DualSPHysics. The frequency Ms that the filter is

applied is a free parameter that can be set to between 1 and an unbounded upper

limit; however it is recommended that the value is set to a value ranging from 30

to 40 time steps.

2.7 TIME STEPPING

DualSPHysics includes a choice of numerical integration schemes, if the

momentum (va), density (ρa) and position (ra), equations are first written in the

form

a
a F

dt

d


v

(2.19a)

a
a D

dt

dρ


(2.19b)

a
a

dt

d
v

r
 (2.19c)

Where va may also include an XSPH correction when these equations are

integrated in time using a computationally simple Verlet based scheme or a more

numerically stable but computationally intensive two-stage Symplectic method.

Chapter 2. SPH Formulation

21

2.7.1 Verlet Scheme

This algorithm, which is based on the common Verlet method [Verlet, 1967] is

split into two parts and benefits from providing a low computational overhead

compared to some other integration techniques, primarily as it does not require

multiple (i.e. predictor and corrector) calculations for each step. The predictor

step calculates the variables according to

n

a

n

a

n

a tFvv   211 ; n

a

n

a

n

a

n

a tt Fvrr
21 5.0  ; n

a

n

a

n

a tD  211 

(2.20)

where n

aF and n

aD are calculated using Eq. 2.7 (or Eq. 2.12) and Eq. 2.13 (or Eq.

2.14) respectively.

However, once every Ns time steps (where 50 Ns  is suggested), variables are

calculated according to

n

a

n

a

n

a tFvv 1 ; n

a

n

a

n

a

n

a tt Fvrr
21 5.0  ; n

a

n

a

n

a tD  1

(2.21)

This second algorithm is designed to stop divergence of integrated values

through time as the equations are no longer coupled. In cases where the Verlet

scheme is used but it is found that numerical stability is an issue, it may be

sensible to increase the frequency at which the second part of this scheme is

applied, however if it should be necessary to increase this frequency beyond

Ns=10 then this could indicate that the scheme is not able to capture the dynamics

of the case in hand suitably and the Symplectic scheme should be used instead.

2.7.2 Symplectic Scheme

Symplectic integration algorithms are time reversible in the absence of friction or

viscous effects [Leimkuhler et al., 1996]. They can also preserve geometric

features, such as the energy time-reversal symmetry present in the equations of

motion, leading to improved resolution of long term solution behaviour. The

scheme used here is an explicit second-order Symplectic scheme with an

accuracy in time of O(Δt
2
) and involves a predictor and corrector stage.

During the predictor stage the values of acceleration and density are estimated at

the middle of the time step according to

Chapter 2. SPH Formulation

22

n

a

n

a

n

a

t
vrr

2
2

1





 ;

n

a

n

a

n

a D
t

2
2

1







(2.22)

where the superscript n denotes the time step and tnt  .

During the corrector stage dt
n

a /d 2

1


v is used to calculate the corrected velocity,

and therefore position, of the particles at the end of the time step according to

2

1

2

1

1

2


 


n

a

n

a

n

a

t
Fvv

 (2.23)
12

1

1

2




 
 n

a

n

a

n

a

t
vrr

and finally the corrected value of density 11 /   n

a

n

a Ddtd is calculated using the

updated values of 1n

av and 1n

ar [Monaghan, 2005].

2.7.3 Variable Time Step

With explicit time integration schemes the time step is dependent on the Courant-

Friedrich-Levy (CFL) condition, the force terms and the viscous diffusion term.

A variable time step ∆t is calculated according to [Monaghan and Kos, 1999]

using

)t,t(.t cvf  min20

(2.24)

 
a

af ht fmin

) (
max

min

22 






ab

abab

b

a
cv

h
c

h
t

r

rv

where ∆tf is based on the force per unit mass (|fa|), and ∆tcv combines the Courant

and the viscous time step controls.

Chapter 2. SPH Formulation

23

2.8 BOUNDARY CONDITIONS

In DualSPHysics, the boundary is described by a set of particles that are

considered as a separate set to the fluid particles. The software currently provides

functionality for solid impermeable and periodic open boundaries. Methods to

allow boundary particles to be moved according to fixed forcing functions are

also present.

2.8.1 Dynamic Boundary Condition

The Dynamic Boundary Condition (DBC) is the default method provided by

DualSPHysics [Crespo et al., 2007]. This method sees boundary particles that

satisfy the same equations as fluid particles, however they do not move according

to the forces exerted on them. Instead, they remain either fixed in position or

move according to an imposed/assigned motion function (i.e. moving objects

such as gates or wave-makers).

When a fluid particle approaches a boundary and the distance between the

boundary particles and the fluid particles becomes smaller than twice the

smoothing length (h), the density of the affected boundary particles increases,

resulting in a pressure increase. In turn, this results in a repulsive force being

exerted on the fluid particle due to the pressure term in the momentum equation.

Stability of this method relies on the length of time step taken being suitably

short in order to handle the highest present velocity of any fluid particles

currently interacting with boundary particles and it is therefore an important issue

when considering how the variable time step is calculated.

2.8.2 Periodic Open Boundary Condition

DualSPHysics provides support for open boundaries in the form of a periodic

boundary condition. This is achieved by allowing particles that are near an open

lateral boundary to interact with the fluid particles near the complementary open

lateral boundary on the other side of the domain.

In effect, the compact support kernel of a particle is clipped by the nearest open

boundary that it is nearest to and the remainder of its clipped support applied at

the complementary open boundary.

Chapter 2. SPH Formulation

24

2.8.3 Pre-imposed Boundary Motion

Within DualSPHysics it is possible to define a pre-imposed movement for a set

of boundary particles. Various predefined movement functions are available as

well as the ability to assign a time-dependant input file containing kinematic

details.

These boundary particles behave as DBC described in Section 2.8.1, however

rather than being fixed, they move independently of the forces currently acting

upon them. This provides the ability to define complex simulation scenarios (i.e.

a wave-making paddle) as the boundaries influence the fluid particles

appropriately as they move.

2.8.4 Fluid-driven Objects

It is also possible to derive the movement of an object by considering its

interaction with fluid particles and using these forces to drive its motion. This

can be achieved by summing the force contributions for an entire body. By

assuming that the body is rigid, the net force on each boundary particle is

computed according to the sum of the contributions of all surrounding fluid

particles according to the designated kernel function and smoothing length. Each

boundary particle k therefore experiences a force per unit mass given by





WPsa

kak ff

(2.25)

where fka is the force per unit mass exerted by the fluid particle a on the

boundary particle k, which is given by

akakak mm ff 

(2.26)

For the motion of the moving body, the basic equations of rigid body dynamics

can then be used





BPsk

kkm
dt

d
M f

V

(2.27a)

 



BPsk

k0kkm
dt

d
I fRr
Ω

(2.27b)

Chapter 2. SPH Formulation

25

where M is the mass of the object, I the moment of inertia, V the velocity, Ω the

rotational velocity and R0 the centre of mass. Equations 2.27a and 2.27b are

integrated in time in order to predict the values of V and Ω for the beginning of

the next time step. Each boundary particle within the body then has a velocity

given by

 0kk RrΩVu 

(2.28)

Finally, the boundary particles within the rigid body are moved by integrating

Eq. 2.28 in time. Both [Monaghan et al., 2003] and [Monaghan, 2005] showed

that this technique conserves both linear and angular momentum.

Chapter 3. Neighbour List Implementation

27

3. NEIGHBOUR LIST IMPLEMENTATION

The DualSPHysics code is the result of an optimised implementation that uses

the best approaches for CPU and GPU computation of SPH, with simulation

accuracy, reliability and numerical robustness given precedence over

computational performance where necessary. SPH software frameworks (such as

DualSPHysics) can be split into three main steps (Figure 3-1); (i) generation of a

neighbour list (NL), (ii) computation of forces between particles and solving

momentum and continuity equations (PI) and (iii) integrating in time to update

all the physical properties of the particles in the system (SU). Running a

simulation therefore means executing these steps in an iterative manner.

Figure 3-1. Conceptual diagram summarising the implementation of a SPH code.

Chapter 3. Neighbour List Implementation

28

3.1 STEPS OF THE SPH CODE

During the first step the neighbour list is generated. Particles only interact with

neighbouring particles located at a distance less than 2h. Thus, the domain is

divided into cells of size (2h×2h×2h) to reduce the neighbour search to only the

adjacent cells and the cell itself. The Cell-linked list described in [Domínguez et

al., 2011a] was implemented in DualSPHysics. Another traditional method to

perform a neighbour search is creating an array with all the real neighbours of

each particle of the system (named Verlet list), however the main drawback of

this approach is its higher memory requirements compared to the Cell-linked list.

In the DualSPHysics, two different cell lists were created; the first one with fluid

particles and the second one with boundary particles. Therefore, this process can

be divided into different operations: (i) domain division into square cells of side

2h, (or the size of the kernel domain), (ii) determining the cell to which each

particle belongs, (iii) reordering the particles according to the cells, (iv) ordering

all arrays with data associated to each particle and, finally, (v) generating an

array with the position index of the first particle of each cell. Note that an actual

neighbour list is not created, but also a list of particles reordered according to the

cell they belong to, which facilitates the identification of real neighbours during

the next step. More details about the neighbour list implementation are provided

in Section 3.3.

Secondly, the force computation is performed so that all particle interactions are

solved according to the SPH equations. Each particle interacts with all

neighbouring particles located at a distance less than 2h. Only particles inside the

same cell and adjacent cells are candidates to be neighbours. Kernel and kernel

gradient symmetry, avoids unnecessary repetition of particle interactions leading

to a minor improvement in performance. When the force interaction of one

particle with a neighbour is calculated, the force of the neighbouring particle on

the first one is known since they have the same magnitude but opposite direction.

Thus, the number of adjacent cells to search for neighbours can be reduced if the

symmetry in the particle interaction is considered, which reduces the

computational time. The equations of conservation of momentum and mass (Eq.

2.7 and Eq. 2.13 respectively) are computed for the pair-wise interaction of

particles.

Finally, the system is updated. New time step is computed (Eq. 2.24) and the

physical quantities are updated in the next step starting from the values of

physical variables at the present time step, the interaction forces and the new

Chapter 3. Neighbour List Implementation

29

time step value (Eq. 2.19b). In addition, particle information (position, velocity

and density) are saved on local storage (the hard drive) at defined times.

3.2 TESTCASE

The experiment of Yeh and Petroff at the University of Washington is

numerically reproduced using DualSPHysics in order to analyse the performance

of the code. This experiment, also described in [Gómez-Gesteira and Dalrymple,

2004] for validation of their 3D SPH model, consists of a dam break problem

confined within a rectangular box 160 cm long, 67 cm wide and 40 cm high. The

volume of water initially contained behind a thin gate at one end of the box is 40

cm long x 67 cm x 30 cm high. A tall structure, which is 12 cm x 12 cm x 45 cm

in size, is placed 50 cm downstream of the gate and 24 cm from the nearest

sidewall of the tank. A physical time of 1.5 seconds is calculated. Different

instants of the simulation can be observed in Figure 3-2.

Figure 3-2. Different instants of the dam break evolution using 300,000 particles.

Chapter 3. Neighbour List Implementation

30

A validation of DualSPHysics using this testcase has already been shown in

[Barreiro et al., 2013] where experimental forces exerted onto the structure were

in good agreement with the numerical values.

As mentioned above, the SPH method is expensive in terms of computational

time. For example, a simulation of this dam break evolution during 1.5s of

physical time using 300,000 particles (Figure 3-2) takes more than 15 hours on a

single-core machine. The first limitation is the small time step (10
-6

-10
-5

 s)

imposed by forces and velocities [Monaghan et al., 1999]. Thus, in this case,

more than 16,000 steps are needed to complete the 1.5s of physical time. On the

other hand, each particle interacts with more than 250 neighbours, which implies

a large number of interactions (operations) in comparison with the methods based

on a mesh (Eulerian methods) where only a few grid nodes are taken into

account. In this case, as it will be shown, the particle interaction takes more than

90% of the total computational time when executed on a single-core CPU. Thus,

all the efforts to increase the performance of the code must be focused on

reducing the execution time of the particle interaction stage.

3.3 DIFFERENT APPROACHES OF NEIGHBOUR LIST

As mentioned above, the particle interaction step is the most time consuming part

of the algorithm in terms of computational time. Before the acceleration of this

step, attention must be focused on the neighbour list. The approach used to create

the neighbour list needs to be optimised as much as possible to achieve the best

performance during the particle interaction.

The determination of which particles are inside the interaction range requires the

computation of all pair-wise distances, a procedure with high requirements in

terms of computational time for large domains. The efficiency of this procedure,

which involves a number of interactions on the order of N
2

(being N the number

of particles), is so poor that this brute force evaluation of interactions can only be

used in academic exercises as pointed out in [Viccione et al., 2008].

Different approaches coexist in SPH to create a list of neighbours. Here we will

focus on just two of them, the cell-linked list and the Verlet list. There are more

methods, such as oct-tree methods that are used mostly in astrophysical problems

[Stellingwerf and Wingate, 1994] where different variable time scales and long-

range interactions like gravity take place.

Chapter 3. Neighbour List Implementation

31

In the cell-linked list (CLL from now on), the computational domain is divided in

cells of side 2h (cut-off limit), then particles are stored according to the cell they

belong to. Thus, an array of particles reordered through the cells is obtained. This

array is used during the particle interaction stage, where each particle of interest

only looks for its potential neighbours in the adjacent cells (the candidates to be

neighbours). When the distance between two particles is less than 2h, then a real

neighbour of the particle of interest is found and forces will be computed. In this

case, a list will be associated with each cell. In the simplest version of Verlet list

(VL from now on), the domain is also divided in cells of size 2h, and the particles

are also allocated in an array where they are grouped according to the cell they

belong to. However in this case, a new array is obtained from the previous one,

the properly named neighbour list includes all the particles of the adjacent cells at

a distance shorter than 2h for each particle of the domain. Thus, this so called

Verlet list contains the real neighbours of each particle. This array of neighbours

is used during the force computation where only the computation of the

interaction forces between neighbouring particles is carried out. Percentages in

Table 3-1 are referred to the 100% total runtime of the simulation of a dam

break, which implies the execution of several time steps. These values are related

to a given solution where particle forces are computed once. The creation of the

VL is more complex since it involves all calculations needed to generate CLL and

the additional construction of the Verlet list. However, this list can be kept during

several time steps considering cells of size slightly higher than 2h, as it will be

shown.

Table 3-1. Comparison of Cell-linked list (CLL) and Verlet list (VL): percentage

of the total runtime of the dam-break simulation using 300,000 particles.

SPH step

Cell-linked list (CLL)

Verlet list (VL)

Neighbour

List

cells division

particles in cells
1.7%

cells division particles in cells

search of neighbours in adjacent cells

neighbour list construction

20.5%

Force

Computation

neighbours search

interaction forces
96.7%

load neighbour list

interaction forces
78%

System

Update

solve variables of next

step
1.6% solve variables of next step 1.5%

Chapter 3. Neighbour List Implementation

32

A cell-linked list (CLL) can be calculated by means of the following steps:

i) The computational domain is divided into cells of side 2h.

ii) Particles are stored according to the cell they belong to.

The sketch of this method is shown in Figure 3-3. The possible neighbours

(coloured dots) of a particle a are placed in the adjacent cells, but only those

particles placed at a distance shorter than 2h (dark colour) interact with the

particle a.

2h

2h

Figure 3-3. Sketch of the Cell-linked list (CLL).

On the other hand, the main advantage of a Verlet list is the possibility of

keeping the same list during several consecutive time steps. Although, the

technique is well known, it has some intrinsic limitations that must be eliminated

to obtain a more efficient code. Here, we will first describe the classical method

and then the possible improvements. Let us assume that in the classical Verlet list

(VLC from now on) the list is required to remain fixed for the next C time steps:

a) The computational domain is divided in cells of side 2H=2h+Δh, being

Δh=ν(2∙Vmax∙C∙dt), where Vmax is the maximum velocity of any particle of

the system, multiplied by 2 since the worst situation appears when two

particles with the maximum velocity are moving apart and ν is a parameter

slightly higher than 1. C is the number of time steps the list is going to be

kept. Note that this part of the method is common to CLL when Δh=0.

b) Search for potential neighbours at the adjacent cells. When the distance

between the particle of interest, a, and another particle, b, is less than 2H

Chapter 3. Neighbour List Implementation

33

(rab<2H) that particle is added to the list of potential neighbours. Note that

the particle is only a candidate to interact with a during the following C time

steps but only particles with rab<2h will interact during the present time step.

c) The list of potential neighbours is loaded and kept during the following C

time steps. Only those particles with rab<2h will interact. Note that particles

move in time, in such a way that from the initial set of candidates only a

percentage of the total interacts each time step, and the interacting particles

can change every time step.

The method presents several drawbacks. On the one hand, the list is not checked

every time step and particles can leave or enter the neighbourhood without being

detected. The imposed condition on Δh depends on Vmax and dt, which do not

remain constant during the C time steps. Vmax can vary due to flow acceleration

and dt is variable. This fact can give rise to inaccuracies in calculations. This

effect can be prevented by using ν=1.2 in the definition of Δh, although this

implies higher memory requirements and will slow down the code since the

number of “false” candidates increases. On the other hand, the method is

inefficient in terms of computational time. An initial condition is imposed on Δh,

but that condition considers the worst situation at the first step from the C steps

the list is kept. However, velocity can decrease during the C time steps and the

interaction between two particles with the maximum velocity does not

necessarily take place. In summary, the list is likely to remain valid for more than

C time steps.

The following Verlet list (VLX from now on) is proposed. In this case Δh is

calculated in the same way as in VLC. However, the number of steps the list is

kept (X instead of C) is only tentative, assumed at the first time step, but it can be

longer or shorter depending on the calculation. The position of all particles in the

domain is also recorded at the first time step. During the following time steps the

position of the particles is checked. When the distance travelled by any particle

from the first step is longer than Δh/2 the Verlet list is recalculated and assumed

to last for X time steps. Note that the drawbacks mentioned above disappear with

this approach. When a particle enters or leaves the neighbourhood of particle a

the list is recalculated, even when the number of steps is less than X.

Furthermore, the list can be kept even when the number of steps is higher than X

if no particle has left or entered the neighbourhood of any particle a. Finally,

ν=1.0 is assumed in Δh calculation because no extra distance is added to 2H since

the real position of the particles is checked every time step.

Chapter 3. Neighbour List Implementation

34

The sketch of Verlet List approach is shown in Figure 3-4. The possible

neighbours (coloured dots) of the particle are placed in the adjacent cells. Only

those particles placed at a distance shorter than 2H (dark colour) will potentially

interact with particle a and will be included in the list. Note that during the first

time step only the particles marked with black dots will interact with particle a.

2h+Δh

2h+Δh

Figure 3-4. Sketch of the Verlet list (VL).

The case shown in Figure 3-2 is used here to compare both neighbour lists.

Hence, differences in the computational runtime can be observed in Figure 3-5.

In both simulations, particles have been sorted according to the cells. VL is

slower than CLL for any number of particles. In particular, the method is about

13% slower for 150,000 particles. This difference is due to the time needed to

create the real neighbour list in VL. However, the power of this method has not

been properly exploited since the same list can be kept for several time steps,

which alleviates the additional burden associated with the creation of the Verlet

list.

From the point of view of memory requirements, VL is less efficient than CLL

(Figure 3-6). Thus, for example, the allocated memory is 18 times higher in VL

when using 150,000 particles. In addition, this ratio increases almost linearly

with N.

Chapter 3. Neighbour List Implementation

35

0

2

4

6

8

10

0 50,000 100,000 150,000

T
(h

o
u

rs
)

N

CLL

VL

Figure 3-5. Computational runtime of different approaches for neighbour list.

0

5

10

15

20

25

30

0 50,000 100,000 150,000

M
e

m
o

ry
 (

M
b

)

N

CLL

VL

Figure 3-6. Memory requirements of different approaches for neighbour list.

Figure 3-7 shows the different performances of VLC and VLX in terms of runtime

depending on the number of time steps (ns) the list is kept (C or X depending on

the approach). Both VLC and VLX showed to be less efficient than CLL for low

and high ns values. However, there is an intermediate region (3 ≤ ns ≤ 15), where

both methods showed to be faster than CLL. In particular, the most efficient

region is obtained for ns~7 time steps, where VLX is about 4% faster than CLL

and VLC 3% faster. In addition, the method VLX has shown to be faster than VLC

for any ns. Obviously, the particular location of the maximum and the interval

where the methods based on the Verlet list are more efficient depend on the case

under study, although other calculations with different test cases showed a

similar behaviour. A similar figure can be obtained for different values of N.

Chapter 3. Neighbour List Implementation

36

-15%

-10%

-5%

0%

5%

10%

0 5 10 15 20 25 30 35 40

Im
p

ro
ve

m
e

n
t

ns

VLx

VLc

Figure 3-7. Improvement in time using VLC and VLX compared to CLL. All cases

were calculated with N=31,239.

The memory requirements of the different methods are shown in Figure 3-8.

Thus, while CLL always requires the same amount of memory, the increase is

almost parabolic with ns in VLC and VLX. In the present case, N=31,239 particles,

the memory allocated for CLL is on the order of 0.25 Mb and it can even be on

the order of 25 and 40 Mb for VLX and VLC respectively. In the region where both

methods are efficient (ns~7) the allocated memory is about 30 times higher than

in CLL. In addition, it should be noted that VLC has higher memory requirements

than VLX for any ns. This is a direct consequence of the different value of ν

considered in both approaches (see Δh definition).

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40

M
e

m
o

ry
 (

M
b

)

ns

CLL

VLx

VLc

Figure 3-8. Allocated memory in CLL, VLX and VLC. All cases were calculated

with N=31,239.

Chapter 3. Neighbour List Implementation

37

Figure 3-9 shows the comparison between VLC and VLX in terms of runtime

improvement compared to CLL. This comparison was carried for ns= 7 time

steps which corresponds to the most efficient value for the methods based on a

Verlet list as shown in Figure 3-7. For any number of particles, both methods

have shown to be faster than CLL, with an improvement that tends to increase

with N. In addition, VLC was observed to be slower than VLX for any N. The

maximum improvement (~5.7%) was obtained for VLX with 150,000 particles.

0%

2%

4%

6%

8%

10%

0 50,000 100,000 150,000

Im
p

ro
ve

m
e

n
t

N

VLx (7 steps)

VLc (7 steps)

Figure 3-9. Improvement comparison between VLX and VLC referred to CLL.

The observed improvement in velocity is moderate, especially when the memory

requirements of the Verlet list are on the order of 30 times higher than for CLL in

the most efficient region (see Figure 3-7 and Figure 3-8). However, this result

can be improved in those cases where the loop over particles should be carried

out more than once per time step. This is the case, for example, of different

improvements in classical SPH formulation as MLS filters ([Colagrossi and

Landrini, 2003], [Dilts, 1999]), kernel and kernel gradient corrections

([Belytschko et al., 1998], [Bonet and Lok, 1999], [Vila, 1999], [Chen and

Beraun, 2000]) or Riemann solvers ([Marongiu et al., 2010]). In CLL the

potential neighbours placed in adjacent cells are checked several times every

time step, while in the methods based on Verlet list the same list is loaded more

than once but not recalculated several times every time step.

Figure 3-10 shows the comparison between VLX in terms of runtime

improvement compared to CLL. Two different approaches have been considered

in this case. This line coincides with the red solid line shown in Figure 3-9. The

red dashed line corresponds to the same model with the kernel gradient

Chapter 3. Neighbour List Implementation

38

correction described in [Bonet and Lok, 1999]. In the case with kernel gradient

correction, the velocity improvement was calculated comparing the runtime

using VLX with the runtime using CLL and the same gradient correction.

Comparison was carried out assuming the most favourable case (ns=7, see Figure

3-7). Obviously, the improvement is higher in the corrected case, reaching a

percentage higher than 8% for N=150,000 particles.

0%

2%

4%

6%

8%

10%

0 50,000 100,000 150,000

Im
p

ro
ve

m
e

n
t

N

VLx (7 steps)

VLx (7 steps) KGC

Figure 3-10. Comparison between VLX with and without kernel gradient

correction (KGC). The improvement is referred to CLL.

In general, VL needs much more memory than CLL, which is the main drawback

of the method. In terms of runtime, the main advantage of VL is the possibility of

keeping the same list during several consecutive time steps. The improved

version (VLx) of the classical Verlet list showed to be dependent on the number

of steps, ns, that the list is kept. For low and high values of ns the CLL method

was faster than VLx. Only in an intermediate region VLx was faster than CLL with

a maximum improvement close to 6% for ns=7 time steps. This runtime

improvement is rather moderate, especially when considering the memory

requirements of the method compared to CLL. A better improvement in terms of

runtime can be achieved when SPH has to loop over the particles more than once

per time step, since the same list is kept in VLx but the code is forced to a new

search when using CLL. An improvement in runtime higher than 8% was

obtained when using a SPH formulation with a kernel gradient correction, which

implies a double loop every time step. Further improvement is expected when the

number of loops per time step increases. To sum up, the choice of the neighbour

list approach (CLL or VLx) depends on the specific simulation under study. CLL

is suggested for use when running a serial code since the number of particles is

Chapter 3. Neighbour List Implementation

39

high and the memory requirements in VLx are too expensive to be balanced by a

runtime improvement on the order of 10%.

DualSPHysics is designed to simulate large number of particles. So that, the

Cell-linked list is implemented since it provides the best balance between the

performance and the memory usage. Once the neighbour list has been optimised

with the most efficient algorithm, the force computation can ben now accelerated

with the best CPU and GPU strategies, as it will be presented in the following

chapters.

Chapter 4. CPU Acceleration

41

4. CPU ACCELERATION

Some features intrinsically linked to the Lagrangian nature of SPH models

should be mentioned before going into details about optimization strategies. The

physical variables corresponding to each particle (position, velocity, density…)

are stored in arrays. During the Neighbour List stage (see Chapter 3), the cell to

which each particle belongs is determined. This makes possible to reorder the

particles (and the arrays with particle data) following the order of the cells. Thus,

if particle data are closer in the memory space, the access pattern is more regular

and efficient [Ihmsen et al., 2011]. Another advantage is the ease to identify the

particles that belongs to a cell by using a range since the first particle of each cell

is known. In this way, the interaction between particles is carried out in terms of

the interaction between cells. All the particles inside a cell interact with all the

particles located in the same cell and in adjacent cells. Force computations

between two particles will be carried out when they are closer than the

interaction range (2h).

4.1 CPU OPTIMIZATIONS

Some standard and well-known CPU optimizations have been applied to

DualSPHysics such as: applying symmetry to particle-particle interaction,

splitting the domain into smaller cells, using SIMD instructions and multi-core

programming with OpenMP.

4.1.1 Applying symmetry to particle-particle interaction

When the force, fab, exerted by a particle, a, on a neighbour particle, b, is

computed, the force exerted by the neighbouring particle on the first one can be

known since it has the same magnitude but opposite direction (fba = -fab). Note

that bababa WW  in Eq. 2.7 and Eq. 2.13. Thus, the number of interactions to

Chapter 4. CPU Acceleration

42

be evaluated can be reduced by two, which decreases the computational time. For

this purpose, in 3D, each cell only interacts with 13 cells and, partially, with

itself (symmetry is also applied for the particles inside the same cell), instead of

27 as shown in Figure 4-1.

Figure 4-1. Interaction cells in 3D without (left) and with (right) symmetry in

particle interactions. Each cell interacts with 14 cells (right) instead of 27 (left).

4.1.2 Splitting the domain into smaller cells

Usually, in particle methods, the domain is split into cells of size (2h×2h×2h) to

reduce the neighbour search to only the adjacent cells. Thus, in 3D and without

considering symmetry, a volume of 27(2h)
3
 is searched for every cell to look for

potential neighbours. This volume is considerably higher than the volume of the

sphere of radius h around the target particle, a, where its real neighbours are

placed (Vsphere=(4/3)π(2h)
3
~4.2·(2h)

3
). This can be generalized to any division of

the computational domain into cells of side 2h/n. Thus the ratio between the

searched volume and the sphere volume becomes (2+(1/n))
3
/((4/3)π), which

tends asymptotically to 6/π when n goes to infinity. Thus, a suitable technique to

diminish the number of false neighbours would be to reduce the volume of the

cell. Unfortunately, each cell requires the storage of information to identify its

beginning, end and number of particles, which prevent the use of large n values.

A balance between decreasing the searching volume and limiting memory

requirements should be found. According to our experience, n values on the

order of 2 are recommended. In fact, the kernel support of the chosen kernel (Eq.

Chapter 4. CPU Acceleration

43

2.4 and Eq. 2.5) is 2h so the smaller cells will be of the size of 2h/2 (h) in this

case. Figure 4-2 shows the comparison between dividing the domain into cells of

side 2h (n=1) and side 2h/2 (n=2).

Figure 4-2. Sketch of 3D interaction with close cells using symmetry. The volume

searched using cells of side 2h (left panels) is bigger than using cells of side h

(right panels).

4.1.3 Using SSE instructions

The current CPUs have special instruction sets (SSE, SSE2, SEE3…) of SIMD

type (Single Instruction, Multiple Data) that allow performing operations on data

sets. A basic operation (addition, subtraction, multiplication, division,

comparison…) of four real numbers (in single precision) can be executed

simultaneously. Another advantage is the straightforward translation to machine-

code providing a higher performance. However this optimization also presents

two disadvantages: first, coding is quite cumbersome and, second, the technique

can only be applied to specific cases where the calculations are performed in

packs of 4 values. Although modern compilers implement the automatic use of

these SIMD instructions, [Dickson et al., 2011] emphasize the need of making an

explicit vectorisation of the computations to obtain the best performance on the

CPU. Therefore, these instructions are applied to the interaction between

particles that were previously grouped into packs of 4 to compute forces

simultaneously. An example of a simplified pseudocode can be seen in Figure

4-3.

Chapter 4. CPU Acceleration

44

Figure 4-3. Sketch Pseudocode in C++ showing the force computation between

the particles of two cells without vectorial instructions (up) and grouping in

blocks of 4 pair-wise of interaction using SSE instructions (down).

4.2 OPENMP IMPLEMENTATION

The main CPU optimization described in this work is the implementation of a

multi-core programming with OpenMP (as described in Section 1.3). Current

CPUs have several cores or processing units, so it is essential to distribute the

computation load among them to maximize the CPU performance and to

accelerate the SPH code. There are two main options to implement a parallel

code in CPU, namely MPI and OpenMP. MPI (also described in Section 1.3) is

particularly suitable to distribute memory systems where each processing unit

has only access to a portion of the system memory and the different processes

need to exchange data by passing messages. However the architecture used in

this work uses shared memory system, where each process can directly access to

all memory without the extra cost of the message passing in MPI as shown in

SPH in [Goozee and Jacobs, 2003]. As mentioned, OpenMP is portable and

flexible whose implementation does not involve major changes in the code. All

the cores of the CPU share the same memory space so data transfer is not

required among threads. Therefore, OpenMP is used in DualSPHysics when

executing the code in a multi-core CPU machine.

Several parts of the SPH code can be parallelised, which is especially important

for force calculation that is the most expensive part of the code. The minimum

execution unit of each thread is the cell, so that all particles of the same cell are

Chapter 4. CPU Acceleration

45

processed sequentially. Neighbouring particles are searched in the surrounding

cells and the particle interaction is computed. However, it is not straightforward

to apply symmetry to particle-particle interaction when several execution threads

of a CPU are used in parallel since the concurrent access to the same memory

positions for read-write particle forces can give rise to unexpected results due to

race conditions. In addition, special attention should be paid to the load balancing

to distribute equally the work among threads. Therefore, three different

approaches were proposed to avoid concurrent accesses and obtain load

balancing:

a) Asymmetric: Concurrent access occurs in force computation when applying

symmetry, since the thread that computes the summation of the forces on a

given particle also computes the forces on the particles placed in the

neighbourhood of the first one. Nevertheless, these neighbouring particles

may be simultaneously processed by another thread. To avoid this conflict,

symmetry is not applied in a first approach. The load balancing is achieved

by using the dynamic scheduler of OpenMP. Cells can be assigned (usually

in blocks of 10) to the threads as they run out of workload. Figure 4-4 shows

an example of dynamic distribution of cells (in blocks of 4) among 3

execution threads according to the execution time of each cell, which

depends on the number of neighbouring particles. The main advantage is the

ease of implementation, being the main drawback the loss of symmetry.

Figure 4-4. Example of dynamic distribution of cells (in blocks of 4) among 3

execution threads according to the execution time of each cell.

b) Symmetric: In this approach, the dynamic scheduler of OpenMP is also

employed distributing cells in blocks of 10 among different threads. The

difference with the previous case lies in the use of the symmetry in the

computation of the particle-particle interaction. Now the concurrent memory

access is avoided since each thread has its own memory space to allocate

Chapter 4. CPU Acceleration

46

variables where the forces on each particle are accumulated. Thus, the final

value of the interaction force for each particle is obtained by combining the

results once all threads have finished. This final value is also computed by

using multiple threads. The advantage of this approach is the use of the

symmetry in all the interactions and the easy implementation of the load

dynamic balancing. The main drawback is the increase in memory

requirements, which depends on the number of threads. Note that memory

duplication for each thread is efficient when using a system with a small

number of threads (as the hardware available in this work), but it does not

scale on a system with much wider CPUs which can execute much more

threads. For example, memory requirement increases by a factor of 2 when

passing from 1 to 8 threads in the testcase.

c) Slices: The domain is split into slices, so that the number of slices is the

number of available execution threads. Symmetry is applied to the

interactions among cells that belong to the same slice, but not to the

interactions with cells from other slices. Thus, symmetry is used in most of

the interactions (depending on the width of the slices). The thickness of the

slices is adjusted to distribute the runtime of the particle interactions within

each slice (dynamic load balancing). The division is periodically updated to

keep the slices as balanced as possible. This thickness is adjusted according

to the computation time required for each slice during the last time steps,

which allows a more correct dynamic load balancing. The main drawbacks

are the higher complexity of the code and the higher runtime associated to

the dynamic load balancing.

4.3 RESULTS

The DualSPHysics code will be used to run the dam-break simulation described

in Section 3.2. The system used for the CPU performance testing is the

following:

 Hardware: Intel® Core ™ i7 940 at 2.93 GHz (4 physical cores, 8 logical

cores with Hyper-threading), with 6 GB of 1333 MHz DDR3 RAM.

 Operating system: Ubuntu 10.10 64-bit.

 Compiler: GCC 4.4.5 (compiling with the option –O3).

Figure 4-5 shows the achieved speedup on CPU for different number of particles

(N) when applying the three first optimization strategies explained in Section 4.1;

Chapter 4. CPU Acceleration

47

symmetry in particle interaction, division of the domain into cells of size 2h/2

and use of SSE instructions. The blue line in Figure 4-5 shows the speedup

obtained using symmetry and the red line includes the speedup when using SSE

instructions and symmetry, the value in parentheses is the cell size. Using

300,000 particles, a maximum speedup of 2.3x is obtained using these CPU

optimizations when compared to the version of the code without optimizations.

1.0

1.5

2.0

2.5

0 100,000 200,000 300,000

Sp
e

e
d

u
p

N

SSE(2h/2)

SSE(2h)

Symmetry(2h/2)

Symmetry(2h)

Figure 4-5. Speedup achieved on CPU for different number of particles (N) when

applying symmetry, the use of SSE instructions. Two different cell sizes (2h and

2h/2) were considered.

The speedup obtained with the multi-core implementation on CPU of the SPH

code for different number of particles is observed in Figure 4-6. In the figure, the

performance of the different OpenMP implementations (using 8 threads) is

compared with the most efficient single-core version (that includes symmetry,

SIMD instructions and cell size equal to 2h/2). The most (less) efficient

implementation is Symmetric (Asymmetric). A speedup of 4.5x is obtained with

Symmetric when using 8 threads. The approaches that divide the domain into

slices (Slices) offer a higher performance when increasing the number of

particles since the number of cells also increases, allowing a better distribution of

the workload among the 8 execution threads. Using Slices, the efficiency does

not depend on the direction of fluid movement. Similar performance is achieved

when creating the slices in X or Y-direction, since the workload is distributed

equally among the slices.

Chapter 4. CPU Acceleration

48

Figure 4-6. Speedup achieved on CPU for different number of particles (N) with

different OpenMP implementations (using 8 logical threads) in comparison with

the most efficient single-core version that includes all the previous optimizations.

Table 4-1 shows the computational times and speedups on CPU using the most

efficient version of OpenMP (Symmetric) with 4 and 8 threads compared to the

single-core CPU version. Note that the evaluation of the speedup is not expected

to be linear with the number of threads since the available CPU hardware is the

Intel® Core ™ i7 with 4 physical cores and 8 logical cores with Hyper-threading

and Table 4-1 shows results using logical cores instead of physical ones.

Therefore, the parallel CPU version with 8 threads is 4.6 times faster than single-

core version and the speedup is 3.9x using 4 threads.

Table 4-1. Speedup achieved on CPU simulating 300,000 particles when using 4

and 8 threads compared to the single CPU version.

Version

Total

simulation

time

Number

of

Steps

Computed

steps per

second

Speedup

vs. CPU

Single-core

CPU

Single-core
24,520 s 16,282 0.66 1.0x

CPU

4 Threads
6,375 s 16,275 2.55 3.9x

CPU

8 Threads
5,414 s 16,284 3.01 4.6x

Chapter 5. GPU Acceleration

49

5. GPU ACCELERATION

Nowadays, GPUs can be used for general purpose applications, achieving

important speedups in comparison with classical CPUs. However, an efficient

and full use of the capabilities of the GPUs is not straightforward and it is

necessary to know and to take into account the details of the GPU architecture

and the CUDA programming model described in [CUDA Programing Guide]. On

the other hand, SPH method is not very suitable to run on GPU because it

presents several problems like divergence and irregular memory access. Hence,

this kind of problems must be minimised to obtain good speedups.

5.1 CUDA PROGRAMMING MODEL

The GPU card is a specialized hardware to execute in parallel the same

instruction on many data elements (SIMD parallelism). Therefore, it is especially

well-suited to address problems with high arithmetic intensity and low flow

control. CUDA (Compute Unified Device Architecture) is a programming

environment for GPU computing. It includes a C/C++ language extension, a

compiler called nvcc, libraries and tools to develop programs for Nvidia GPUs.

A more complete description of CUDA programming model can be found in

[CUDA Programing Guide], so only some basic concepts are introduced here.

A program implemented with CUDA contains a part that is executed on CPU

(host) and another part executed on GPU (device). The code executed on GPU

consists of a set of functions called kernels. The CPU memory and GPU memory

are independent memory spaces, therefore an explicit memory transfer from CPU

memory to GPU memory has to be carried out before running a GPU kernel. The

same process has to be performed in the opposite direction to recover the results

of a kernel execution. These data transfers can reduce the performance and

should be minimised.

Chapter 5. GPU Acceleration

50

A kernel has a set of instructions which are executed with an element or data.

Each element in CUDA is processed by an independent thread. The threads are

grouped into blocks of threads and each block is executed in a SM (Streaming

Multiprocessor). The maximum number of threads per block is 512 or 1024

depending on GPU model. The blocks are grouped into grids (see Figure 5-1)

whose maximum size is 65535 x 65535 and higher in the most modern GPUs. In

this way, a grid of 3907 blocks with 256 threads per block would be necessary to

process 1 million elements. The size of the block and the grid can be defined

using one or several dimensions to better suit the nature of the problem. During

the kernel execution, the number in the block, block number in the grid, size of

block and size of grid are known by each thread.

Figure 5-1. Grid of thread blocks in CUDA (source: CUDA Programming Guide

v6.5)

Each thread has a private local memory and it cannot access to the local memory

of other threads. The threads of the same block have a shared memory and they

can use it to share or exchange data. All threads can access to the same global

memory. The memory hierarchy of GPU is showed in the Figure 5-2. The speed

of access is different for each kind of memory. Global memory is the largest

(hundreds of megabytes or gigabytes), but also it is the slowest (two orders of

magnitude slower). The shared memory can be as fast as the local memory

Chapter 5. GPU Acceleration

51

(registers) but its maximum size is 64 KB. The speed of access of the shared

memory depends on the access pattern (regular or irregular) and GPU model.

Two additional read-only memories are the constant memory and the texture

memory. The first one is used to store constant values and the second one offers

different addressing modes. Both memory spaces are accessible by all threads

and a cache is used to improve its access time. The achieved performance

depends greatly on how this memory hierarchy is used.

Figure 5-2. Memory hierarchy (source: CUDA Programming Guide v6.5)

5.2 CUDA IMPLEMENTATION

The work presented in [Crespo et al., 2009] introduced the framework to

implement SPH codes using the best techniques and performance optimizations

on GPU. That work focused on identifying suitable algorithms for efficient

Chapter 5. GPU Acceleration

52

parallelization since a proper and full use of all the capabilities of the GPU

architecture is not easy. As an initial step, the implementation focused on solving

the particle interactions on a GPU using CUDA and the next step was the

implementation of the neighbour list and the time integration in order to develop

an entire GPU-SPH model. Different neighbour lists were analysed in Section

3.3. Apart from a non-negligible improvement in the performance of the model,

the work also showed that computing particle interactions is the most expensive

SPH procedure in terms of computational runtime. This influences the

development of a GPU code.

In a first approach (left panel of Figure 5-3), it is possible to keep the other two

steps (neighbour list and system update) on the CPU. However, this is less

efficient since particle data and neighbour list information must be transferred

between both processing units each time step, which consumes hundreds of clock

cycles. The most efficient option is keeping all data in the memory of the GPU

where all processes are parallelised (right panel of Figure 5-3). Only output data

requires transfer from GPU to CPU. This process is rarely carried out (one out of

one hundred/thousand time steps) and only represents a low percentage of the

total runtime.

Figure 5-3. Conceptual diagram of the partial (left) and full (right) GPU

implementation of the SPH code.

A preliminary version of the DualSPHysics code with a total GPU

implementation was presented in [Crespo et al., 2010]. Initially, data is allocated

on CPU, so there is a single memory transfer (from CPU to GPU). In all

subsequent calculations, the three main steps are then performed on the GPU

Chapter 5. GPU Acceleration

53

device. All the sequential tasks and operations that involve a loop over all

particles are performed using the parallel architecture of the GPU cores. To save

(or output) data, a new memory transfer is needed (from GPU to CPU). If saving

data is not required all particle information remains on the GPU memory and is

only updated each time step.

The neighbour list creation follows the procedure used on a CPU, but with

several differences. Reordering the particles according to the cells they belong is

computed using the optimised radixsort algorithm provided by CUDA [Satish et

al., 2009]. Figure 5-4 shows a simplified schematic diagram of the method used

to generate an array of particle labels ordered according to cells and an array with

the position index of the first particle in each cell. Four separate arrays are used:

Id, Cell, IdSort and CellBegin with a superscript * denoting sorted arrays. The

array Id (array of particle labels) is the starting point with particles randomly

located in the domain, where the order of this array corresponds to the list of

particles inherited from the previous timestep. The neighbour list is created

according to the following steps:

i) Particles are stored according to the cells, so the array IdSort is created.

ii) The array Cell is also created where an entry gives the cell to which the

particle of the same index in Id belongs, e.g. Id(2) = particle 3 which is

located in Cell 6  hence Cell(2) = 6. Cell labels are depicted in green

colour in Figure 5-4.

iii) Using the radixsort algorithm from Nvidia [Satish et al., 2009], array Cell

is reordered following the order of the six cells and Cell
*
(reordered Cell) is

used to reorder IdSort according to the cells the particles belong.

iv) Once IdSort
*
 is generated, all the arrays with particle information (Id,

Position, Velocity, Density...) are ordered giving rise to the new arrays

(Id_new, Pos_new, Vel_new, Dens_new...) considering that Id_new [i] =

Id [IdSort
*
[i]]. For example, Id_new [2] = Id [IdSort

*
[2]] = Id [7] =

4, in Figure 5-4 a blue circle marks the particle 4 and a red circle marks the

7
th

 position.

v) Finally, CellBegin is created with the indexes (position in data arrays) of

the first particle of each cell. Indexes have been written in red colour in

Figure 5-4. For example the first particle of the cell number 2 is the particle

7, whose position index is 3 in all particle property arrays, so the second

value of CellBegin, which corresponds to cell number 2, will be 3. In this

Chapter 5. GPU Acceleration

54

way, the amount of particles in the cell k will be CellBegin[k+1]-

CellBegin[k].

In the latest version of the GPU code, CellBegin has been replaced by

CellBeginEnd , which not only includes the information of the first particle of the

cell, but also the last particle of that cell. This present an advantage when this

array is loaded in the GPU kernels.

Figure 5-4. Example of the Neighbour list procedure.

The system update associated with time integration can be parallelised easily on

a GPU. Example pseudocode is shown in Figure 5-5 where similarities between

the CPU and GPU versions are clearly evident and demonstrates the advantages

of a using C++ and CUDA when developing code. The new time step is

computed according to Eq. 2.24 where the maximum and minimum values of

different variables (force, velocity and sound speed) are calculated. This

calculation is optimised using the reduction algorithm (also provided by CUDA).

Reduction algorithm allows obtaining the maximum or minimum values of a

huge data set taking advantage of the parallel programming in GPUs.

Chapter 5. GPU Acceleration

55

Figure 5-5. Pseudocode of the System update procedure implemented on CPU and

GPU.

As mentioned above, the particle interactions of the force computation are a key

process that must be implemented in parallel in order to improve the performance

of the model. The use of the shared memory of the GPU was analysed to reduce

the access to the global memory of the GPU. However, when the SPH code is

implemented entirely on the GPU, this technique is not viable. For example,

when the number of particles is large, the size of shared memory is not enough to

allocate the properties of all the particles belonging to the same cell. Particle

interactions can be implemented on the GPU for only one particle using one

execution thread to compute the force resulting from the interaction with all its

neighbours. This technique presents several limitations mainly due to the

Lagrangian nature of the method. On the one hand, the workload of threads

inside one block is not balanced since particles can have different numbers of

neighbours. On the other hand, code divergence can appear since when the

possible neighbours of a particle are evaluated, some of them are definite

neighbours (interparticle distance less than 2h) and the force computation is

performed while other particles are not neighbours (at a distance higher than 2h)

and no computation is performed. Note that according to the link list described in

Section 3.3, the potential neighbours are all particles located in adjacent cells.

Nevertheless, only those particles at distances less than 2h from the target

particle are real neighbours.

An important difference here from the CPU part of the DualSPHysics code is that

the symmetry of the particle interaction cannot be applied efficiently on a GPU

implementation since each thread is responsible for the interaction between a

target particle and its neighbours, so that each thread must be the only one that

computes the forces exerted on that particle. The access to the global memory of

the device is irregular because there is no way to organise the data to get a

coalescent access for all the particles. If a second thread tried to modify those

Chapter 5. GPU Acceleration

56

forces, as could occur when considering particle kernel symmetry, it would

generate erroneous results when both threads accessed simultaneously the same

variable (race conditions). This effect can be removed by synchronising the

threads but it would dramatically reduce the performance of the model. An

example of the similarity of the C++ and CUDA codes for this illustrative point

is shown in Figure 5-6.

Figure 5-6. Pseudocode of the Particle interaction procedure implemented on CPU

and GPU.

The main difference between the full GPU implementation presented here and

the works of [Kolb and Cuntz, 2005] and [Harada et al., 2007] is that they

implemented a classical SPH approach on GPU before the appearance of CUDA

in 2007 using shader programs written in C for Graphics. In this work, the full

GPU implementation is performed using the parallel programming CUDA as

described in Section 5.1. CUDA is more independent of the particular hardware.

This allows the code to be run on new incoming GPU cards more efficiently. On

the other hand, CUDA makes easy the maintenance and the updating of the code

when including more complex algorithms and new SPH formulations. The codes

developed by [Anderson et al., 2008] for MD and by [Herault et al., 2010] for

SPH, also was developed entirely on the GPU but implementing a different

approach for neighbor list, giving rise to different efficiencies in terms of

performance and memory requirements. They implemented the Verlet list, so the

number of particles that can be simulated in the memory space of one GPU card

is much smaller than the number of particles presented here.

This implementation presents different problems to be solved:

a) Code divergence: GPU threads are grouped into sets of 32 named warps in

CUDA language. When a task is being executed over a warp, the 32 threads

carry out this task simultaneously. However, due to conditional flow

instructions in the code, not all the threads will perform the same operation,

so the different tasks are executed sequentially, giving rise to a significant

Chapter 5. GPU Acceleration

57

loss of efficiency. This divergence problem appears during particle

interaction since each thread has to evaluate which potential neighbors are

real neighbors before computing the force.

b) No coalescent memory accesses: The global memory of the GPU is

accessed in blocks of 32, 64 or 128 bytes, so the number of accesses to

satisfy a warp depends on how grouped data are. A regular memory access is

not possible in particle interaction since each particle has different neighbors

and, therefore, each thread will access to different memory positions which

may eventually be far from the rest of the positions in the warp.

c) No balanced workload: Warps are executed in blocks in the CUDA

terminology. When a block is going to be executed, some resources are

assigned and they will not be available for other blocks till the end of the

execution. So, since each thread may have a different number of neighbors, a

thread may need to perform more interactions than the rest. Thus, the warp

can be under execution while the rest of threads of the same warp, or even of

the block, can have finished. Thus, the performance is reduced due to the

inefficient use of the GPU resources.

5.3 GPU OPTIMIZATIONS

Several optimizations have been developed to avoid or minimize the problems

previously described. First of all, maximizing the occupancy of GPU and

reducing global memory accesses are some of the well-known basic

optimizations described in the CUDA manuals which must be always considered

when porting a code to GPU. Then, more GPU optimizations intrinsic to the SPH

method such as simplifying the neighbor search, adding a more specific CUDA

kernel of interaction and the division of the domain into smaller cells will be

described.

5.3.1 Maximizing the occupancy of GPU

Occupancy is the ratio of active warps to the maximum number of warps

supported on a multiprocessor of the GPU or Streaming Multiprocessor (SM).

Since the access to the GPU global memory is irregular during the particle

interaction, it is essential to have the largest number of active warps in order to

hide the latencies of memory access and maintain the hardware as busy as

possible. The number of active warps depends on the registers required for the

Chapter 5. GPU Acceleration

58

CUDA kernel, the GPU specifications (see Table 5-1) and the number of threads

per block. The first option could be reducing the number of registers per thread,

however this implies the increase of memory accesses and the number of

computations in the interaction kernel. Another option is adjusting the block size

in an automatic way according to the registers of the kernel and the hardware

specifications. Figure 5-7 shows the obtained occupancy for different number of

registers and for different computational capabilities of the GPU card when using

256 threads and using other block sizes. For example, the occupancy of a GPU

sm13 (compilation with compute capability 1.3) for 35 registers is 25% (dashed

blue line) using 256 threads, but it can be 44% (solid blue line) using 448

threads.

Table 5-1. Technical specifications of GPUs according to the compute capability.

Technical specifications 1.0 1.1 1.2 1.3 2.x 3.x

Max. of threads per block 512 1024

Max. of resident blocks per SM 8 16

Max. of resident warps per SM 24 32 48 64

Max. of resident threads per SM 768 1024 1536 2048

Max. of 32-bit registers per SM 8 K 16 K 32 K 64 K

0%

20%

40%

60%

80%

100%

16 24 32 40 48 56 64
Registers

sm12-13 (256 threads)
sm20-21 (256 threads)
sm30-32 (256 threads)
sm12-13 (varying threads)
sm20-21 (varying threads)
sm30-32 (varying threads)

Figure 5-7. Occupancy of the GPU for different number of registers with a

variable and a fixed block size of 256 threads.

Chapter 5. GPU Acceleration

59

5.3.2 Reducing global memory accesses

When computing the SPH forces during the particle interaction (PI) stage, the six

arrays described in Table 5-2 are used. The arrays csound, prrhop and tensil were

previously calculated for each particle using rhop to avoid calculating them for

each interaction of the particle with all its neighbors. The number of memory

accesses in the interaction kernel can be reduced by grouping part of these arrays

(pos+press and vel+rhop are combined to create two arrays of 16 bytes each one)

and avoid reading values that can be calculated from other variables (csound and

tensil are calculated from press). Thus, the number of accesses to the global

memory of the GPU is reduced from 6 to 2 and the volume of data to be read

from 40 to 32 bytes.

Table 5-2. List of variables needed to calculate forces.

Variable Size (bytes) Description

pos 3 x 4 Position in X,Y and Z

vel 3 x 4 Velocity in X,Y and Z

rhop 4 Density

csound 4 Speed of sound

prrhop 4 Ratio between pressure and density

tensil 4 Tensile correction following [Monaghan, 2000]

5.3.3 Simplifying the neighbor search

During the GPU execution of the interaction kernel, each thread has to look for

the neighbors of its particle sweeping through the particles that belong to its own

cell and to the surrounding cells, a total of 27 cells since symmetry cannot be

applied. However, this procedure can be optimised when simplifying the

neighbor search. This process can be removed from the interaction kernel when

the range of particles that could interact with the target particle is previously

known. Since particles are reordered according to the cells and cells follow the

order of X, Y and Z axis, the range of particles of three consecutive cells in the

X-axis (cellx,y,z, cellx+1,y,z y cellx+2,y,z) is equal to the range from the first particle

of cellx,y,z to the last of cellx+2,y,z. Thus, the 27 cells can be defined as 9 ranges of

particles. The 9 ranges are colored in Figure 5-8. The interaction kernel is

significantly simplified, when these ranges are known in advance. Thus, the

memory accesses decrease and the number of divergent warps is reduced. In

Chapter 5. GPU Acceleration

60

addition, GPU occupancy increases since less registers are employed in the

kernel. The main drawback is the higher memory requirements due to the extra

144 bytes needed per cell.

Figure 5-8. Interaction cells in 3D without symmetry but using 9 ranges of three

consecutive cells (right) instead of 27 cells (left).

5.3.4 Adding a more specific CUDA kernel of interaction

Initially, the same CUDA kernel was used to calculate all interaction forces

boundary-fluid (B-F), fluid-boundary (F-B) and fluid-fluid (F-F). However,

symmetry in the force computation cannot be efficiently applied and the best

option is implementing a specific kernel for the B-F interaction because only a

subset of the fluid particles is required to be computed for the boundaries. The

effect of this optimization on the overall performance is negligible when the

number of boundary particles is small in comparison with the number of the fluid

ones. On the other hand, the access to the global memory of the GPU is two

orders of magnitude slower than the access to other registers. In order to

minimize these accesses, each thread starts storing all its particle data in

registers, so the thread only needs to read data corresponding to the neighbor

particles. The same approach is applied to store the forces, which are

accumulated in registers and written in global memory at the end. There are two

types of particles (boundaries and fluids), so there are three interactions to

calculate all the forces (F-F, F-B and B-F). Therefore, data of the fluid particles

associated to the threads are read twice (when fluid particles interact with other

fluid particles and when they interact with boundaries) and the same occurs when

Chapter 5. GPU Acceleration

61

writing results in the global memory. A way to avoid this problem is carrying out

the interaction F-F and F-B in the same CUDA kernel with a single data load and

a single final writing instead of two.

5.3.5 Division of the domain into smaller cells

As mentioned in the optimization applied in the CPU implementation (Section

4.1.2), the procedure consists in dividing the domain into cells of size 2h/2

instead of size 2h in order to increase the percentage of real neighbors. Using

cells of size 2h on the GPU implementation, the number of pair-wise interactions

decreases. The disadvantage is the increase in memory requirements since the

number of cells is 8 times higher and the number of ranges of particles to be

evaluated in the neighbor search increases from 9 to 25 (using 400 bytes per

cell).

5.4 RESULTS

The system used for the GPU performance testing:

 Hardware1: NVIDA GTX 480 (15 Multiprocessors, 480 cores at 1.37

GHz with 1.5 GB of 1848 MHz GDDR5 RAM and compute capability

2.0).

 Hardware2: NVIDA Tesla 1060 (30 Multiprocessors, 240 cores at 1.3

GHz with 4 GB of 1600 MHz GDDR3 RAM and compute capability 1.3).

 Operating system: Debian GNU/Linux 5.0 (Lenny) 64-bit.

 Compiler: CUDA 3.2 (compiling with the option –use_fast_math).

Table 5-3 summarizes the improvement achieved on the GPU cards GTX 480

and Tesla 1060 when using the different optimization strategies described before.

All results were obtained simulating the testcase of Section 3.2 with 1 million

particles. Two variables are shown: the percentage of improvement obtained

when applying each individual optimization and the cumulative improvement

achieved when including the present and the previous optimizations. It can be

also observed the effect of optimizations on both GPU architectures; Tesla 1060

corresponds to the generation of GPUs with 240 cores and with compute

capability 1.3 (see Table 5-1) and GTX 480 corresponds to the Fermi architecture

with 480 cores and with compute capability 2.0 (see Table 5-1). In fact, this

different behavior of both GPU cards is related not only to the compute

capability and the number of cores but also to the number of registers and some

Chapter 5. GPU Acceleration

62

kind of cache memory available in the Fermi GPUs that reduces conflicts when

accessing to the global memory. For example, maximizing the occupancy of GPU

presents a better improvement with the Tesla card than with the GTX. Due to the

lower occupancy provided by the compute capability sm13 in comparison to

sm20, the margin of improvement is higher for the Tesla card (see Figure 5-7). In

contrast, the impact of dividing the domain into smaller cells is more important

with the GTX. The divergence diminishes when using smaller cells but the

irregular accesses to memory increases and the GTX card presents that kind of

cache memory that helps to mitigate the negative effect of the irregular accesses

while the Tesla cannot. Considering the cumulative response of applying all the

optimizations, the fully optimized GPU code for the GTX 480 is 1.65 times faster

than the basic GPU version without optimizations and, in the case of Tesla 1060,

the achieved speedup was 2.15x.

Table 5-3. Improvement achieved on GPU simulating 1 million particles when

applying the different GPU optimizations using GTX 480 and Tesla 1060.

GTX 480 Tesla 1060

Optimization Cumulative Optimization Cumulative

Maximizing the

occupancy of GPU
7.3% 7.3% 17.4% 17.4%

Reducing global

memory accesses
18.9% 27.6% 28.9% 51.3%

Simplifying the

neighbor search
3.1% 31.5% 12.9% 70.8%

Specific CUDA

kernel of interaction
2.6% 34.9% 11.3% 90.1%

Division of the domain

into smaller cells
22.7% 65.4% 12.8% 114.5%

The full implementation of the SPH code on GPU is basic since when neighbor

list (NL), particle interaction (PI) and system update (SU) are implemented on

GPU, the CPU-GPU data transfer is avoided in each time step. Figure 5-9 shows

the computational runtimes using the GTX 480 for different GPU

implementations (partial, full and optimized) simulating 500,000 particles of the

testcase. Partial GPU implementation corresponds to a preliminary version

where only the PI stage was implemented on GPU, in the full GPU version the

three stages of the SPH code are executed on GPU and optimized GPU is the

final version including all the proposed optimizations. It can be observed that the

time dedicated to the CPU-GPU data transfer in the partial implementation is

Chapter 5. GPU Acceleration

63

9.4% of the total runtime. The CPU-GPU communications are not necessary at

each time step when the SPH code is totally implemented on GPU. The runtimes

of the NL and SU stages decrease when both parts of the code are also

implemented on GPU. Finally, the computational time of the PI stage is reduced

in about 40% when applying all the developed optimization strategies.

Figure 5-9. Computational runtimes (in seconds) using GTX 480 for different

GPU implementations (partial, full and optimized) when simulating 500,000

particles.

In the last years, many performance comparisons between CPU and GPU have

been reported achieving speedups over two or three orders of magnitude.

However, many of these comparisons are not so fair since a highly optimised

GPU code is compared against a basic CPU code, which does not take advantage

of the real power of CPU [Lee et al., 2010]. This work shows a comparison once

both codes (CPU and GPU) were optimised.

The comparison between CPU and GPU can be observed in Table 5-4. The table

summarizes the execution runtimes, the number of computed steps and the

achieved speedups. Note that the speedup has been measured here as the ratio

between the number of time steps computed per second by the different versions.

The data correspond to the most efficient implementation on GPU versus the

multi-core implementation on CPU (Symmetric with 8 threads) and the single-

core implementation. Thus, for example, for one million particles, the

performance of the CPU is 0.2 time steps per second using the single-core

version and 0.8 using the multi-core version, while 10.1 time steps per second

can be computed with a GPU GTX 480. The whole simulation takes one day, 16

hours and 45 min on the Intel® Core ™ i7 and only 42 min on the GTX 480,

resulting in a speedup of 56.2x (vs. single-core CPU) and 12.5x (vs. CPU with 8

logical threads). It can be also observed that the speedups with GTX 480 (Fermi

Chapter 5. GPU Acceleration

64

technology) are twice those obtained with Tesla 1060, which belongs to a

previous generation of GPU cards as mentioned above. Note that, usually, the

works about parallel hardware to accelerate SPH published before the appearance

of GPUs showed speed-ups considering CPU clusters versus a single core. When

proving the capability of GPU computations for engineering applications,

relative runtimes can be useful, so the speedup in comparison with a single CPU

core is also shown to give an idea of the order of speedup that is possible when

using GPU cards instead of large cluster machines.

Table 5-4. Results of the CPU and GPU simulations.

Version

Number

of

particles

Total

simulation

time

Number

of

Steps

Computed

steps per

second

Speedup

vs. CPU

Single-core

Speedup

vs. CPU

8 Threads

CPU

Single-core

503,492 14.6 h 19,855 0.4 1.0x --

1,011,354 40.7 h 26,493 0.2 1.0x --

CPU

8 Threads

503,492 3.2 h 19,806 1.7 4.6x 1.0x

1,011,354 9.1 h 26,511 0.8 4.5x 1.0x

GPU

Tesla 1060

503,492 0.5 h 19,832 10.2 26.8x 5.8x

1,011,354 1.5 h 26,509 4.9 27.3x 6.1x

GPU 503,492 0.3 h 19,830 21.2 55.7x 12.2x

GTX 480 1,011,354 0.7 h 26,480 10.1 56.2x 12.5x

The fastest GPU implementation uses all the GPU optimizations including

dividing the domain into smaller cells, whose main disadvantage is the increase

in memory requirements as mentioned above. Therefore, the maximum number

of particles that can be simulated in a GTX 480 using the optimized GPU version

of DualSPHysics is only 1.8 million. Accordingly, three different versions of the

code are implemented to avoid this limitation. These different GPU versions are

available in DualSPHysics and the fastest one is automatically selected by the

code depending on the memory requirements of the simulation. The first version

contains all the GPU optimizations and it is named FastCells(2h/2), the second

one, named SlowCells(2h/2), is implemented without the optimization of

simplifying the neighbor search and the third version, named SlowCells(2h), is

implemented without simplifying the neighbor search and without dividing the

domain into smaller cells. The memory usage for these three different GPU

versions can be seen in Figure 5-10. Note the black solid line represents the limit

of memory that can be allocated on a GTX 480 (less than 1.4 GB) and the dotted

line the limit for the Tesla 1060 (less than 4GB). Using all these different

Chapter 5. GPU Acceleration

65

versions, which will be automatically selected for each run depending on

memory requirements, DualSPHysics allows simulating up to 9 million particles

with a GTX 480 and more than 25 million with a Tesla 1060. The execution

times corresponding to the three GPU versions (FastCells(2h/2), SlowCells(2h/2)

and SlowCells(2h)) and the times of the single-core and multi-core CPU versions

are also summarized in Figure 5-11.

0

1

2

3

4

0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000

M
e

m
o

ry
 (

G
b

)

N

FastCells(2h/2)

SlowCells(2h/2)

SlowCells(2h)

Limit GTX 480

Limit Tesla 1060

Figure 5-10. Memory usage for different GPU versions implemented in

DualSPHysics.

0

2

4

6

8

10

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

R
u

n
ti

m
e

 (
h

)

N

CPU Single-core

CPU 8 threads

Gtx480 SlowCells(2h)

Gtx480 SlowCells(2h/2)

Gtx480 FastCells(2h/2)

Tesla1060 SlowCells(2h)

Tesla1060 SlowCells(2h/2)

Tesla1060 FastCells(2h/2)

Figure 5-11. Runtimes for different CPU and GPU implementations.

5.5 PERFORMANCE WITH THE LATEST GPU (AUGUST 2014)

GPU technology is continuously improving, not only their performance increases

but also the architecture is optimised. The results presented above were not

Chapter 5. GPU Acceleration

66

obtained with the latest GPUs in the market. Therefore, new results are presented

in this section using novel and more powerful such as GTX 680, Tesla K20 and

GTX Titan. The same testcase is executed now using the Intel Xeon X5500 CPU

and the mentioned GPUs. Note that the previous GTX 480 is also included in the

comparison to highlight the improvement achieved with newest cards. General

specifications of the execution devices are summarised in Table 5-5.

Table 5-5. Specifications of different execution devices.

Number

of cores
Processor clock

Memory

space

Compute

capability

Xeon X5500 1-8 2.67 GHz ---- ----

GTX 480 480 1.40 GHz 1.5 GB 2.0

GTX 680 1536 1.14 GHz 2 GB 3.0

Tesla K20 2496 0.71 GHz 5 GB 3.5

GTX Titan 2688 0.88 GHz 6 GB 3.5

The performance of different simulations of the same case is presented for 1.5

seconds of physical time. The performance is analysed for different resolutions

by running calculations with different numbers of particles. Computational times

of the executions on CPU and GPU are shown in Figure 5-12 where it can be

noticed that for a simulation of 3 million particles takes one hour using the GTX

Titan GPU card while it takes almost 2 days using a CPU.

0

2

4

6

8

10

0 4,000,000 8,000,000 12,000,000

R
u

n
ti

m
e

 (
h

)

N

CPU Single-core

CPU 8 cores

GTX 480

GTX 680

GTX Titan

Figure 5-12. Runtime for CPU and different GPU cards.

This important acceleration of the code using the new GPU technology can also

be observed in Figure 5-13, where the speedups of different GPUs are shown by

Chapter 5. GPU Acceleration

67

comparing their performance against the CPU device using a single core and also

the full 8 cores of the Intel Xeon X5500. For the case chosen here, the use of a

GPU can accelerate the SPH computations by almost two orders of magnitude,

e.g. the GTX Titan card is 149 times faster than the single core CPU and 24

times faster than the CPU using all 8 cores.

0

50

100

150

GTX 480 GTX 680 Tesla K20 GTX Titan

vs CPU 8 cores

vs CPU Single-core

Sp
e

e
d

u
p

Figure 5-13. Speedups of GPU against CPU simulating 1 million particles.

Figure 5-14 shows the runtime distribution of the three main SPH steps;

neighbour list (NL) creation, particle interaction (PI) and system update (SU)

when simulating one million particles. The particle interaction takes 98.5% of the

total computational time when using a CPU single-core and this percentage

decreases when the code is parallelised. Hence PI takes 90.8% when using the 8

cores of the CPU and it is reduced to 88.3% and 85.7% when using GPU cards

(GTX 480 and GTX Titan, respectively). On the other hand the percentages of

NL and SU increase with the number of cores to parallelise over.

0% 20% 40% 60% 80% 100%

CPU Single-core

CPU 8 cores

GTX 480

GTX Titan

SU

PI

NL

% Total time

Figure 5-14. Computational runtime distribution on CPU and GPU simulating 1

million particles. Neighbour List corresponds to blue bars, Particle Interaction to

red bars and System Update to the green bars.

Chapter 5. GPU Acceleration

68

Finally, Figure 5-15 gives an idea of how many particles can be simulated on the

different GPU devices employed when using the DualSPHysics code. It can be

observed that the difference in terms of speedup between GTX 680 and Tesla

K20 is negligible (see Figure 5-13) and the main difference of using these two

GPU cards lies in the memory space that allows simulating more than 28 million

particles in one Tesla K20 while less than the half can be simulated with a GTX

680.

0

5

10

15

20

25

30

35

GTX 480 GTX 680 Tesla K20 GTX Titan

P
ar

ti
cl

e
s

(m
ill

io
n

s)

Figure 5-15. Maximum number of particles simulated with different GPU cards

using DualSPHysics code.

Chapter 6. Multi-GPU Acceleration

69

6. MULTI-GPU ACCELERATION

In previous chapters, it has already been explained that SPH method presents a

high computational cost and, hence, it is necessary to increase the velocity of the

method. It is imperative to carry out real simulations where the number of

particles is very high. The use of GPUs can provide large speedups compared to

classical solutions based on CPUs. However, the use of a single GPU card is not

sufficient for engineering applications that require several million particles that

predict the desired physical processes: execution times are high and the available

memory space is insufficient. Multiple spatial scales are present in most

phenomena involving free-surface waves. Scales that range from hundreds of

metres to centimetres are necessary to describe accurately the coastal

hydrodynamics. Thus, most of the relevant phenomena in coastal engineering

involve spatial scales over 4–5 orders of magnitude. For large simulations it is

therefore essential to take advantage of the performance of multiple GPUs.

This section presents a novel SPH implementation that utilizes MPI and CUDA

to combine the power of different devices making possible the execution of SPH

on heterogeneous clusters (Figure 6-1). Specifically, the proposed

implementation enables communications and coordination among multiple

CPUs, which can also host GPUs, making possible multi-GPU executions.

A scheme for multi-GPU SPH simulations was presented by [Valdez-Balderas et

al., 2012]. In that work, a spatial decomposition technique was described for

dividing a physical system into fixed sub-domains, and then assigning a different

GPU of a multi-GPU system to compute the dynamics of particles in each of

those sub-domains. The Message Passing Interface (MPI) was used for

communication between devices, i.e. when particles migrate from one sub-

Chapter 6. Multi-GPU Acceleration

70

domain to another, and to compute the forces exerted by particles on one sub-

domain onto particles of a neighbouring sub-domain. The algorithm was only

tested up to 32 million particles on 8 GPUs at a fraction of the computational cost

of a conventional HPC cluster.

GPU
480 cores

GPU
480 cores

GPU
480 cores

OpenMP

CUDA

MPI

CPU
2 x 6 cores

CPU
2 x 6 cores

CPU
2 x 6 cores

Figure 6-1. Scheme of technologies and its scope of application.

In the work of [Fleissner and Eberhard, 2007], [Ferrari et al., 2009] and more

recently in [Maruzewski et al., 2010], MPI was also used to distribute the work

load of SPH on multiple devices, although these studies used only CPUs. As in

the case of [Valdez-Balderas et al., 2012], they applied a spatial decomposition

of the domain into subdomains and each one was assigned to a processor but

with a dynamic load balancing algorithm, which is not included in the scheme of

[Valdez-Balderas et al., 2012]. However, in both cases the efficiency drops

quickly by increasing the number of execution devices. A multi-GPU

implementation of the SPH method was also presented in [Rustico et al., 2014].

In that work an asynchronous API (offered by CUDA) was used instead of MPI

to execute the model in several GPUs hosted in one machine. Apart from the

work of [Valdez-Balderas et al., 2012] little research has been published using

multi-GPU schemes for SPH, but other types of particle-based simulations have

already been the target of parallelization on multi-GPU systems. The field of

classical molecular dynamics (MD) has perhaps seen the most extensive use of

this technology, given the widespread use of this technique in the fields of

physics, material science, and biology. For example, a series of publications

focusing on the multi-GPU implementation of the code LAMMPS has been

Chapter 6. Multi-GPU Acceleration

71

written recently. Those include the work of [Brown et al., 2011] describing the

implementation of a hybrid GPU-CPU code for MD systems of short-ranged

interactions; [Trott et al., 2010] who presented more general capabilities added to

LAMMPS to simulate a wide variety of materials; and the efforts of [Agarwal et

al., 2012] on porting, optimizing, and tuning LAMMPS for biological

simulations. Other significant works on MD on multi-GPU heterogeneous

systems are [Qiang et al., 2012]. Although SPH and classical MD are both

particle-based simulation techniques with strong similarities in their algorithms

and data structures, they are intended for simulations of different types of

systems. In MD the particles represent atoms, molecules, or coarse-grained

model modelling of a material system, a continuum is discretized in SPH, and

particles represent interpolation nodes. Consequently, interactions, boundaries

and initial conditions are different. SPH in the form presented here is intended to

simulate free-surface hydrodynamic flows, which inherently present abrupt

variations of the density at the fluid surfaces, which, in turn, move rapidly during

a simulation. MD, on the other hand, is typically tested on systems in which

comparatively smaller fluctuations of density both in space and time, while at the

same time tend to include a wider variety of particles and types of interactions.

Consequently, one can expect that aspects of the problem, like the dynamic

balancing of computing load among all available devices, be significantly

different in SPH and in MD.

6.1 MPI IMPLEMENTATION

The parallel programming architecture Compute Unified Device Architecture

(CUDA) developed by Nvidia is used to obtain an efficient and extensive use of

the capabilities of the GPU architecture. In addition, a second level of

parallelisation is applied by using MPI, where a set of directives enables

communication between devices and allows combining the resources of several

machines connected by a network. The execution power can therefore be

increased easily by adding new machines. However, the division of the work

load among different independent devices implies an extra computational cost.

This extra runtime comes from; (i) the execution of new processes dedicated to

manage the distribution of the work load, (ii) the time dedicated to data exchange

and, (iii) the time consumed during synchronisations. These were investigated

previously by [Valdez-Balderas et al., 2012].

Chapter 6. Multi-GPU Acceleration

72

The parallel implementation for SPH methods presented in this work use these

parallelisation techniques with one or several machines connected in a network.

This enables computations on heterogeneous clusters taking advantage of all

available processing units. This is important since clusters can then be extended

with new GPUs of different specifications. In the next section, we introduce a

new implementation of this parallelism to obtain greater efficiencies from the

additional hardware.

This section describes in more detail the proposed MPI implementation that will

give rise to some interesting improvements but also to drawbacks (these will be

assessed in Section 6.2.5).

The physical domain of the simulation is divided into subdomains among the

different MPI processes. In this way, each process only needs to assign resources

to manage a subset of the total amount of particles for each subdomain. Thus, the

size of the simulation scales with the number of machines.

The two main sources of efficiency loss when the number of MPI processes is

increased include data exchange between the devices managed by the processes

and synchronisation. In the previous MPI implementation [Valdez-Balderas et

al., 2012], it was observed that the time dedicated to communication constitutes a

high percentage of the total execution time and that this percentage increases

significantly with the number of processes. One option to reduce this time is to

subdivide the calculation of forces on each subdomain so that communications

and computation can overlap. When considering synchronisation of processes

across devices, the SPH algorithm benefits from using a variable time step

computed following Eq. 2.24. The new value is obtained from variables (force

and viscous terms) that are known only after computing all particle interactions,

that is, when all MPI processes have finished the force computation step. This

synchronisation requires all processes to wait for the slowest process. Since the

number of steps to complete a simulation is large, typically on the order of 10
4
-

10
6
, this implies a non-negligible loss of efficiency that also increases with the

number of processes. To address this problem, the computational load or demand

must be evenly divided among all processes, minimising the difference between

the computation time needed for the fastest and the slowest process.

Chapter 6. Multi-GPU Acceleration

73

6.1.1 Subdivision of the domain

As mentioned above, the domain is divided into subdomains or blocks of

particles that are assigned to the different MPI processes (Figure 6-2). This

division can be performed in any direction (X, Y or Z) adapting to the nature of

the simulation case. In this way, each subdomain has two neighbouring

subdomains, one on either side, except those subdomains at the perimeter of the

simulation box, which have only one neighbour. Each MPI process needs to

obtain, at every time step, the data of neighbouring particles from the

surrounding processes within the interaction distance (2h here). Therefore, to

calculate the forces exerted on the particles within its assigned subdomain, each

process needs to know the data of particles from the neighbouring subdomains

that are located within the interaction distance. We call this the halo of the

process (or subdomain) existing on the edge of the neighbouring process (or

subdomain).

Figure 6-2. Domain subdivision in four processes.

Figure 6-3 shows the division of a domain into three subdomains (0, 1 and 2).

Thus, grey particles belong to subdomain 1 but some of them, those that are in

the left edge and at a distance less than 2h from domain 0, constitute the halo of

subdomain 0 while the grey particles in the right edge constitute the halo of

subdomain 2.

Unlike the scheme presented in [Valdez-Balderas et al., 2012], the data of halo

particles of a given subdomain are not stored in the same data structure that holds

the subdomain particles. Instead, in order to determine the halo of a given

subdomain, information from a previous stage in the algorithm is used. That is,

during the neighbour list stage, particles are sorted in cells of size 2h

[Domínguez et al., 2013a] and the order can be XYZ, XZY or YZX according to

the division axis Z, Y or X. As a consequence of this cell sorting, particles are

Chapter 6. Multi-GPU Acceleration

74

also sorted within slices 2h wide within each subdomain. The subdomain

assigned to each process is chosen to have a minimum width of 6h to ensure a

minimum size of 2h for the two edges of that domain (2h from left edge + 2h

inside the domain + 2h from right edge).

Figure 6-3. Example of subdivision of a domain (halos and edges).

This approach to divide the domain among the MPI processes where particles are

reordered according to the direction of the domain subdivision gives rise to

interesting advantages that increase performance:

a) If particles of a subdomain are not merged with particles of the halo, no time

is wasted in reordering all particles when receiving data from the halo before

a force computation, and no time is wasted in separating them after the force

computation. The memory usage is also reduced since only the basic

properties of halo particles need to be stored (position, velocity and density).

b) Each process can adjust the size of its subdomain with the limits of the fluid

particles inside. With the number of cells minimised for each subdomain, the

total number of cells over the entire is also minimised leading to a reduction

of the execution time and memory requirements.

c) Particle data of the subdomains is stored in slices. Data existing in the edges

can be sent to the neighbouring processes much faster since all data is

grouped in consecutive memory positions.

d) This reordering system also enables automatic identification of particles

contained in a subdomain needing to interact with the halo. Thus, task

Chapter 6. Multi-GPU Acceleration

75

overlapping is possible by computing particle interactions of particles not on

an edge, while simultaneously performing the reception of the halo (needed

only by edge particles), thereby inherently saving the communication time.

For example, the grey particles in Figure 6-3 that belong to the left edge of

the subdomain 1 also form the halo of subdomain 0 and force interactions

between red particles not on the edge of subdomain 0 can be computed while

they wait for the halo.

e) Symmetry of pairwise interactions is not necessary for the particles of the

halo since halo and edge particles only interact once in each process. This is

relevant to the GPU implementation since symmetry is not applied for the

pair-wise computations and does not represent any loss of performance in

comparison to single-GPU version.

6.1.2 Communication among processes

Reducing time dedicated for exchanging data among MPI processes is essential

to increase the number of processes without drastically decreasing efficiency.

One method to achieve this is by overlapping the communication with the

computation using asynchronous communications. Hence asynchronous send

operations and synchronous receptions are used in the present algorithm. In this

way, one process can send information to another while carrying out other tasks

without waiting for the end of the transfer. This is an improvement over an

algorithm that uses synchronous operations, in which an MPI process cannot

continue execution of tasks until the operation is complete, implying a wait to

receive data from another process or processes, thereby rendering computational

resources idle, and consequently causing loss of efficiency.

Figure 6-4 shows the data exchanges that take place at each time step when using

MPI. Three different processes are considered in this example. There are two

important communications; the first one occurs during the neighbour list creation

(solid arrows in Figure 6-4) and the second one in the force computation (dashed

arrows in Figure 6-4). The dark arrows represent the submissions from process N

to process N+1 and the light ones from process N to process N-1. Double-headed

arrows show the synchronisation point after the force computation stage. Note

that all the tasks corresponding to interactions among particles correspond to the

boxes with grey background in the figure.

Chapter 6. Multi-GPU Acceleration

76

Figure 6-4. Scheme of the communications among 3 MPI processes.

At the beginning of each time step, during the neighbour list creation, each

process looks for the particles that move from one subdomain to another and

these displaced particles are sent to the corresponding process. This search is

only performed checking the particles of the edges (2h wide) of the domains

since a particle cannot travel further than 2h during one time step. While data of

displaced particles are sent (solid arrows in Figure 6-4), the neighbour list of the

particles in the interior of the domain (particles not in an edge) is processed.

Finally, the new particles that entered the domain are received for each process

and all particles are sorted. At this stage, the computation time that is overlapped

with the transfer of particles is reduced, but this is not a problem because the

number of particles that change from one domain to another at each step of the

simulation is typically much smaller than the number of particles in a given sub-

domain. This occurs regardless of the flow direction and flow speed, since the

duration of the step is adjusted accordingly.

Chapter 6. Multi-GPU Acceleration

77

During the force computation, each process sends its edges to the surrounding

processes (dashed arrows in Figure 6-4). While edges are being sent and the halo

is received, computation of the force on the interior particles is performed. Once

this is finished, the process waits for the reception of the first halo and computes

forces of one edge with this halo. After that, the process waits to receive the

second halo and computes the forces of the other edge. Thus the most expensive

halo-edge data transfers are overlapped by calculating the forces between

particles (also very time consuming). All particle data are allocated in the GPU

memory, so data transfer is also needed between CPU and GPU memories.

However, it should be noted that the cost is negligible since the volume of

information is low and one of the advantages of the method proposed here is that

the data to be transferred are stored in contiguous memory locations, which

accelerates the process.

6.1.3 Dynamic load balancing

Due to the Lagrangian nature of SPH, particles move through space during the

simulation so the number of particles must be redistributed after some time steps

to maintain a balanced work load among the processes and minimise the

synchronisation time. Most of the total execution time is spent on force

computation, and this time depends mainly on the number of fluid particles. For

an equal load per processor, the domain must be divided into subdomains with

the same number of fluid particles (including particles of the halos) or with the

number of particles appropriate to the computing power of the device assigned to

it.

Two different dynamic load balancing algorithms are used. The first one assigns

the same number of particles to each computing device, and is suitable when the

simulation is executed on machines that present the same performance. The

second load balancing algorithm is used when hardware of different

specifications and features are combined, such as different models of GPU. This

second approach takes into account the execution time on each device. In

particular, a weighted average of the computing time per integration step over

several steps (on the order of 30) is used, with a higher weight to the most recent

steps. An average over many time steps is chosen because a single time step

presents large fluctuations. This average time is used to distribute the number of

particles so that the fastest devices can compute subdomains with more particles

than the slowest devices.

Chapter 6. Multi-GPU Acceleration

78

The example depicted in Figure 6-5 can help to explain the second approach that

takes into account the execution time on each device to balance the work load

between GPUs. Thus, in the example, the first row in Figure 6-5 shows the

distribution of the slices between two GPUs at a given step where the average

time of the force computation during the last 30 steps was 9 ms in the first GPU

and 6 ms in the second one. Therefore, a new distribution of the slices between

GPUs is desired where the maximum computation time must be minimal. The

second row shows the actual time dedicated to force computation for each device

since this time is the summation of the times required to compute forces of

particles within the slices plus the particles of the halo, i.e. 9 ms + 1 ms = 10 ms

for the first GPU and 6 ms + 1 ms = 7 ms for the second one. That is, the

maximum computation time in this case is 10 ms and it is therefore desirable to

apply a new balancing if the current maximum time can be reduced in a given

percentage. In the third row of the figure, it can be seen how a redistribution of

the slices between the two GPUs is performed where the second GPU (GPU1)

will compute particles within one extra slice originating from GPU0. So that the

maximum time has been reduced from 10 ms to 9 ms leading to an improvement

of a 10% can be achieved with this example distribution.

Figure 6-5. Example of the dynamic balancing scheme between 2 GPUs.

Chapter 6. Multi-GPU Acceleration

79

This second type of dynamic load balancing enables the adaptation of the code to

the features of a heterogeneous cluster achieving a better performance. Thus

although the balance is checked every few steps, it is only applied when it

implies an improvement in the performance, and therefore its cost is minimal. In

fact, the runtime consumed by this checking is usually higher than the

computational time dedicated to balance since this is not carried out very often.

6.2 RESULTS

6.2.1 Testcases and hardware

Two testcases are used to analyse the performance of the new MPI-CUDA

implementation. The first one is the tescase already used in Section 3.2. Figure

6-6 shows a sketch and several instants of the simulation of the testcase involving

six million particles for a physical time of 1.5 seconds.

Figure 6-6. Testcase1: Dam break flow impacting on a structure.

The second testcase is also a dam break similar to the previous one, but the main

differences are that there is no obstacle in the middle of the numerical tank and

the width of the tank can be modified according to the number of particles to be

simulated. Note that modifying the width, the number of particles can vary

keeping the same number of steps to complete the simulation and the same

number of neighbouring particles of each particle. Thus, this testcase, shown in

Figure 6-7, is used to analyse the performance for different numbers of particles

(from 1 to 1,024 million) to simulate 0.6 seconds of physical time.

Chapter 6. Multi-GPU Acceleration

80

Figure 6-7. Testcase2: Dam break flow.

The simulations were carried out in four different systems at the University of

Vigo (Spain), the University of Manchester (United Kingdom) and the Barcelona

Supercomputing Center BSC-CNS (Spain). The specifications of each of those

systems are summarised in Table 6-1. Two systems that belong to the University

of Vigo (system#1a and system#1b) which have only one node were used to

evaluate the different approaches of the dynamic load balancing (according to the

number of particles and according to the time required for each machine). The

system #2 (The University of Manchester) and system #3 (BSC-CNS) are built

with several nodes (8 and 64 respectively) and they were used to analyse the

performance and scalability (strong and weak scaling). The efficiency achieved

using 8 nodes (16 GPUs) will be also confirmed analysing the efficiency with 64

nodes (128 GPUs). All the results presented in this work were obtained using

CUDA 4.0, single precision and Error-correcting code memory (ECC) disabled.

Table 6-1. Features of the different systems used.

S
y

st
em

 #
1

S

o
ft

w
a
re

 - CentOS 5.5
- MPICH2 1.2.1

- CUDA 4.0

- gcc 4.1.2

H
a

rd
w

a
re

System #1a: 1 homogenous node with:
- 2 x Intel Xeon E5620 (4 cores at 2.4 GHz with 16 GB RAM)

- 4 x GTX 480 Fermi (15 Multiprocessors, 480 cores at 1.40 GHz, 1.5 GB GDDR5, Compute capability 2.0)

System #1b: 1 heterogeneous node with:

- 2 x Intel Xeon E5620 (4 cores at 2.4 GHz with 16 GB RAM)

- 1 x GTX 680 Kepler (8 Multiprocessors, 1536 cores at 1.14 GHz, 2 GB GDDR5, Compute capability 3.0)

- 1 x GTX 480 Fermi (15 Multiprocessors, 480 cores at 1.40 GHz, 1.5 GB GDDR5, Compute capability 2.0)

- 1 x GTX 285 (30 Multiprocessors, 240 cores at 1.48 GHz, 1 GB GDDR5, Compute capability 1.3)

S
y

st
em

 #
2

S

o
ft

w
a
re

 - Red Hat Enterprise Linux Server 6.2

- Open MPI 1.5.4

- CUDA 4.0
- gcc 4.4.6

H
a

rd
w

a
re

 8 nodes connected via QDR Infiniband with:

- 2 x Intel Xeon L5640 (6 cores at 2.27 GHz with 24GB RAM)
- 2 x Tesla M2050 (14 Multiprocessors, 448 cores at 1.15 GHz, 3 GB GDDR5, Compute capability 2.0)

Chapter 6. Multi-GPU Acceleration

81

S
y

st
em

 #
3

S

o
ft

w
a
re

 - Red Hat Enterprise Linux Server 6.0

- BullxMPI 1.1.11
- CUDA 4.0

- Intel C++ Compiler XE 12.0

H
a

rd
w

a
re

 128 nodes connected via QDR Infiniband with:

- 2 x Intel Xeon E5649 (6 cores at 2.53 GHz with 24GB RAM)
- 2 x Tesla M2090 (16 Multiprocessors, 512 cores at 1.30 GHz, 6 GB GDDR5, Compute capability 2.0)

First, the difference of the different load balancing schemes are compared for

homogeneous and heterogeneous clusters

6.2.2 Applying dynamic load balancing in a homogeneous cluster

This section presents the results when using the dynamic load balancing

according to the number of particles. Testcase1 (Figure 6-6) is simulated using

system #1a (3 x GTX 480) so the domain is divided in 3 processes (3 GPUs)

along the x-direction. Different instants of the simulations are shown in Figure

6-8. The limits of the three different subdomains are depicted using coloured

boxes. The size of the different subdomains changes with time to keep the work

load evenly distributed among processes (similar number of particles per

process).

Figure 6-8. Different instants of the simulation of testcase1 when using the

dynamic load balancing according to the number of particles.

The left panel of Figure 6-9 shows the distribution of the fluid particles among

the 3 processes showing how the balancing is achieved since about the 33.33% of

the particles are always computed for each process during the simulation. Since

system #1a is homogeneous with the same three GPUs, the time dedicated to the

force computation step for each GPU is also balanced as seen in the right panel

of Figure 6-9. A total amount of 42,624 steps were performed to complete this

simulation, the balancing was checked every 50 steps, so 852 times (0.04% of the

total simulation time) but it was performed only 94 times (0.03% of the total

simulation time).

Chapter 6. Multi-GPU Acceleration

82

Figure 6-9. Distribution of the fluid particles and execution times of force

computation among the 3 GPUs of system #1a using load balancing according to

the number of particles.

6.2.3 Applying dynamic load balancing in a heterogeneous cluster

The dynamic load balancing scheme was also applied in the same testcase1 but

using system #1b, which is a heterogeneous system since the 3 GPUs present

different specifications and performances. From Figure 6-10, it can be concluded

that the approach of the balancing according to the number of particles is not

suitable in this case since despite the even distribution of the number of particles

among the processes, the computation times are not balanced at all. The GPU

card GTX 285 is much slower than the other two cards and the time required to

compute the same number of particles is considerably higher than needed for the

other two cards.

Figure 6-10. Distribution of the fluid particles and execution times of force

computation among the 3 different GPUs of system #1b using load balancing

according to the number of particles.

The second proposed option consists of the algorithm described in Section 6.1.3

based on the computation time required to compute the forces. In this way, a

number of particles is assigned to each GPU card according to its performance to

get a correct balance of the work load among the different GPUs. Figure 6-11

Chapter 6. Multi-GPU Acceleration

83

shows the different distribution of particles assigned to the three GPUs of the

system #1b and the execution times to compute the particle interactions, which

are very similar. Thus, the slowest card no longer represents a bottleneck.

Figure 6-11. Distribution of the fluid particles and execution times of force

computation among the 3 different GPUs of system #1b using load balancing

according to the computation time.

The execution of testcase1 on one GTX 680 card takes 5.8 hours; combining this

GPU with GTX 285 and GTX 480, whose performance characteristics are lower,

the run takes 4.6 hours applying the dynamic load balancing according to the

number of fluid particles, and only 2.8 hours applying the balancing based on the

computation time of each device. Figure 6-12 summarises the execution times of

the 3 GPUs of the system #1b when used individually and together.

0 5 10 15

3 GPUs (bal. time)

3 GPUs (bal. particles)

GTX 680

GTX 480

GTX 285

Figure 6-12. Execution times of the 3 GPUs of the system #1b used individually

and together applying dynamic load balancing.

6.2.4 Efficiency and scalability

One of the main objectives of the proposed multi-GPU implementation using

MPI is the possibility of simulating large systems (10
7
-10

9
particles) at

Chapter 6. Multi-GPU Acceleration

84

reasonable computational times, which is imperative to use the model in real-life

applications that require high resolutions. An efficient use of the resources to

minimise the computational and economical cost will make these large scale

simulations viable. Therefore, a study of the efficiency and scalability of the

multi-GPU implementation is shown in this section.

The performance is measured as the number of steps computed per second using

two approaches; (i) strong scaling S(N) that determines how the solution time T

varies with the number of processors N for a fixed total problem size; and (ii)

weak scaling s(N) that defines how the solution time varies with the number of

processors for a fixed problem size per processor. Table 6-2 shows the formulae

used to measure the speedups and efficiency using these two measures.

Table 6-2. Formulae to measure efficiency and scalability.

Strong scaling

Weak scaling

Efficiency

Testcase2 (Figure 6-7) is used here to evaluate the performance using the

different number of GPUs of the systems #1a, #2 and #3. The achieved speedups

are shown in Figure 6-13 analysing the strong scaling (left) and the weak scaling

(right) for the different hardware systems.

For system #1a with only 4 Fermi GTX 480, the speedup is shown for 2, 3 and 4

GPUs simulating the testcase2 with sizes ranging from 1M to 8M particles for

strong scaling and from 1M to 8M particles per GPU to quantify the weak

scaling. As expected, the efficiency decreases with the number of GPUs.

Thereby, using 4 GPUs and analysing the strong scaling, an efficiency of only

66% is achieved simulating 1M particles but 94% is achieved when simulating

8M because the proportion of time spent on communication is far smaller.

Examining the weak scaling, an efficiency of 85.6% is obtained simulating 1M

particles per GPU, but this value increases to 99.9% computing 8M per GPU.

Chapter 6. Multi-GPU Acceleration

85

Figure 6-13. Speedup for different number of GPUs using strong and weak

scaling with the hardware systems #1a, #2 and #3.

In the case of the system #2 with 16 Tesla M2050, the efficiency analysing the

strong scaling is significantly reduced when the number of GPUs increases for a

small number of particles. For example, an efficiency of 50% is obtained

simulating 1M particles with 8 GPUs, but this amount cannot be simulated with

more than 8 GPUs. As mentioned before, a minimum width of 6h is assigned to

the subdomain of each process, so the maximum number of GPUs is restricted.

The simulation of 12M particles using the 16 GPUs of the system #2 provides an

efficiency of 81%. The results for the weak scaling are 96.8% simulating 4M

particles per GPU and higher than 99.9% when 8M per GPU are performed.

Finally, for the system #3 using a maximum of 128 Tesla M2090, an efficiency

of 97.4% is achieved simulating 4M per GPU and higher than 99.9% with 8M

per GPU. Note that the highest execution simulated with this system simulates

1,024M (128 GPUs x 8M) to study the weak scaling.

Values of efficiency higher than 99.9% are obtained since the testcase2 does not

scale perfectly. In spite of the efforts to choose a case where the execution time

Chapter 6. Multi-GPU Acceleration

86

per number of particles was the same for different sizes, this was not possible due

to different factors such as the ratio between fluid and boundary particles. Thus,

the execution time of one step per million particles is slightly higher with the

case of 8M than in the cases with more than 32M. Therefore, when using the case

of 8M as reference to compute the results of weak scaling in comparison to

bigger cases, the efficiency is slightly higher than the expected. Figure 6-14

shows the percentage of time dedicated to tasks exclusive of the multi-GPU

simulations, which represent the overcost compared to single-GPU. It can be

observed how these tasks take less than 1.9% when simulating 8M/GPU with 128

GPUs and increases to 3% and 9% with 4M/GPU and 1M/GPU respectively.

Figure 6-14. Percentage of time dedicated to tasks exclusive of the multi-GPU

executions using the system #3.

6.2.5 Bottlenecks: Loss of efficiency

This section discusses the origin of the loss of efficiency when the number of

particles per GPU is low. The MPI implementation requires tasks that represent

an extra overhead thereby reducing efficiency. Synchronisation tasks and

communication between processes are unavoidable and their cost increases with

the number of processes. The only way to minimise their impact is to increase the

number of particles per GPU. In the previous section, it was shown how

efficiency about 99.9% is achieved by simulating 8M particles per GPU, but the

efficiency drops significantly when simulating 1M per GPU or less. The main

causes of this loss of efficiency can be analysed using Figure 6-14 which shows

the percentage of computational time dedicated to the synchronisation tasks

(SynchroDt), reception and transmission of the halos (RecvHalo and SendHalo)

and reception and submission of the particles that have moved among domains

(RecvDisplaced and SendDisplaced). Results of the simulations of 16M in 8, 12

Chapter 6. Multi-GPU Acceleration

87

and 16 GPUs are shown in the left panel, while results of the simulation of 8M,

16M and 24M in 16 GPUs are shown in the right panel. These plots reflect how

the synchronisation is the first cause of loss of efficiency and the second one is

the data exchange of the halos. Hence, this loss of efficiency increases with the

number of GPUs (left panel of Figure 6-15) but decreases with the number of

particles (right panel of Figure 6-15), so the loss of efficiency increases by

reducing the number of particles per GPU.

Figure 6-15. Percentage of the computational time dedicated to specific MPI tasks

simulating 16M particles using different number of Tesla M2050 GPUs (left) and

simulating different number of particles with 16 Tesla M2050 (right).

The time devoted to communications between the devices is significant since the

overlapping between computation and data exchange between the MPI processes

is not perfect. This data exchange implies four steps: (i) transfer from GPU to

CPU, (ii) data submission through MPI, (iii) data reception and, (iv) transfer

from CPU to GPU. Therefore, new improvements have been applied to reduce

these times of communication. Transfers CPU↔GPU can be reduced to the half

using pinned memory. Thus, asynchronous transfers can be used to overlap these

times with other tasks of computation. The use of an intermediate buffer,

employed in the submission and reception with MPI, can be removed so time of

communication and required CPU memory are reduced. The use of streams of

CUDA and the asynchronous memory transfers improve the overlap between

computation and communication. Using these improvements, the force

computation of the particles of each subdomain (very expensive in time) overlaps

with the entire process of sending and receiving the two halos. Before this

improvement, the overlap with the computation of these forces only occurred

with the MPI reception of the first halo, while receiving the second halo

overlapped with the force computation of particles of the first halo (no expensive

in time).

Figure 6-16 shows the percentage of total time dedicated only to tasks exclusive

of the multi-GPU simulations such as synchronisation to compute new time step,

Chapter 6. Multi-GPU Acceleration

88

data communication and balancing operations, which represent the overcost

comparing to single-GPU. It can be observed how the latest improvements have

reduced this percentage to the half for different number of GPUs and different

number of particles.

0%

3%

6%

9%

12%

0 32 64 96 128
GPUs

1M/gpu (new) 1M/gpu (old)
4M/gpu (new) 4M/gpu (old)
8M/gpu (new) 8M/gpu (old)

Figure 6-16. Percentage of time dedicated to tasks exclusive of the multi-GPU

executions including the latest improvements (using the system #2).

6.2.6 Memory requirements

At the beginning, it was mentioned that the use of GPUs is an attractive

alternative to accelerate the SPH simulations, but the limited GPU memory can

be a serious drawback for very large cases. Therefore, one of the objectives of

this multi-GPU implementation is to eliminate this limitation, so it is necessary to

ensure an efficient use of memory for all the GPUs used in the simulation.

In the DualSPHysics version without MPI, all the required memory is allocated

at the beginning of the execution since the maximum number of cells and

particles is known a priori. However, in the multi-GPU version, this information

is unknown for each GPU and the number of particles and cells allocated in each

GPU change during the simulation. To solve this problem, the amount of

memory needed for the particles and cells and an extra 10% is allocated initially,

and only when this memory is no longer enough, a new allocation is performed.

The maximum number of particles that can be simulated with this multi-GPU

implementation for the testcase2 is about 7.14 million particles per GB of

memory using single precision. As it can be observed in Figure 6-17, a maximum

of 40M can be simulated with the 4 GPUs of the system #1a, 300M with the 16

GPUs of the system #2 and more than 1,370M with 32 GPUs of system #3.

Chapter 6. Multi-GPU Acceleration

89

Figure 6-17. Maximum number of particles that can be simulated for the testcase2

with the systems #1a, #2 and #3.

6.3 APPLICABILITY TO REALISTIC PROBLEMS

As mentioned above, one of the main objectives of the multi-GPU code

DualSPHysics is simulating real-life applications that require high resolution

over a large domain. Thus, once the different algorithms have been described and

their efficiency and main drawbacks have been discussed, the code is now

applied to perform a huge simulation with more than 10
9
 particles. This

application consists of the interaction of a large wave with an oil rig using

realistic dimensions and simulating 12 seconds of physical time. The fluid

domain is 170m x 114m x 68m and the dimensions of the platform can be seen in

Figure 6-18. The initial inter-particle distance is 6 cm which implies a simulation

of 1,015,896,172 particles (1,004,375,142 fluid particles). This real application

has been chosen since a huge number of particles is required to represent with

very high resolution the smallest spatial scales in some objects of the oil platform

(on the order of centimeters) and also need to describe properly the propagation

of large waves (with wavelengths on the order of one hundred meters).

The simulation was carried out using 64 GPUs Tesla M2090 of the hardware

system #3. Different instants of the simulation can see in Figure 6-19. A total

number of 237,065 steps have been carried out in 79.1 hours. Data were saved

every 0.04 seconds of physical time, which represents more than 8980 GB of

output data.

Chapter 6. Multi-GPU Acceleration

90

Figure 6-18. Realistic dimensions of the oil rig simulated in the application.

Figure 6-19. Different instants (2.2s, 3.2s and 10s) of the simulation of a large

wave interacting with an oil rig using more than 109 particles.

In summary, the efficiency and performance of the new MPI-CUDA

implementation of DualSPHysics were presented and analysed in this chapter.

The main contributions can be summarised as follows:

Chapter 6. Multi-GPU Acceleration

91

 A dynamic load balancing is implemented to distribute work load across the

multiple processes to achieve optimal resource utilization and minimise

response time.

 Overlapping between data communications and computations tasks is

introduced to balance latency and to reduce computational times.

 The proposed multi-GPU code can be executed on different GPUs with

identical specifications or old and new cards can be exploited together. Thus,

the heterogeneous version allows a more efficient use of different machines

with different GPU cards.

 The scalability is analysed in terms of strong and weak scaling, indicating

how the runtime varies with the number of processes for a fixed total problem

size and how varies with the number of processes for a fixed problem size per

processor.

 The simulation of billions particles is possible in medium-size clusters of

GPUs.

Chapter 7. Double precision

93

7. DOUBLE PRECISION

The parallel computing power of Graphics Processing Units (GPUs) has led to an

important increase in the size of the simulations but problems of precision can

appear when simulating large domains with high resolution.

The goal of this section is to address the problem of the lack of precision and to

develop the best solutions increasing the precision but keeping the current

efficiency of the GPU codes. Single precision has been used in most of the cases

presented in this work, showing to be sufficiently accurate. However, single

precision is not enough for some special cases. The GPU implementation of

double precision allows simulating real problems where single precision is not

enough. This is especially well suited for problems where very different spatial

scales are involved.

7.1 THE PROBLEM OF PRECISION

The problems of precision mainly appear when the domain is huge in comparison

to the distance of interaction between particles. In Figure 7-1, a testbed is

presented where the length of the domain (L=18m) is much higher than the initial

depth of the fluid (D=0.18m) and huge comparing with inter-particle distance

(dp=0.01m).The difference between the maximum and minimum spatial scale is

bigger than three orders of magnitude in this case.

Figure 7-1. Testbed to study problems of precision.

Chapter 7. Double precision

94

The origin of the problem comes from the use of single precision for the

variables to compute and store the position of the particles. The format of real

data in single precision has a size of 32 bits; 1 bit for the sign, 8 bits for the

exponent and the remaining 23 bits for the mantissa. This allows representing

values from 1.175494351e-38 a 3.402823466e38. Thus, the mantissa has a

precision of 23 bits which in decimal representation means 7 digits. A more

detailed description of floating-point encodings and functionality can be found in

[IEEE 754 Standard]. Therefore, real numbers are stored in a finite representation

and their value has to be rounded. This rounding error is a characteristic feature

of floating-point computation. This is usually not a problem, but a fatal error can

appear when two numbers of very different magnitud are operated. More

information about rounding error can be found in [Goldberg 1991] and related to

GPU computation in [Whitehead and Fit-Florea 2011].

The use of single precision for the variables of the position of the particles

presents problems in different computations:

a) When two particles (a and b) are close to zero (0.xxxxxx), a precision of 7

decimal places is achieved when computing the distance between particles

(rab=ra-rb) to obtain the value of the kernel (Wab). But when the same two

particles are located in the position 1000.xxx only a precision of 3 decimal

places is achieved when computing rab.

b) The same problem appears when updating the new position of the particles

at the next time step ra(t+dt) adding a very small value to 0.xxxxxx (more

precision) or 1000.xxx (lack of precision).

The effect of lack of precision in the position of the particles is shown in Figure

7-2 considering the numerical tank addressed in Figure 7-1. The simulation

consists of a 2D numerical tank with a piston-like wavemaker in the left edge.

The physical time is 25 seconds and the piston starts to move at 4.5s.

Difference among velocity values of the particles according to their position can

be observed in the first frame (time=2.0s). This difference is marked at x>8m and

x>16m since the internal representation of values is binary and therefore the

precision jumps occur in powers of 2. In time, that inaccuracy (registered in

x>2
4
) affects the rest of the domain (x>2

3
 & x>2

2
). Thus, at time=5.0s, particles

with x>16m are being excluded from the simulation (black points) since their

values of density are assumed as not valid. At time=10s, the excluded particles

Chapter 7. Double precision

95

appear starting from 8m and finally, at time=25s, the 72% of the fluid particles

have been removed from the simulation.

Figure 7-2. Different instants of the simulation of the testbed.

As mentioned above, the internal representation of values is binary and therefore

the precision jumps occur in powers of 2. The distance between two

neighbouring particles was computed using double and single precision and the

difference between these approaches is represented for the different positions of

the two interacting particles in Figure 7-3. For each position, this calculation is

carried out by changing the distance between particles from 0 to 2h (kernel

domain). The blue line represents the maximum error and red line is the mean

error. It can be observed how this difference is higher when the positions of both

particles are farther from the origin.

0.0%

0.5%

1.0%

1.5%

2.0%

0 256 512 768 1024 1280

position of two particles interacting

max (interval 0-2h)

mean (interval 0-2h)

Figure 7-3. Relative error in the distance between two particles interacting using

double and single precision for different particle positions.

Chapter 7. Double precision

96

7.2 SOLUTIONS USING DOUBLE PRECISION

The trivial solution to increase the accuracy is to increase the number of digits

used to store the position of the particles, which can reduce significantly the

performance. Different approaches have been considered.

7.2.1 Solution FullDouble

The solution to obtain correct results is to use double precision for all variables

of the system and perform all computations (creating the neighbour list,

computing forces and updating variables) in double precision. The format of data

in double precision has a size of 64 bits (8 bytes), so 15 decimal digits. However

this approach presents several limitations. The first one is that the executions

would be over 7 times slower than using single precision. In terms of GPU

implementation, the loss of performance is due to the increase in the number of

registers in the CUDA kernel of particle interaction which implies a reduction in

the occupancy of the GPU, so that, a reduction in the GPU performance. On the

other hand, the capacity of calculation in single and double precision of the

GPUs is not balanced. Depending on the model of the GPU, the computation

capability in double precision can be several times slower. Another drawback is

the loss of efficiency in multi-GPU since there will be more data to be exchanged

and overlapping computation-communication is never perfect.

7.2.2 Solution PosDouble

The first feasible and affordable option proposed in this work is implementing

only the variable position ra in double precision since the lack of precision in the

simulations seems to come from these variable. Therefore, the size of position

(pos.x, pos.y, pos.z) changes from 3x4 bytes to 3x8 bytes. The creation of the

neighbour list is performed using the position of the particle in double precision,

force computation where distance between particles needs to be computed is also

performed in double precision and the variables of position are updated using

double precision, too. This approach is still slow (but not as much as FullDouble)

and implies a higher memory usage on GPU.

7.2.3 Solution PosCell

An alternative is maintaining single precision for position, but instead of storing

the real position of the particle ra, the relative position to the cell the particle

Chapter 7. Double precision

97

belongs to is stored. Thus, one advantage is that the size of the position changes

from 3x4 bytes to 4x4 bytes (relative pos.x, pos.y, pos.z + cell). This also implies

that the value of the position (pos.x, pos.y, pos.z) is no longer higher than the

interaction distance, independently on the dimension of the case to be simulated.

The use of double precision is not needed in the force computation with this

approach, which is remarkable since computing forces takes more than 90% of

the total time in the GPU executions (even higher in CPU executions as shown in

Figure 5-14). Updating position is still performed using double precision,

however this task takes a minimal percentage of the total execution time. The

disadvantage is the complexity of the code.

The benefits of using the PosCell approach are observed in Figure 7-4. It can be

noticed how the problems shown in Figure 7-2 are now solved. After 25 seconds

of simulation, only 0.3% of fluid particles were removed from the simulation. In

fact, this low percentage of particles is removed due to instabilities created by the

wavemaker and not due to precision issues.

Figure 7-4. Different instants of the previous simulation improving precision in

the position of the particles.

Figure 7-5 shows the error in the position of the particles (of the testbed) for

different distances from zero. The error is represented for the different

approaches; position in single precision (PosSimple), position in double precision

(PosDouble) and position in single precision plus the relative position to the cell

(PosCell). This error is computed as the difference between the value of the

position using each of the mentioned approaches and the value of the position

using FullDouble (full implementation in double precision). And the resulting

difference is expressed as percentage of the interaction distance. The error using

PosDouble and PosCell is constant (values in left axis of the figure) even

although the initial position of the computational domain has been shifted in

more than 8,000 meters from zero. The error achieved when using PosSimple

Chapter 7. Double precision

98

(values right axis) is several orders of magnitude higher and increases with the

distance to zero.

Figure 7-5. Relative error in the position of the particles for different distances to

zero and using different approaches.

7.2.4 Solution PosDoubleFast

It is basically a modification of PosDouble. The only difference lies in the force

computation stage where before computing the distance between particles rab=ra-

rb, the variables ra and rb which are stored in double precision in PosDouble are

converted here to single precision and the rest of computations during particle

interactions are performed in single precision. The approach presents the same

benefits solving the issue of precision as proven by PosDouble and PosCell

(Figure 7-4), problems will only appear for domains with lengths higher than 2

km using fine resolution (problems beyond scope with SPH). However this

approach will present important advantages in terms of performance since the

force computation stage is the most time consuming step in the SPH execution

and we can avoid the use of double precision during the computing forces with

this new implementation.

The main features of the different approaches implemented to solve the precision

issue are presented in Table 7-1.

Table 7-1. Double precision implementations

 PosDouble PosDoubleFast PosCell

Position

Variable

3 arrays in DOUBLE precision

(pos.x, pos.y, pos.z)

3 arrays in DOUBLE

precision

(pos.x, pos.y, pos.z)

4 arrays in SINGLE

precision

(relative pos.x, pos.y,

pos.z + cell)

Chapter 7. Double precision

99

 PosDouble PosDoubleFast PosCell

Neighbour list
Creating cells list

in DOUBLE precision

Creating cells list

in DOUBLE precision

Creating cells list

in SINGLE precision

Force

computation

Computing rab (to use Wab) with ra

and rb in DOUBLE precision

but stored in SINGLE precision

Computing rab (to use Wab)

with ra and rb

in SINGLE precision

Computing rab (to use

Wab) with ra and rb

in SINGLE precision

System update
Updating ra(t+dt)

in DOUBLE precision

Updating ra(t+dt)

in DOUBLE precision

Updating ra(t+dt)

in SINGLE precision

7.3 PERFORMANCE

The implementations PosDouble and PosCell solve the lack of precision but also

imply a high cost in the execution time. Here the loss of performance is analysed

and the computational runtime of both approaches are compared against the

single precision implementation. The 3D dam-break shown in Figure 6-7 is also

used here as testbed, where 4 million particles are simulated to perform 0.6

seconds of physical time. Figure 7-6 represents the loss of efficiency of

PosDouble and PosCell comparing to the single precision implementation for

different GPU models.

0% 10% 20% 30%

GTX 480

Tesla
M2090

Tesla K20

PosCell

PosDouble

Figure 7-6. Loss of efficiency compared with simple precision simulations using a

3D dam-break with 4M particles.

The loss of efficiency depends on the GPU model. Using PosDouble, a loss of

20% is registered with the Tesla K20 (30% with GTX 480) and using PosCell,

less than 8% in Tesla K20 (less than 15% in GTX 480).

The approach PosCell was discarded despite being much faster than PosDouble,

since the complexity of the code increases significantly. This is a key factor since

the code is developed to be latter released as open source for the whole scientific

community.

Chapter 7. Double precision

100

The latest option PosDoubleFast (using single precision in the force

computation) allows to obtain the same results without loss of performance. That

is the reason why this approach was not shown in Figure 7-6. In fact, there is no

loss of performance even for particles whose position is moved more than 1km

from the origin.

There is no loss of performance using PosDoubleFast due to different reasons:

a) Force computation represents the 92% (94%) of the execution time using

Tesla K20 (GTX 480). Therefore, using the variables of position in single

precision when computing forces, the impact on the total execution time is

very limited (compared with the original version in single precision),

although double precision is used in other parts of the code.

b) The rest of the SPH execution, where variables of position are used in

double precision, can also lead to a loss of performance. However, the task

of determining the cell where the particle belongs to during the creation the

neighbour list and updating the new value of position in the system update

stage are only the 0.7% (0.6%) and 1.1% (1.0%) of the total execution time

using Tesla K20 (GTX 480). Thus, there is no impact on runtime reduction

compared with single precision implementation.

c) The use of double precision implies an increase in the number of registers

that are used in CUDA kernels, which can give rise to a loss of occupancy of

the GPU, so that, the performance decreases. Nevertheless, this only occurs

for high number of registers. When using double precision in the position,

the number of registers increases in 5. This increase in the force computation

stage means using 53 registers instead of 48 with a loss of occupancy of

11%. However, there is no loss of occupancy in the system update stage,

where 26 registers are used instead of 21. Figure 7-7 shows the occupancy

using 256 threads according to the number of registers to better understand

this last point.

Figure 7-7. Percentage of occupancy according to the number of registers and

compute capability of GPU.

Chapter 7. Double precision

101

d) The use of double precision also implies an increase in the volume of data to

be read/written in memory. However, this increase of the volume of data

does not represent a loss of performance in the CUDA kernels used during

the neighbour list creation and system update since the memory accesses are

coalescent in those kernels and there is not divergence. In the case of CUDA

kernels for computing forces among particles, the increase of data to be

loaded in the memory gives rise to a significant loss of performance since

these kernels present problems of coalescence and divergence.

Chapter 8. Conclusions

103

8. CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSIONS

SPH is an ideal technique to simulate free surface flows, in particular violent

collisions between water and structures. Its range of application is very wide,

including sloshing and flooding event; design of coastal defenses, dams, devices

to generate renewable energies… Actually, the technique can be used for

engineering purposes in those problems involving the complex interaction

between water and structures. In general, all these problems involve large

domains that should be solved with fine resolution, which makes the model

expensive in terms of computational requirements. This is the reason why codes

should be optimized and accelerated.

The main goal of this work was to develop an optimized version of the open-

source code DualSPHysics, which can be used both on CPUs and GPUs.

DualSPHysics has been designed to be run on multi-core CPUs, which is a

relatively common resource, but also on GPUs. The GPU technology has

experienced a rapid development during the last few years and constitutes a fast

and cheap alternative to classical computation on CPUs. Nevertheless, a single

GPU is not enough to run large domains due to memory requirements. Thus, a

multi-GPU version of the code has also been developed. In addition, pre-

processing and post-processing tools have been developed to take advantage of

DualSPHysics capabilities.

The main findings of this research are summarised in the following subsections.

8.1.1 Neighbour List

SPH software frameworks (such as DualSPHysics) can be split into three main

steps; (i) generation of a neighbour list, (ii) computation of forces between

Chapter 8. Conclusions

104

particles by solving momentum and continuity equations and (iii) integrating in

time to update all the physical properties of the particles in the system. Running a

simulation therefore means executing these steps in an iterative manner. The step

devoted to compute forces consumes more than 90% of the execution time,

whereby it is the most important part to be accelerated. However, its

implementation and performance depends greatly on the previous step

(neighbour list generation) therefore a study about different neighbour list

approaches was carried out. The use of Cell-linked list and Verlet list with

several variations was compared, being the Cell-linked list chosen to be

implemented since it provides the best balance between performance and usage

of memory.

8.1.2 CPU Acceleration

Four optimizations are implemented for the CPU code in DualSPHysics. The

first one applies symmetry in particle interactions, the second one divides the

domain into smaller cells, the third one uses SSE instruction and the fourth one

uses OpenMP to implement multi-core executions. Three different approaches of

the multi-core implementation are presented. The most efficient version uses the

dynamic scheduler of OpenMP to achieve the load dynamic balancing and

applies symmetry to particle interaction. Thus, the most efficient OpenMP

implementation outperforms the single-core by 4.6 using the available 8 logical

cores provided by the CPU hardware used in this study.

8.1.3 GPU Acceleration

CUDA is used to exploit the huge parallel power of present-day Graphics

Processing Units for general purpose applications such as DualSPHysics.

However, an efficient and full use of the capabilities of the GPUs is not

straightforward.

Several optimizations are presented for the GPU implementations; maximization

of occupancy to hide memory latency, reduction of global memory accesses to

avoid non-coalesced memory accesses, simplification of the neighbour search,

optimization of the interaction kernel and division of the domain into smaller

cells to reduce code divergence. The optimized GPU version of the code

outperforms the GPU implementation without optimizations by a factor on the

order of 1.65 using a GTX 480 (Fermi architecture) and 2.15 using a Tesla 1060.

In general, the designing improvements included in the new Fermi GPUs make

Chapter 8. Conclusions

105

these cards less sensitive to the programming task. The GPU parallel computing

developed here can accelerate serial SPH codes with a speedup of 56.2x when

using the Fermi card. Finally, the speedup of the GPU over a multi-core CPU is

12.5x when using a multi-threaded approach.

In addition, an evaluation of performance using the latest GPUs is also included.

Thus, the new GPUs with Kepler architecture, GTX 680 and Tesla K20 achieved

a speedup of one hundred over single core CPU. This speedup rises to 148.8x

using a GPU GTX Titan.

8.1.4 Multi-GPU Acceleration

The multi-GPU approach includes CUDA and MPI programming languages to

combine the parallel performance of several GPUs in a host machine or in

multiple machines connected by a network.

Dynamic load balancing was implemented to distribute work load across the

multiple processes to achieve optimal resource utilization and minimise response

time. It enables the adaptation of the code to the features of homogeneous and

heterogeneous clusters achieving the best performance.

The multi-GPU implementation has shown a high efficiency using a significant

number of GPUs. Thus, using 128 GPUs of the Barcelona Supercomputing

Center, efficiencies of 85.9%, 97.4% and close to 100% have been achieved

simulating 1M/GPU, 4M/GPU and 8M/GPU respectively.

The possibility of combining the resources of several GPUs and the efficient use

of the memory enables simulations with a huge number of particles. For

example, 40M particles can be simulated with 4 GPUs GTX 480, more than

300M with 16 GPUs Tesla M2050 and more than 2000M with 64 GPUs Tesla

M2090.

To show the capabilities of the code, a realistic interaction of a large wave with

an oil rig using more than 10
9
 particles have been carried out. A total number of

237,065 steps have been carried out in 79.1 hours using 64 GPUs M2090.

Chapter 8. Conclusions

106

8.1.5 Issue of precision

Problems of precision in DualSPHysics can appear in simulations involving very

large domains at a very high resolution. It has been shown that the source of the

problem comes from the lack of precision to represent the position of the

particles. Several implementations have been proposed to solve the issue of

precision measuring the accuracy of the results and the loss of performance for

each approach. Finally, the best solution avoids problems of precision without

loss of performance and without increasing significantly the complexity of the

code.

8.2 FUTURE WORK

The aim of DualSPHysics is two-fold. Firstly the code is a user-friendly platform

designed to encourage other researchers to use the SPH technique to investigate a

large number of novel CFD problems. Secondly, the method can be used by

industry to simulate real problems that are beyond the scope of classical models.

New features are constantly being integrated into the DualSPHysis code or are

planned to be carried out in the near future. Some of them are mentioned here:

 Variable particle resolution [Vacondio et al., 2013b].

 Multiphase cases (gas-soil-water) [Fourtakas et al., 2013; Mokos et al.,

2014].

 New boundary conditions [Fourtakas et al., 2014].

 Coupling with the Discrete Element Method (DEM) [Canelas et al., 2014].

 Coupling with the SWASH Wave Propagation Model [Altomare et al.,

2014b].

 Coupling with IBER model (http://iberaula.es/modelo-iber/modelo).

Appendix A. DualSPHysics Domumentation

107

A. DUALSPHYSICS DOCUMENTATION

A.1 SOURCE FILES

A set of C++ and CUDA files need to be compiled to generate the DualSPHysics

binary. Here all the source files are listed, however each file contains more

detailed comments describing the SPH formulation and the algorithms. As

mentioned before, the same application can be run using either a CPU or GPU

implementation; therefore some files are common for the SPH solver while

others are specific to CPU or GPU executions. Table A-1 shows a general

overview of the different source files integrated in the project.

Table A-1. List of source files of DualSPHysics code.

No SPH SPH on CPU & GPU
Functions (.h .cpp)

JException (.h .cpp)

JFloatingData (.h .cpp)

JLog2 (.h .cpp)

JObject (.h .cpp)

JObjectGpu (.h .cpp)

JPartData (.h .cpp)

JPtxasInfo (.h .cpp)

JSpaceCtes (.h .cpp)

JSpaceEParms (.h .cpp)

JSpaceParts (.h .cpp)

JSpaceProperties (.h .cpp)

JRangeFilter (.h .cpp)

JTimer.h

JTimerCuda.h

JVarsAscii (.h .cpp)

TypesDef.h

JFormatFiles2.h
JFormatFiles2.lib / libjformatfiles2.a

JSphMotion.h
JSphMotion.lib / libjsphmotion.a

JXml.h
JXml.lib / libjxml.a

main.cpp

JCfgRun (.h .cpp)

JSph (.h .cpp)

JPartsLoad (.h .cpp)

JPartsOut (.h .cpp)

JSphDtFixed (.h .cpp)

JSphVarAcc (.h .cpp)

Types.h

SPH on CPU

JSphCpu (.h .cpp)

JSphCpuSingle (.h .cpp)

JSphTimersCpu.h

JCellDivCpu (.h .cpp)

JCellDivCpuSingle (.h .cpp)

JPeriodicCpu (.h .cpp)

SPH on GPU

JSphGpu (.h .cpp)

JSphGpu_ker (.h .cu)

JSphGpuSingle (.h .cpp)

JSphTimersGpu.h

JCellDivGpu (.h .cpp)

JCellDivGpu_ker (.h .cu)

JCellDivGpuSingle (.h .cpp)

JCellDivGpuSingle_ker (.h .cu)

JPeriodicGpu (.h .cpp)

JPeriodicGpu_ker (.h .cu)

JGpuArrays (.h .cpp)

Appendix A. DualSPHysics Domumentation

108

The following tables show the goal of each individual file; Table A-2 describes

the files not related to the SPH solver; Table A-3 describes the files of the SPH

solver common to CPU and GPU implementations; and Table A-4 and Table A-5

describe the files for the specific execution on CPU and GPU, respectively.

Please note that both the C++ and CUDA version of the code contain the same

features and options. Most of the source code is common to CPU and GPU (files

in Table A-2 and Table A-3).

Table A-2. List of source files of DualSPHysics code not related to the SPH

solver.

No SPH FILES

Functions (.h .cpp) Declares/implements basic/general functions for the entire application

JException (.h .cpp) Declares/implements the class that defines exceptions with the

information of the class and method

JFloatingData (.h .cpp) Declares/implements the class that allows reading/writing files with data

of floating bodies

JLog2 (.h .cpp) Declares/implements the class that manages the output of information in

the file Run.out and on screen

JObject (.h .cpp) Declares/implements the class that defines objects with methods that

throws exceptions

JObjectGpu (.h .cpp) Declares/implements the class that defines objects with methods that

throws exceptions about tasks in GPU

JPartData (.h .cpp) Declares/implements the class that allows reading/writing files with data

of particles in formats binx2, ascii…

JPtxasInfo (.h .cpp) Declares/implements the class that returns the number of registers of

each CUDA kernel.

JSpaceCtes (.h .cpp) Declares/implements the class that manages the info of constants from

the input XML file

JSpaceEParms (.h .cpp) Declares/implements the class that manages the info of execution

parameters from the input XML file

JSpaceParts (.h .cpp) Declares/implements the class that manages the info of particles from

the input XML file

JSpaceProperties (.h .cpp) Declares/implements the class that manages the properties assigned to

the particles in the XML file

JRangeFilter (.h .cpp) Declares/implements the class that facilitates filtering values within a

list

JTimer.h Declares the class that defines a class to measure short time intervals

JTimerCuda.h

Declares the class that defines a class to measure short time intervals in

GPU using cudaEvent

JVarsAscii (.h .cpp)

Declares/implements the class that reads variables from a text file in

ASCII format

TypesDef.h Declares general types and functions for the entire application

JFormatFiles2.h Declares the class that provides functions to store particle data in

formats VTK, CSV, ASCII

JSphMotion.h

Declares the class that provides the displacement of moving objects

during a time interval

JXml.h Declares the class that helps to manage the XML document using library

TinyXML

Table A-3. List of source files of DualSPHysics code for the SPH execution.

Appendix A. DualSPHysics Domumentation

109

SPH SOLVER

main.cpp Main file of the project that executes the code on CPU or GPU

JCfgRun (.h .cpp)

Declares/implements the class that defines the class responsible of collecting

the execution parameters by command line

JSph (.h .cpp) Declares/implements the class that defines all the attributes and functions that

CPU and GPU simulations share

JPartsLoad (.h .cpp) Declares/implements the class that manages the initial load of particle data

JPartsOut (.h .cpp) Declares/implements the class that stores excluded particles at each instant

till writing the output file

JSphDtFixed (.h .cpp) Declares/implements the class that manages the use of prefixed values of DT

loaded from an input file

JSphVarAcc (.h .cpp) Declares/implements the class that manages the application of external forces

to different blocks of particles (with the same MK)

Types.h Defines specific types for the SPH application

Table A-4. List of source files of DualSPHysics code for the SPH execution on

CPU.

 SPH SOLVER ONLY FOR CPU EXECUTIONS

JSphCpu (.h .cpp)

Declares/implements the class that defines the attributes and functions

used only in CPU simulations

JSphCpuSingle (.h .cpp)

Declares/implements the class that defines the attributes and functions

used only in Single-CPU

JSphTimersCpu.h Measures time intervals during CPU execution

JCellDivCpu (.h .cpp)

Declares/implements the class responsible of computing the Neighbour

List in CPU

JCellDivCpuSingle (.h .cpp)

Declares/implements the class responsible of computing the Neighbour

List in Single-CPU

JPeriodicCpu (.h .cpp)

Declares/implements the class that manages the interactions between

periodic edges in CPU

Table A-5. List of source files of DualSPHysics code for the SPH execution on

GPU.

SPH SOLVER ONLY FOR GPU EXECUTIONS

JSphGpu (.h .cpp)

Declares/implements the class that defines the attributes and

functions used only in GPU simulations

JSphGpu_ker (.h .cu)

Declares/implements functions and CUDA kernels for the particle

interaction and system update

JSphGpuSingle (.h .cpp)

Declares/implements the class that defines the attributes and

functions used only in Single-GPU

JSphTimersGpu.h Measures time intervals during GPU execution

JCellDivGpu (.h .cpp)

Declares/implements the class that defines the class responsible of

computing the Neighbour List in GPU

JCellDivGpu_ker (.h .cu)

Declares/implements functions and CUDA kernels to compute

operations of the Neighbour List

JCellDivGpuSingle (.h .cpp)

Declares/implements the class that defines the class responsible of

computing the Neighbour List in Single-GPU

JCellDivGpuSingle_ker (.h .cu) Declares/implements functions and CUDA kernels to compute

operations of the Neighbour List

JPeriodicGpu (.h .cpp)

Declares/implements the class that manages the interactions

between periodic edges in GPU

JPeriodicGpu_ker (.h .cu)

Declares/implements functions and CUDA kernels to obtain

particles that interact with periodic edges

JGpuArrays (.h .cpp)

Declares/implements the class that manages arrays with memory

allocated in GPU

Appendix A. DualSPHysics Domumentation

110

A.2 COMPILATION

The code can be compiled for either CPU or GPU execution. In order to compile

the code for CPU execution, only a C++ compiler (for example GNU’s g++) is

needed with the resultant binary allowing the code to be run on workstations

without a CUDA-enabled GPU.

To run DualSPHysics on GPU, an Nvidia CUDA-enabled GPU is needed and the

latest version of the GPU driver must be installed. However, to compile the

source code, the GPU programming language CUDA and NVCC compiler must

be installed on the computer. The CUDA Toolkits can be downloaded directly

from Nvidia (https://developer.nvidia.com/cuda-downloads). CUDA versions

4.0, 4.1, 4.2, 5.0, and 5.5 have been tested (the same numerical results are

obtained with different CUDA versions).

Makefiles can be used to compile the code:

i) Make –f Makefile_cpu only for CPU compilation (files of Table A-5 are not

included in the compilation) leading to the binary

DualSPHysicsCPU_linux64,

ii) Make –f Makefile for a full compilation creating a binary for CPU-GPU

and the result of the compilation is the binary DualSPHysics_linux64.

The user can modify the compilation options such as the path of the CUDA

toolkit directory or the GPU architecture By default the GPU code is compiled

for “sm_12,compute_12” and “sm_20,compute_20” using CUDA v5.0, the log

file generated by the compiler is stored in the file DualSPHysics_ ptxasinfo. For

example, any possible error in the compilation of JSphGpu_ker.cu can be

identified in this ptxasinfo file. This file is also parsed by the executable on initial

startup in order to perform hardware specific kernel optimisation.

The same code can be compiled for Windows platform and in that sense a file

with Microsoft Visual Studio project and libraries for Windows are included.

A.3 FILES AND FORMAT

Different files for the input and the output data are involved in the DualSPHysics

execution: .xml, .bi2 and .vtk.

https://developer.nvidia.com/cuda-downloads

Appendix A. DualSPHysics Domumentation

111

The XML (EXtensible Markup Language) is a textual data format that can easily

be read or written using any platform and operating system. It is based on a set of

labels (tags) that organise the information and can be loaded or written easily

using any standard text or dedicated XML editor. This format is used for input

files for the code.

Data stored in text format (ASCII) consumes at least six times more memory

than the same data stored in binary format. Values stored in text format in the

memory cannot always be recorded accurately due to rounding error introduced

by I/O routines and data truncation. Reading and writing data in ASCII is

computationally more expensive than using binary (this can be as high as two

orders of magnitude). As DualSPHysics allows simulations to be performed with

a large number of particles, a binary file format is necessary to avoid these

problems. The use of a binary format reduces the stored size of the files and also

the time dedicated to generating them. The format used in DualSPHysics is

named BINX2 (.bi2), these files contain only the meaningful information of

particle properties. Some variables are removed, e.g. the pressure is not stored

since it can be calculated starting from the density using the equation of state as a

pre-processing step. The value for mass is constant for fluid and boundary

particles and so only two values are used instead of an array. The position of

fixed boundary particles is only stored in the first file since they remain

unchanged throughout the simulation. Data for particles that leave the limits of

the domain are stored in an independent file which leads to an additional saving.

Hence, the advantages of BINX2 can be summarised as: (i) memory storage

reduction, (ii) fast access, (iii) no precision lost and (iv) portability (i.e. to

different architectures or different operating systems).

VTK (Visualisation ToolKit) files are used for final visualisation of the results

and can either be generated as a pre-processing step or output directly by

DualSPHysics instead of the standard BINX format (albeit at the expense of

computational overhead). VTK not only supports the particle positions, but also

physical quantities that are obtained numerically for the particles involved in the

simulations. VTK supports many data types, such as scalar, vector, tensor,

texture, and also supports different algorithms such as polygon reduction, mesh

smoothing, cutting, contouring and Delaunay triangulation. The VTK file format

consists of a header that describes the data and includes any other useful

information, the dataset structure with the geometry and topology of the dataset

and its attributes. Here VTK files of POLYDATA type with legacy-binary

format is used. This format is also easy for read-write operations.

Appendix A. DualSPHysics Domumentation

112

A.4 RUNNING DUALSPHYSICS

The input files to run the DualSPHysics code include one XML file (Case.xml)

and a binary file (Case.bi2). Case.xml contains all the parameters of the system

configuration and its execution, such as key variables (i.e. smoothing length,

reference density, gravity, coefficient to calculate pressure, speed of sound), the

number of particles in the system, movement definition of moving boundaries

and properties of moving bodies. The binary file Case.bi2 contains the initial

particle data; arrays of position, velocity and density and headers. The output

files of DualSPHysics consist of binary format files (by default) with the particle

information at different instants of the simulation: Part0000.bi2, Part0001.bi2,

Part0002.bi2 …, PartOut.bi2 with excluded particles and Run.out with a brief

description of the execution.

Different execution parameters can be changed in the XML file: time stepping

algorithm specifying Symplectic or Verlet, choice of kernel function which can

be Cubic or Wendland, the value for artificial viscosity or laminar+SPS viscosity

treatment, activation of the Shepard density filter and how often it is applied,

activation of the delta-SPH correction, the maximum time of simulation and time

intervals to save the output data. To run the code, it is also necessary to specify

whether the simulation is going to run in CPU or GPU mode, the format of the

output files, files that summarise the execution process with the computational

time of each individual process. For CPU executions, a multi-core

implementation using OpenMP enables executions in parallel using the different

cores of the machine. It takes the maximum number of cores of the device by

default or users can specify the number used. In addition, the parallel execution

with OpenMP can use dynamic or static load balancing.

To run the program, type the command ./DualSPHysics_linux64 Case

[options],where Case is the name of the input files (Case.xml and Case.bi2). The

configuration of the execution is mostly defined in the XML file, but it can be

also defined or changed using execution parameters. Furthermore, new options

and possibilities for the execution can be imposed using [options] as seen in

Table A-6. For example:

$dualsphysics $dirout/$name $dirout -svres –cpu

enables the simulation on the cpu, where $dirout is the directory with the file

$name.bi2

Appendix A. DualSPHysics Domumentation

113

$dualsphysics $dirout/$name $dirout -svres –gpu

enables the same simulation on the gpu.

$dualsphysics $dirout/$name $dirout -svres –gpu –partbegin:69 $dirdata

restarts the simulation from the time corresponding to files output Part0069.bi2

in $dirdata directory.

Table A-6. List of execution parameters of DualSPHysics.

PARAMETER DESCRIPTION

-h Shows information about parameters

-opt <file> Loads configuration from a file

-cpu Execution on Cpu (option by default)

-gpu[:id] Execution on Gpu and id of the device

-stable Ensures the same results when repeated a simulation since operations

are always carried out in the same order
-ompthreads:<int>

Only for Cpu. Indicates the number of threads by host for parallel

execution, it takes the number of cores of the device by default (or using

zero value)
-ompdynamic

Only for Cpu. Parallel execution with symmetry in interaction and

dynamic load balancing. Not compatible with –stable

-ompstatic Only for Cpu. Parallel execution with symmetry in interaction and static

load balancing
-cellorder:<axis> Indicates the order of the axis. (xyz/xzy/yxz/yzx/zxy/zyx)

-cellmode:<mode>

Specifies the cell division mode, by default, the fastest mode is chosen

 h fastest and the most expensive in memory

 2h lowest and the least expensive in memory

-symplectic Symplectic algorithm as time step algorithm

-verlet[:steps] Verlet algorithm as time step algorithm and number of time steps to

switch equations

-cubic Cubic spline kernel

-wendland Wendland kernel

-viscoart:<float> Artifitical viscosity [0-1]

-viscolamsps:<float>

Laminar+SPS viscosity [order of 1E-6]

-shepard:steps

Shepard filter and number of steps to be applied

-deltasph:<float>

Constant for DeltaSPH. By default 0.1 and 0 to disable

-sv:[formats,...]

Specifies the output formats:

 none No files with particle data are generated

 binx Bynary files (option by default)

 vtk VTK files

 ascii ASCII files (PART_xxxx of SPHysics)

 csv CSV files

-svres:<0/1> Generates file that summarizes the execution process

-svtimers:<0/1> Obtains timing for each individual process

-svdomainvtk:<0/1> Generates VTK file with domain limits

-name <string> Specifies path and name of the case

-runname <string> Specifies name for case execution

-dirout <dir> Specifies the output directory

Appendix A. DualSPHysics Domumentation

114

-partbegin:begin[:first] dir

RESTART option. Specifies the beginning of the simulation starting

from a given PART (begin) and located in the directory (dir), (first)

indicates the number of the first PART to be generated

-incz:<float>

Allowable increase in Z+ direction. Case domain is fixed as function of

the initial particles, however the maximum Z position can be increased

with this option in case particles reach higher positions

-rhopout:min:max Excludes fluid particles out of these density limits

-ftpause:<float> Time to start floating bodies movement. By default 0

-tmax:<float> Maximum time of simulation

-tout:<float> Time between output files

-ptxasfile <file> Indicates the file with information about the compilation kernels in

CUDA to adjust the size of the blocks depending on the needed registers

for each kernel (only for gpu). By default, it takes the path and the name

of the executable + _ptxasinfo

Appendix B. Pre-processing Tools

115

B. PRE-PROCESSING TOOLS

The process of generating the geometry of an experiment based on particles is

not trivial and can give rise to a significant computational cost. Generating the

initial configuration of particles for a SPH simulation requires filling volumes of

irregular shapes using particles that must be spaced equidistant. Depending on

the treatment of the boundary conditions, computation of the normal vectors of

the boundary points might be required.

To perform this task, a code named GenCase was developed. GenCase is a tool

implemented in C++ that works independently without the need for other design

software. This code combines the simplicity of defining the case using basic

geometrical shapes with the capacity of including 3D models. Thus, starting from

the case description and the 3D external objects, the code is able to generate very

complex geometries using millions of particles not only in an easy way but also

almost instantaneously.

At its core, GenCase is a drawing application that creates points that will be

converted into particles which carry physical quantities (position, velocity,

density...). It creates the configuration that will be loaded by the SPH solver as

initial condition for the simulation. The central feature of the code is its

capability to convert a wide variety of geometrical shapes into their respective

particle representation. In fact it is possible to convert any shape that consists of a

mesh with edges and faces. The procedure is based on a simple algorithm.

GenCase employs a 3D mesh to locate points which represent possible particle

positions. The main idea is to build an object by placing particles only at those

points which are required to generate the desired geometry.

The input file of GenCase is a XML file. The XML (eXtensible Markup

Language) format consists of an extensible meta-programming language that

allows a structured representation of data. In order to represent all the

Appendix B. Pre-processing Tools

116

information required to define a case, the best and clearest option is using this

format due to its simplicity, generality and usability. The output file is a new

XML file and a binary file containing the data of all the particles of the domain.

In addition, VTK files with particles or VTK files with the planes of the

geometry can be used for visualisation.

B.1 PARTICLE GENERATION

A 3D mesh is used to construct the points that will be used to define the particle

positions. The mesh is implemented as a matrix where each element represents a

possible point. A label that identifies the point is stored on the elements or

positions of matrix. The location of the points is implicit in the given structure of

the matrix. These labels allow marking out the different types of points; fluids

(fluid), boundaries (bound) or empty points (void). The type “void” is the initial

state of all points of the mesh.

The use of the mesh has several advantages. On one hand, all points will be

placed maintaining an equidistant distribution independently of how complicated

the case geometry is. On the other hand, the performance of read-write tasks is

improved. This accelerates the algorithms of creating points but restricts the size

of the case, though the maximum number of points that can be created is 2·10
9
.

In order to represent 3D objects in a mesh, only the points that compose the

shape of the object will be marked. Thus, when a 3D object is drawn, a set of

points with a specific label are marked in the mesh. Generally, 3D models are

composed of polygons that can be decomposed into triangles. Thus, Figure B-1

illustrates how this algorithm is employed to create a triangle in 2D. Firstly, the

points of a mesh are defined covering the desired triangle, then the three lines

with the three vertices of the triangle are defined and finally, particles in the

available points under the three lines are created. A similar procedure is applied

for other shapes such as spheres, ellipsoids, cylinders...

The geometry of the case is defined following absolute measures independently

on the inter-particle distance. This allows varying the number of particles by just

defining a different distance among particles. The complexity of the object will

be better represented if the number of particles is higher. Figure B-2 shows how

the detail and the accuracy of the object changes when the inter-particle distance

Appendix B. Pre-processing Tools

117

is modified. For a better visualisation of the figure, particles are represented by

cubes.

Figure B-1. Generation of a 2D triangle.

Figure B-2. Discretization accuracy for different number of particles.The absolute

measures of the object are 0.39 x 0.46 x 0.42.

As mentioned above, some points are marked in the mesh to draw a 3D object.

These points are stored with a label that indicates what type of particles will be

created, i.e. fluid particles or boundary particles.

Appendix B. Pre-processing Tools

118

B.1.1 Predefined objects

A wide variety of predefined shapes can be added to the simulation just by

setting up some configuration parameters. For instance, a corner and the size are

required to create a box, the centre and radius are needed to plot the sphere, two

points and radius for the cylinder... Figure B-3 shows some examples.

Figure B-3. Some predefined objects: box, sphere, cylinder, prism,…

Particles can be built in different ways starting from a mesh. The “face” mode

creates particles along the boundaries of the object, the “solid” mode only uses

internal points and the “full” mode creates particles according to the combination

of both “face” and “solid”. Furthermore, the “face” mode allows selecting edges

to be hidden. Figure B-4 represents a solid ellipsoid, a box without top and front

face and a cylinder without covers.

Figure B-4. Basic shapes “solid” and “face”.

B.1.2 External objects

Design software such as AutoCAD, Blender or 3D Studio Max is suggested to be

used to generate complex 3D models in an easier way. The model can be then

Appendix B. Pre-processing Tools

119

exported to the formats: STL, PLY or VTK. These formats can then be loaded by

GenCase and the geometry is then converted to points and particles. This option

allows the use of pre-existing 3D models, available for example on Internet. One

such example is the mixer from the Google SketchUp Gallery shown in Figure

B-5.

Figure B-5. Mixer: 3D model (left) and point distribution (right).

B.1.3 Filling algorithm

Since SPH is used to study free-surface flow applications, the treatment of

boundary conditions is intrinsic to the problem. In case of complex boundaries, a

tool to fill areas with fluid particles is required. GenCase is able to perform this

task independently of how irregular the shape is. The code is also efficient since

it can create configurations that require several million of particles within a few

seconds.

GenCase presents several options for the filling of areas and can be adapted to

any problem. First, a seed point must be defined, this point is marked with the

label or the type of point chosen for the filling (fluid, bound, void). Starting from

this seed point the procedure is extended to the surrounding points according to

their labels. The algorithm is configured to fill when the surrounding particles

fulfil different criteria; when they have the required label or type of point (filling

with fluid while points are void) or when they do not have the required label or

type (filling with fluid while points are not bound). Finally the area to be filled

can be limited defining different shapes (box, prism...).

The procedure of the filling algorithm consists of; (i) identifying the point of the

mesh that is closest to the seed point; (ii) if the criteria to mark a new point are

fulfilled, the filling algorithm marks the first point at this location, then (iii)

Appendix B. Pre-processing Tools

120

neighbouring points (6 adjacent points) are analysed to check if they fulfil the

criteria, if so new points are marked, (iv) the procedure ends when no more

points fulfil the criteria or when the positions of the points reach the limits that

can be defined jointly with the seed point.

An example of how the filling algorithm works is depicted in Figure B-6. The

case consists of a 2D beach with an irregular bottom and two floating objects.

The geometry must be filled from the bottom to a given height. The colour of the

particles represents the order followed during the filling procedure (from blue to

red) starting from the seed point (the large red dot).

Figure B-6. Filling an irregular beach with fluid.

B.1.4 Other design tools

GenCase presents several options to transform the objects (predefined or

external) to make the design of the case easier. The basic transformation

operations are shifting, scaling and rotation over an arbitrary axis. Note that all

these transformations are cumulative so when one is applied, the following

objects and operations will also be affected. A transformation matrix is used and

the procedure consists of multiplying this matrix with each vertex of the object.

Figure B-7 shows an example of different transformations. Rotation and scaling

operations are applied to the vertices of the triangles of a 3D object.

Appendix B. Pre-processing Tools

121

Figure B-7. Example of rotation and scaling of a 3D model.

Different operations such as constructing an object and the transformations can

be grouped in lists. This makes it easy to repeat a sequence of operations. An

example of how this can be used to create a model starting from a primitive

element is demonstrated in Figure B-8.

Figure B-8. Creating a balustrade starting from a primitive element.

There is the possibility to merge objects in order to create new ones. When an

object is drawn at the same location as a previous one, all the points whose

positions coincide will be replaced with the label of the new object. In Figure B-

9, a sphere with label void is drawn over a box with label bound.

Figure B-9. Merging objects with different label.

Appendix B. Pre-processing Tools

122

B.2 FLOATING OBJECTS

Including floating bodies in SPH simulations can be important for certain

applications. GenCase also offers the possibility of using an external 3D model

and label the points that formed the object as “floating”. In order to simulate the

rigid motion of a floating body, the centre of gravity (GC), the moment of inertia

(I) and the mass of the body (M) must be calculated. These properties are easily

computed when basic shapes are considered (boxes, spheres ...). However, this

task becomes more difficult in case of complex geometries. There are different

algorithms to compute these three variables starting from any polyhedron.

However, these algorithms cannot be applied when the object consists of an open

mesh. Another issue is that a 3D object does not always have homogeneous

density and some parts can have higher density than the rest. For example, the

front part of a car with the engine is heavier than the part containing the

passengers.

GenCase allows setting up the properties for each floating object, but it is also

able to obtain the mentioned variables (GC, I, M) based on a point cloud. Thus,

the method can compute these magnitudes of any 3D object using its point

representation. Defining parts of the object with higher density can be achieved

by placing more particles at the desired location. Figure B-10 shows how GC

changes due to the distribution of particles.

Figure B-10. Gravity center and inertia (lower pannel) computed starting from

different particle distributions (upper pannel).

Appendix B. Pre-processing Tools

123

B.3 INITIAL CONDITIONS

Once particles are created based on the marked points of the mesh, the values of

different variables and physical quantities must be assigned to each particle: id,

position, velocity and density. Different options of GenCase can be used to

compute the values of these quantities.

The position of each particle is calculated by multiplying the position in the mesh

with the distance among particles and adding the coordinates of the based point

of the mesh. A variable “lattice” can be defined as 1 or 2; the value 2 means that

two particles will be generated for each point. Thus, starting from the position, a

quarter of the inter-particle distance is subtracted to determine the final position

of the first particle and a quarter is added to calculate the position of the second

one. Different initial configurations are represented in Figure B-11 with different

values of “lattice” to create fluid and boundary particles.

Figure B-11. Different initial configurations depending on the value of lattice for

fluid (blue points) and boundary (black points) particles.

The initial values of velocity for all particles are zero. However in the case of

fluid particles, a different initial velocity can be defined for a subset of particles

with the same label. The value of this initial velocity can be the same for all the

particles or the velocity profile of solitary wave.

The density is computed automatically in the code depending on the depth of

each particle in relation with the rest of fluid particles. An example of the density

distribution according to the depth can be seen in Figure B-12.

Appendix B. Pre-processing Tools

124

Figure B-12. Initial density distribution.

The value of id allows the identification of each particle using a unique number.

This value is set for each particle according to the order of its creation. Particles

are created following the order of the labels. For each label, the subset of

particles is created sweeping the mesh in the direction Z
+
, then Y

+
 and finally X

+
.

However this order can be changed and defined as desired. This feature is very

useful for visualisation and for tracking of the SPH particles during the

simulation. The mixing between two different volumes of fluid can be observed

in the Figure B-13.

Figure B-13. Mixing of two fluids.

Appendix B. Pre-processing Tools

125

B.4 MOVEMENT DEFINITION

At this point we have the ability of representing any complex geometry by

particles. Describing any kind of movement that mimics the behaviour of the real

problem is imperative when engineering or industrial situations are going to be

analysed.

Different kinds of movements can be imposed to a set of particles; rectilinear

motion, rotational motion, circular motion and sinusoidal motion. Additionally,

predefined motion can be imposed with data from an external file. Different

instants of the movement of a pendulum are depicted in Figure B-14. The green

piece follows a sinusoidal rotational motion, the yellow one follows a sinusoidal

circular motion and the red one represents a sinusoidal rectilinear movement.

Figure B-14. Different instants of a pendulum movement (rotational, circular and

rectilinear sinusoidal).

All movements are associated with a given duration and they are identified with a

specific code. This code allows the linking of several movements in order to be

executed one after another. The specific parameters for each kind of movement

must be given. For example, the initial velocity and the acceleration values are

required to define the accelerated rectilinear motion while frequency, amplitude,

phase and an axis are required to define sinusoidal rotation. On the other hand, a

Appendix B. Pre-processing Tools

126

movement can be applied to an object (a set of particles with the same label) or a

set of objects. Thus, a hierarchy of movements is created when an object has its

own movement and a movement associated with its set at the same time. An

example of hierarchy of movements is shown in Figure B-15 where the two

mobile pieces of the mixer share a rotational movement while the red piece

additionally has its own rotation.

Figure B-15. Mixer as an example of hierarchy of movements.

B.5 NORMAL VECTORS

Boundary conditions such as the repulsive forces need to compute the normal

vectors at the position of each boundary particle. Using GenCase, normals are

calculated for a triangle according to the order of the three vertices of each one as

shown in Figure B-16. The right panel of the figure shows the result of

computing normals for the given triangle. In this way, all particles that belong to

this triangle have the same normal vector. When a particle belongs to different

triangles, its normal vector is the result of averaging the different vectors.

1o

3o

2o1o 2o

Figure B-16. Normal vector (n) computation for a triangle.

Appendix B. Pre-processing Tools

127

Therefore, normal vectors can be computed for any complex object since it

consists of triangles as shown in Figure B-17.

Figure B-17. Normal vector computation for a 3D object.

Figure B-17 shows a 3D object (left frame) that is formed by triangles (centre

frame) so normal vectors of each triangle (right frame) can be calculated

following the mentioned procedure.

B.6 EXAMPLES AND PERFORMANCE

Four testcases are described in this section to prove the capability and the

performance of the GenCase code. A brief description of the case and

computational times are presented for each case. Execution runtime is divided in

three parts; representing the initial setup with points (DrawPoints), creating the

particles starting from the points (ToParticles) and saving data in the output files

(SaveData).

Table B-1 shows all the achieved results. These computational times are obtained

with the same execution device: an Intel Core i7 at 2.93GHz, 6GB of RAM

DDR3 at 1333 MHz and using Ubuntu 10.10 (64 bits).

Table B-1. Features of the cases.

Case Dp
Results with GenCase

Particles Fluid(%) Time Data Size

Sink

11,664

polygons

0.006 54,665,246 81.8% 91.9 s 1460 Mb

0.007 35,366,936 79.2% 33.7 s 944 Mb

0.01 13,102,483 72.6% 9.8 s 350 Mb

0.015 4,399,652 64.0% 2.4 s 117 Mb

0.02 2,060,729 56.4% 0.7 s 55 Mb

Appendix B. Pre-processing Tools

128

Mixer

28,879

polygons

0.0016 76,111,196 90.1% 193.1 s 2032 Mb

0.0018 54,010,704 89.0% 88.5 s 1442 Mb

0.002 39,814,547 87.9% 38.8 s 1063 Mb

0.0025 20,948,274 85.3% 17.3 s 559 Mb

0.003 12,461,843 82.8% 9.0 s 333 Mb

0.004 5,488,221 78.1% 3.1 s 147 Mb

0.005 2,967,685 74.3% 1.2 s 79 Mb

Pump

57,879

polygons

0.00085 81,006,785 93.0% 171.3 s 2163 Mb

0.001 50,269,756 91.9% 59.2 s 1342 Mb

0.0015 15,348,958 88.2% 11.9 s 410 Mb

0.002 6,693,996 84.9% 5.0 s 179 Mb

0.0025 3,523,610 81.6% 1.9 s 94 Mb

MiniCooper

3,848,388

polygons

0.00135 17,427,772 0.0% 39.8 s 465 Mb

0.00145 15,047,528 0.0% 31.0 s 402 Mb

0.0016 12,312,028 0.0% 23.2 s 329 Mb

0.002 7,777,736 0.0% 13.0 s 208 Mb

0.003 3,376,230 0.0% 4.5 s 90 Mb

B.6.1 Testcase Sink

The first example consists of a sink with water and with a floating duck. The

geometry of the sink and the model of duck are created starting from external

VTK files. The duck is a floating object, where the centre of gravity, inertia and

mass are computed. The water is placed inside the sink using the filling

algorithm. A representation of the case using polygons and particles is depicted

in Figure B-18. The time taken by the three different parts mentioned above is

shown in Figure B-19 for different number of particles. It can be observed that

the highest cost in terms of computational time is the procedure to create

particles from points and how the time dedicated to save data becomes the most

expensive part for very large number of particles.

Figure B-18. Sink with floating object (polygons and particles).

Appendix B. Pre-processing Tools

129

0 20 40 60 80 100

2.1

4.4

13.1

35.4

54.7

time (s)

M
ill

o
n

s
o

f
p

ar
ti

cl
e

s
DrawPoints

ToParticles

SaveData

Figure B-19. Execution runtimes for the Sink.

B.6.2 Testcase Mixer

The second example is a mixer created from an external VTK file and fluid

particles are introduced using the filling algorithm. The different types of

rotational movements allow reproducing the motion of the pieces of the mixer.

The geometry of the case is depicted in Figure B-20 and the execution runtimes

are shown in Figure B-21.

Figure B-20. Mixer (polygons and particles).

0 50 100 150 200

3.0

5.5

12.5

20.9

39.8

54.0

76.1

time (s)

M
ill

o
n

s
o

f
p

ar
ti

cl
e

s

DrawPoints

ToParticles

SaveData

Figure B-21. Execution runtimes for the Mixer.

Appendix B. Pre-processing Tools

130

B.6.3 Testcase Pump

The third example consists of a water pump. The geometry is also loaded from an

external VTK file which originally comes from a CAD geometry. Once again,

the fluid is easily introduced using the filling algorithm. Figure B-22 shows the

initial configuration of the case and the execution runtimes for different number

of particles are represented in Figure B-23.

Figure B-22. Pump (polygons and particles).

0 50 100 150 200

3.5

6.7

15.3

50.3

81.0

time (s)

M
ill

o
n

s
o

f
p

ar
ti

cl
e

s

DrawPoints

ToParticles

SaveData

Figure B-23. Execution runtimes for the Pump.

B.6.4 Testcase Mini Cooper

There is no fluid in this case, only a Mini Cooper is represented using boundary

particles. The geometry of the car is generated using an STL file with a lot of

detail (3.8

million triangles). Figure B-24 shows the 3D model using polygons

and using the wire mode the details of the model can be appreciated. The

different execution times to generate the boundary particles are presented in

Figure B-25.

Appendix B. Pre-processing Tools

131

Figure B-24. Mini Cooper (polygons and wire).

0 10 20 30 40

3.4

7.8

12.3

15.0

17.4

time (s)

M
ill

o
n

s
o

f
p

ar
ti

cl
e

s

DrawPoints

ToParticles

SaveData

Figure B-25. Execution runtimes for the Mini Cooper.

B.7 REMARKS

A powerful tool named GenCase has been developed to generate the initial

configuration of the system using particles for an SPH simulation. The use of

external geometries, the filling of irregular shapes, the definition of different

movements, the characterization of the floating objects and the normal vectors

computation are the main features of this code. All these capabilities can be

easily defined using an XML file.

The use of a 3D mesh does not only increase the performance of the code, but

also simplifies the algorithms. This allows implementing new functionalities in

an easy way.

GenCase has been proven to be efficient. It is fast enough to generate complex

cases such as the Pump case with 80 million particles in less than 200 seconds.

Furthermore, most of the time is consumed by saving data as it needs to save

more than 2GB of data. In the case of the Mini Cooper, the conversion of 3.8

million triangles to particles takes less than 40 seconds.

Appendix C. Post-processing Tools

133

C. POST-PROCESSING TOOLS

As we mentioned above, DualSPHysics is a powerful model that allows the

analysis of complex flows, which make it ideal for engineering purposes. The

final goal of the technique is to provide results to help designers and decision

makers. As a consequence, it is mandatory to develop a full set of tools to

analyse the obtained results. The main tools are described in this appendix.

C.1 PARTVTK

This code is used to convert the output binary files of DualSPHysics into

different formats that can be visualised and /or analysed. Mainly the VTK format

is used to show information about particles using the software Paraview.

Paraview is an open-source and multi-platform program to visualise and to

analyse scientific data. This package also supports other output formats like CSV

(comma-separated values) or ASCII (American Standard Code for Information

Interchange). PartVTK can get data of particles (position, velocity, density,

mass) or calculate other values (press, acceleration, vorticity…), using all

particles of simulation or only a selected part of them. The Figure C-1 illustrates

how output of PartVTK is employed to visualise density of particles.

Figure C-1. Visualisation of density from a fluid block of particles.

Appendix C. Post-processing Tools

134

C.2 MEASURETOOL

A tool is needed to analyse these numerical measurements to be compared with

experiments. We must note that information in DualSPHysics is generated at the

particles, whose position varies in time. Thus, information should be spatially

averaged when the time evolution of a property is calculated. The MeasureTool

code allows computing different physical quantities at a set of given points.

MeasureTool calculates multiple physical quantities at any position. The binary

files (.bi2) generated by DualSPHysics are the input files of the MeasureTool

code and the output files can be VTK-binary or CSV or ASCII. The numerical

values at a given position are computed by means of a SPH interpolation. This

information depends on the values of the neighbouring particles averaged in

terms of a kernel. An example of output MeasureTool is shown in Figure C-2 and

Figure C-3.

29.0

29.5

30.0

30.5

31.0

31.5

0 50 100 150 200 250 300

El
e

va
ti

o
n

 (
m

)

Physical time (s)
Figure C-2. Example of graph with wave elevation at a specific position.

Figure C-3. Visualises the wave elevation for a slice of fluid.

Appendix C. Post-processing Tools

135

C.3 ISOSURFACE

IsoSurface tool generates the isosurface of fluid to improve the visualisation

when the number of particles is very high. In that case, the visualisation can be

improved by representing surfaces instead of particles. To create the surfaces, the

marching cubes algorithm is used [Lorensen and Cline, 1987]. This computer

graphics technique extracts a polygonal mesh (set of triangles) of an isosurface

from a 3-D scalar field.

Figure C-4, represents a 3D dam-break simulation using 300,000 particles. The

first snapshot shows the particle representation. Values of mass are interpolated

at the nodes of a 3-D Cartesian mesh that covers the entire domain using an SPH

interpolation. Thus a 3-D mesh vertex that belongs to the free surface can be

identified. The triangles of this surface (generated by means of the marching

cubes algorithm) are represented in the second frame of the figure. The last

snapshots correspond to the surface representation, where the colour corresponds

to the interpolated velocity at the position of the triangles.

Figure C-4. Conversion of points to surfaces, from particles to isosurface.

Appendix C. Post-processing Tools

136

C.4 DECIMATE

The use of the isosurface is a good option to represent the fluid when the number

of particles is too high (more than 5 million particles) to visualise the particles in

a standard personal computer. However, the isosurface can still be too heavy in

some applications where the domain is huge and the resolution is very high (for

example, the appliaction shown in Figure 6-19). Thus, a method is needed to

simplify the geometry of the isosurface and to reduce the number of triangles.

The algorithm Decimation based on [Schroeder et al. 1992; Schroeder, 1997] is

applied to reduce the number of triangles in a mesh but preserving the original

topology of the mesh, and also considering the data associated with the vertices

like velocity or density. Decimation technique was necessary in the case of the

interaction of a large wave with an oil rig using more than one billion particles

(described at Section 6.3). In that application the number of triangles of the

isosurface reaches 180 million and Decimation was used to reduce this number to

10%. Another example can be also seen in Figure C-5 where the original

isosurface contains 540,668 triangles and only 54,056 when applying

Decimataion.

Figure C-5. Original isosurface of fluid (left) and simplified isosurface by

Decimate program with a reduction to 10%.

Appendix C. Post-processing Tools

137

C.5 BOUNDARYVTK

In order to visualise the boundary shapes formed by the boundary particles,

different geometry files can be generated using the BoundaryVTK code. The

code creates triangles or planes to represent the boundaries. This tool extracts the

motion from boundary particles (moving or floating) to create a better

visualisation of the moving objects using shapes instead of particles. This tool is

also very useful for display purposes and to check the predefined movement of

the boundary before starting the simulation. Figure C-6 shows the floating body

movement using a box to clarify the visualisation.

Figure C-6. Floating body movement represented using a box.

Appendix C. Post-processing Tools

138

C.6 MEASUREBOXES

MeasureBoxes program calculates the volume of fluid and its velocity in any

volume of the simulation. Thus, any volume can be delimited by triangles to

measure the amount of fluid inside and the mean value of different properties like

fluid. This tool is very useful to measure flows on complex terrains. Figure C-7

illustrates an example (presented in [Barreiro et al., 2014]) where MeasureBoxes

is used to study the runoff on a real terrain. The rain water is collected in the dark

area (top of Figure C-7). MeasureBoxes is used to study the effect of the ditch to

avoid water arrival at the road (red area in the bottom of Figure C-7). Thus

volume of fluid is measured at each time step.

Figure C-7. Appliaction of MeasureBoxes to measure a flow at complex terrain.

Appendix C. Post-processing Tools

139

C.7 TRACERVTK

To observe the movement of fluid particles can be very complicated, especially

in 3D simulations. This tool plots the trajectory of a set of selected particles to

show clearly how these particles have moved during some interval of time.

Figure C-8 shows an example where this tool is useful to visualise how fluid

particles move inside the gaps among the blocks (antifers) of a coastal protection

structure presented in [Altomare et al., 2014a].

Figure C-8. Waves interaction with a coastal structure consisting of antifers and

trajectories of fluid particles between antifers.

Bibliography

141

BIBLIOGRAPHY

[Agarwal et al., 2012] P.K. Agarwal, S. Hampton, J. Poznanovic, A. Ramanthan,

S.R. Alam and P.S. Crozier (2012). Performance modeling of microsecond

scale biological molecular dynamics simulations on heterogeneous

architectures. Concurrency and Computation: Practice and Experience, DOI:

10.1002/cpe.2943.

[Altomare et al., 2014a] C. Altomare, A.J.C. Crespo, B.D. Rogers, J.M.

Domínguez, X. Gironella and M. Gómez-Gesteira (2014). Numerical

modelling of armour block sea breakwater with Smoothed Particle

Hydrodynamics. Computers and Structures 130, 34-45.

[Altomare et al., 2014b] C. Altomare, T. Suzuki, J.M. Domínguez, A.J.C. Crespo

and M. Gómez-Gesteira (2014). Coupling Between SWASH and SPH for Real

Coastal Problems. Proceedings of the 9th SPHERIC, 254-259.

[Anderson et al., 2008] J.A. Anderson, C.D. Lorenz and A. Travesset (2008).

General Purpose Molecular Dynamics Simulations Fully Implemented on

Graphics Processing Units. Journal of Computational Physics 227, 5342-

5359.

[Antuono et al., 2012] M. Antuono, A. Colagrossi and S. Marrone (2012).

Numerical diffusive terms in weakly-compressible SPH schemes. Computer

Physics Communications 183.

[Barreiro et al., 2013] A. Barreiro, A.J.C. Crespo, J.M. Domínguez and M.

Gómez-Gesteira (2013). Smoothed Particle Hydrodynamics for coastal

engineering problems. Computers and Structures 120(15), 96-106.

[Barreiro et al., 2014] A. Barreiro, J.M. Domínguez, A.J.C. Crespo, H. González-

Jorge, D. Roca and M. Gómez-Gesteira (2014). Integration of UAV

Bibliography

142

photogrammetry and SPH modelling of fluids to study runoff on real terrains.

PLoS ONE, DOI: 10.1371/journal.pone.0111031.

[Batchelor, 1974] G.K. Batchelor (1974). Introduction to fluid dynamics.

Cambridge University Press.

[Belytschko et al., 1998] T. Belytschko, Y. Krongauz, J. Dolbow and C. Gerlach

(1998). On the completeness of meshfree particle methods. International

Journal for Numerical Methods in Engineering 43, 785–819.

[Bisseling, 2004] R.H. Bisseling (2004). Parallel Scientific Computation: A

Structured Approach using BSP and MPI. Oxford University Press, ISBN:

978-0-19-852939-2.

[Bonet and Lok, 1999] J. Bonet and T.-S.L. Lok (1999). Variational and

momentum preservation aspects of Smoothed Particle Hydrodynamic

formulations. Computer Methods in Applied Mechanics and Engineering 180,

97-115.

[Brown et al., 2011] W.M. Brown, P. Wang, S.J. Plimpton and A.N. Tharrington

(2011). Implementing molecular dynamics on hybrid high performance

computers - short range forces. Computer Physics Communications 182, 898-

911.

[Buttlar et al., 1996] D. Buttlar, J. Farrell and B. Nichols (1996). PThreads

Programming: A POSIX Standard for Better Multiprocessing. O’Reilly Media,

ISBN: 978-1565921153.

[Canelas et al., 2014] R. Canelas, R.M.L. Ferreira, J.M. Domínguez and A.J.C.

Crespo (2014). Modelling of Wave Impacts on Harbour Structures and

Objects with SPH and DEM, Proceedings of the 9th SPHERIC, 313-320.

[Chandra et al., 1996] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan

and J. McDonald (1996). Parallel Programming in OpenMP. Morgan

Kauffman Publishers Inc., ISBN: 978-1558606715.

[Chandra et al., 2002] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan

and J. McDonald (2002). OpenMP C and C++ Application Program Interface.

OpenMP Architecture Review Board. http://www.openmp.org/drupal/mp-

documents/cspec20.pdf.

Bibliography

143

[Chen and Beraun, 2000] J.K. Chen and J.E. Beraun (2000). A generalized

smoothed particle hydrodynamics nethod for nonlinear dynamic problems.

Computer Methods in Applied Mechanics and Engineering 190, 225-239.

[Clark, 1998] D. Clark (1998). OpenMP: A Parallel Standard for the Masses.

IEEE Concurrency 6(1), 10-12, DOI: 10.1109/4434.656771

[Colagrossi and Landrini, 2003] A. Colagrossi and M. Landrini (2003).

Numerical simulation of interfacial flows by smoothed particle

hydrodynamics. Journal of Computational Physics 191, 448-475.

[Crespo et al., 2007] A.J.C. Crespo, M. Gómez-Gesteira and R.A. Dalrymple

(2007). Boundary Conditions Generated by Dynamic Particles in SPH

Methods. CMC: Computers, Materials, & Continua 5 (3), 173-184.

[Crespo et al., 2008] A.J.C. Crespo, M. Gómez-Gesteira and R.A. Dalrymple

(2008). Modeling Dam Break Behavior over a Wet Bed by a SPH Technique.

Journal of Waterway, Port, Coastal and Ocean Engineering 134 (6), 313-320.

[Crespo et al., 2009] A.J.C. Crespo, J.C. Marongiu, E. Parkinson, M. Gómez-

Gesteira and J.M. Domínguez (2009). High Performance of SPH Codes: Best

approaches for efficient parallelization on GPU computing. Proc IVth Int

SPHERIC Workshop (Nantes), 69-76.

[Crespo et al., 2010] A.J.C. Crespo, J.M. Domínguez, A. Barreiro and M.

Gómez-Gesteira (2010). Development of a Dual CPU-GPU SPH model. Proc

5th Int SPHERIC Workshop (Manchester), 401-407.

[Crespo et al., 2011] A.J.C. Crespo, J.M. Domínguez, A.Barreiro, M. Gómez-

Gesteira and B.D. Rogers (2011). GPUs, a new tool of acceleration in CFD:

Efficiency and reliability on Smoothed Particle Hydrodynamics methods.

PLoS ONE 6 (6), e20685, DOI: 10.1371/journal.pone.0020685.

[Crespo et al., 2014] A.J.C. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-

Gesteira, S. Longshaw, R. Canelas, R. Vacondio, A. Barreiro and O. García-

Feal (2014). DualSPHysics: open-source parallel CFD solver based on

Smoothed Particle Hydrodynamics (SPH). Computer Physics

Communications, DOI: 10.1016/j.cpc.2014.10.004.

[CUDA Programing Guide] Nvidia Corporation (2014). CUDA Programming

Guide, http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Bibliography

144

[Dagum and Menon, 1998] L. Dagum and R. Menon (1998). OpenMP: An

Industry-Standard API for Shared-Memory Programming. IEEE

Computational Science & Engineering 5(1), 46-55, DOI: 10.1109/99.660313

[Dalrymple and Rogers, 2006] R.A. Dalrymple and B.D. Rogers (2006).

Numerical modeling of water waves with the SPH method. Coastal

Engineering 53, 141–147.

[Dickson et al., 2011] N.G. Dickson, K. Karimi and F. Hamze (2011).

Importance of explicit vectorization for CPU and GPU software performance.

Journal of Computational Physics, DOI: 10.1016/j.jcp.2011.03.041.

[Dilts, 1999] G. Dilts (1999). Moving-least-square-particle hydrodynamics-I.

Consistency and stability. Internacional Journal for Numerical Methods in

Engineering 44, 1115–1155.

[Domínguez et al., 2011a] J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira

and J.C. Marongiu (2011). Neighbour lists in Smoothed Particle

Hydrodynamics. International Journal for Numerical Methods in Fluids 67,

2026-2042.

[Domínguez et al., 2011b] J.M. Domínguez, A.J.C. Crespo, A. Barreiro, M.

Gómez-Gesteira and A. Mayrhofer (2011). Development of a new pre-

processing tool for SPH models with complex geometries. Schriftenreihe

Schiffbau 6th SPHERIC. Edited by Hamburg University of Technology, 117-

124

[Domínguez et al., 2013a] J.M. Domínguez, A.J.C. Crespo and M. Gómez-

Gesteira (2013). Optimization strategies for CPU and GPU implementations of

a smoothed particle hydrodynamics method. Computer Physics

Communications 184(3), 617-627, DOI: 10.1016/j.cpc.2012.10.015.

[Domínguez et al., 2013b] J.M. Domínguez, A.J.C. Crespo, D. Valdez-Balderas,

B.D. Rogers and M. Gómez-Gesteira (2013). New multi-GPU implementation

for Smoothed Particle Hydrodynamics on heterogeneous clusters. Computer

Physics Communications 184(8), 1848-1860, DOI: 10.1016/j.cpc.2013.03.008

[Domínguez et al., 2014] J.M. Domínguez, A.J.C. Crespo, A. Barreiro, M.

Gómez-Gesteira and B.D. Rogers (2014). Efficient implementation of double

precision in GPU computing to simulate realistic cases with high resolution,

Proceedings of the 9th SPHERIC, 140-145.

Bibliography

145

[Ferrari et al., 2009] A. Ferrari, M. Dumbser, E.F. Toro and A. Armanini (2009).

A new 3D parallel SPH scheme for free surface flows. Computers & Fluids

38, 1203–1217.

[Fleissner and Eberhard, 2007] F. Fleissner and P. Eberhard (2007). Load

balanced parallel simulation of particle-fluid DEM-SPH systems with moving

boundaries. John Von Neumann Institute for Computing 48, 37-44.

[Fourtakas et al., 2013] G. Fourtakas, B.D. Rogers and D. Laurence (2013).

Modelling sediment suspension in industrial tanks using SPH. La Houille

Blanche 2, 39-45.

[Fourtakas et al., 2014] G. Fourtakas, J.M. Domínguez, R. Vacondio, A. Nasar

and B.D. Rogers (2014). Local Uniform STencil (LUST) Boundary

Conditions for 3-D Irregular Boundaries in DualSPHysics. Proceedings of the

9th SPHERIC, 103-110.

[Geist et al., 1994] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and

V. Sunderam (1994). Parallel Virtual Machine - A Users' Guide and Tutorial

for Networked Parallel Computing. MIT Press, ISBN: 978-0262571081

[Gingold and Monaghan, 1977] R.A. Gingold and J.J. Monaghan (1977).

Smoothed particle hydrodynamics: theory and application to non- spherical

stars. Monthly Notices of the Royal Astronomical Society 181, 375–389.

[Goldberg 1991] D. Goldberg (1991). What every computer scientist should

know about oating point arithmetic. ACM Computing Surveys 23(1), 5-48.

[Gómez-Gesteira and Dalrymple, 2004] M. Gómez-Gesteira and R. Dalrymple

(2004). Using a 3D SPH method for wave impact on a tall structure. Journal of

Waterway, Port, Coastal and Ocean Engineering 130 (2), 63-69.

[Gómez-Gesteira et al., 2012a] M. Gómez-Gesteira, B.D. Rogers, A.J.C. Crespo,

R.A. Dalrymple, M. Narayanaswamy and J.M. Domínguez (2012). SPHysics -

development of a free-surface fluid solver- Part 1: Theory and Formulations.

Computers & Geosciences 48, 289-299.

[Gómez-Gesteira et al., 2012b] M. Gómez-Gesteira, A.J.C. Crespo, B.D. Rogers,

R.A. Dalrymple, J.M. Domínguez and A. Barreiro (2012). SPHysics -

development of a free-surface fluid solver- Part 2: Efficiency and test cases.

Computers & Geosciences 48, 300-307.

Bibliography

146

[Goozee and Jacobs, 2003] R.J. Goozee and P.A. Jacobs (2003) Distributed and

shared memory parallelism with a smoothed particle hydrodynamics code.

Australian and New Zealand Industrial and Applied Mathematics Journal 44,

C202–C228.

 [Gotoh et al., 2001] H. Gotoh, T. Shibihara and M. Hayashii (2001).

Subparticle-scale model for the MPS method-lagrangian flow model for

hydraulic engineering. Computational Fluid Dynamics Journal 9, 339–347.

[Gotoh et al., 2004] H. Gotoh, S. Shao and T. Memita (2004). SPH-LES model

for numerical investigation of wave interaction with partially immersed

breakwater. Coastal Engineering Journal 46(1), 39–63.

[Gropp et al., 1999] W. Gropp, E. Lusk and A. Skjellum (1999). Using MPI:

Portable Parallel Programming with the Message Passing Interface. MIT

Press, ISBN: 978-0262571326

[Harada et al., 2007] T. Harada, S. Koshizuka and Y. Kawaguchi (2007).

Smoothed particle hydrodynamics on GPUs. Computer Graphics International,

63–70.

[Herault et al., 2010] A. Herault, G. Bilotta and R.A. Dalrymple (2010). SPH on

GPU with CUDA. Journal of Hydraulic Research 48, 74–79.

[IEEE 754 Standard] IEEE 754-2008 (2008). IEEE 754-2008 Standard for

Floating-Point Arithmetic.

[Ihmsen et al., 2011] M. Ihmsen, N. Akinci, M. Becker and M. Teschner (2011).

A parallel SPH implementation on multi-core CPUs. Computer Graphics

Forum 30(1), 99–112, DOI: 10.1111/j.1467-8659.2010.01832.x

[Khayyer and Gotoh, 2009] A. Khayyer and H. Gotoh (2009). Wave impact

pressure calculations by improved SPH methods. International Journal of

Offshore and Polar Engineering 19, 300–307.

[Khronos, 2009] Khronos (2009), The OpenCL Specification,

https://www.khronos.org/opencl

[Kolb and Cuntz, 2005] A. Kolb and N. Cuntz (2005). Dynamic particle coupling

for GPU-based fluid simulation. Proceedings of the 18th Symposium on

Simulation Technique, 722–727.

Bibliography

147

[Qiang et al., 2012] W. Qiang, Y. Canqun, T. Tao and L. Kai (2012). Fast

parallel cutoff pair interactions for molecular dynamics on heterogeneous

systems. Tsinghua Science and Technology 17, 265-277.

[Lee et al., 2010] V.W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A.D.

Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R.

Singhal, and P. Dubey (2010). Debunking the 100X GPU vs. CPU myth: an

evaluation of throughput computing on CPU and GPU. SIGARCH Comput.

Archit. News 38, 451-460

[Leimkuhler et al., 1996] B.J. Leimkuhler, S. Reich and R.D. Skeel (1996).

Integration Methods for Molecular dynamic IMA Volume in Mathematics and

its application. Springer.

[Lo and Shao, 2002] E.Y.M. Lo and S. Shao (2002). Simulation of near-shore

solitary wave mechanics by an incompressible SPH method. Applied Ocean

Research 24, 275-286.

[Lorensen and Cline, 1987] W.E. Lorensen and H.E. Cline (1987). Marching

Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH

'87 Proceedings of the 14th annual conference on Computer graphics and

interactive techniques, 163-170, ISBN: 0-89791-227-6, DOI:

10.1145/37401.37422.

[Lucy, 1977] L.B. Lucy (1977). A numerical approach to the testing of the

fission hypothesis. The Astronomical Journal 82, 1013–1024, DOI:

10.1086/112164.

[Marongiu et al., 2010] J.C. Marongiu, F. Leboeuf, J. Caro and E. Parkinson

(2010). Free surface flows simulations in Pelton turbines using an hybrid SPH-

ALE method. Journal of Hydraulic Research 48 Extra Issue, 40–49.

[Maruzewski et al., 2010] P. Maruzewski, D. Le Touzé, G. Oger and F. Avellan

(2010). SPH high-performance computing simulations of rigid solids

impacting the free-surface of water, Journal of Hydraulic Research 48, 126–

134.

[McInstosh-Smith et al., 2012] S. McInstosh-Smith, T. Wilson, A.A. Ibarra, J.

Crisp and R.B. Sessions (2012). Benchmarking Energy Efficiency, Power

Costs and Carbon Emissions on Heterogeneous Systems. The Computer

Journal 55(2), 192-205, DOI: 10.1093/comjnl/bxr091

Bibliography

148

[Mokos et al., 2014] A. Mokos, B.D. Rogers, P.K. Stansby and J.M. Domínguez

(2014). A multi-phase particle shifting algorithm for SPH simulations for

violent hydrodynamics on a GPU. Proceedings of the 9th SPHERIC, 1-8.

[Molteni and Colagrossi, 2009] D. Molteni and A. Colagrossi (2009). A simple

procedure to improve the pressure evaluation in hydrodynamic context using

the SPH. Computer Physics Communications 180(6), 861–872, DOI:

10.1016/j.cpc.2008.12.004

[Monaghan, 1989] J.J. Monaghan (1989), On the problem of penetration in

particle methods. Journal of Computational Physics 82(1), 1-15, DOI:

10.1016/0021-9991(89)90032-6.

[Monaghan, 1992] J.J. Monaghan (1992). Smoothed particle hydrodynamics.

Annual Review of Astronomy and Astrophysics 30(1), 543-574, DOI:

10.1146/annurev.aa.30.090192.002551.

[Monaghan, 1994] J.J. Monaghan (1994). Simulating free surface flows with

SPH. Journal of Computational Physics 110, 399- 406, DOI:

10.1006/jcph.1994.1034.

[Monaghan, 1996] J.J. Monaghan (1996). Gravity currents and solitary waves.

Physica D: Nonlinear Phenomena 98(2-4), 523–533.

[Monaghan, 2000] J.J. Monaghan (2000). SPH without Tensile Instability.

Journal Computational Physics 159(2), 290-311, DOI:

10.1006/jcph.2000.6439.

[Monaghan, 2005] J.J. Monaghan (2005), Smoothed Particle Hydrodynamics.

Reports on Progress in Physics 68(8), 1703-1759, DOI: 10.1088/0034-

4885/68/8/R01.

[Monaghan and Kos, 1999] J.J. Monaghan and A. Kos (1999). Solitary waves on

a Cretan beach. Journal of Waterway, Port, Coastal and Ocean Engineering

125(3), 145-154.

[Monaghan et al., 1999] J.J. Monaghan, R.A.F. Cas, A.M. Kos and M. Hallworth

(1999). Gravity currents descending a ramp in a stratified tank. Journal of

Fluid Mechanics 379, 39–70.

Bibliography

149

[Monaghan et al., 2003] J.J. Monaghan, A. Kos and N. Issa (2003). Fluid motion

generated by impact. Journal of Waterway, Port, Coastal and Ocean

Engineering 129, 250-259.

[Nickolls et al., 2008] J. Nickolls, I. Buck, M. Garland, and K. Skadron (2008).

Scalable parallel programming with CUDA. ACM Queue 6(2), 40-53.

[Nickolls and Dally, 2010] J. Nickolls and W.J. Dally (2010). The GPU

computing era. IEEE Micro 30, 56–69.

[Owens et al., 2007] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.

Kruger, A. Lefohn and T.J. Purcell (2007). A survey of general-purpose

computation on graphics hardware. Computer Graphics Forum 26(1), 80–113.

[Pacheco, 1996] P. Pacheco (1996). Parallel Programming with MPI. Morgan

Kaufmann Publishers Inc., ISBN: 978-1558603394.

[Ren et al., 2014] B. Ren, H. Wen, P. Dong and Y. Wang (2014). Numerical

simulation of wave interaction with porous structures using an improved

smoothed particle hydrodynamic method. Coastal Engineering 88, 88–100.

[Rogers et al., 2010] B.D. Rogers, R.A. Dalrymple and P.K. Stansby (2010).

Simulation of caisson breakwater movement using SPH. Journal of Hydraulic

Research 48, 135-141.

[Rustico et al., 2014] E. Rustico, G. Bilotta, A. Hérault, C. Del Negro and G.

Gallo (2014). Advances in multi-GPU Smoothed Particle Hydrodynamics

simulations. IEEE Transactions on Parallel and Distributed Systems 25(1), 43-

52

[Satish et al., 2009] N. Satish, M. Harris and M. Garland (2009). Designing

Efficient Sorting Algorithms for Manycore GPUs. Proceedings of IEEE

International Parallel & Distributed Processing Symposium, 1-10, DOI:

10.1109/IPDPS.2009.5161005.

[Schroeder, 1997] W.J. Schroeder (1997). A Topology Modifying Progressive

Decimation Algorithm. VIS '97 Proceedings of the 8th conference on

Visualization '97, ISBN: 1-58113-011-2

[Schroeder et al. 1992] W.J. Schroeder, J.A. Zarge, W.E. Lorensen (1992).

Decimation of Triangle Meshes. ACM SIGGRAPH Computer Graphics 26(2),

65-70, DOI: 10.1145/142920.134010

Bibliography

150

 [Shao, 2005] S.D. Shao (2005). SPH simulation of solitary wave interaction with

a curtain-type breakwater. Journal of Hydraulic Research 43(4), 366–375,

DOI: 10.1080/00221680509500132.

[Snir et al., 1998] M. Snir, J. Dongarra, J.S. Kowalik, S. Huss-Lederman, S.W.

Otto and D.W. Walker (1998). MPI: The Complete Reference. MIT Press,

ISBN: 978-0262692168.

[St-Germain et al., 2014] P. St-Germain, I. Nistor, R. Townsend and T.

Shibayama (2014). Smoothed-Particle Hydrodynamics Numerical Modeling

of Structures Impacted by Tsunami Bores. Journal of Waterway, Port, Coastal,

and Ocean Engineering 140(1), 66-81.

[Stellingwerf and Wingate, 1994] R.F. Stellingwerf and C.A.Wingate (1994).

Impact Modelling with SPH. Memorie della Societa Astronomia Italiana

65(4), 1117-1128.

[Trott et al., 2010] C.R. Trott, L. Winterfeld and P.S. Crozier (2010). General-

purpose molecular dynamics simulations on GPU-based clusters. Computer

Physics Communications, arXiv:1009.4330 (2010).

[Liu, 2003] G.R. Liu (2003). Mesh Free methods: Moving beyond the finite

element method. CRC Press, ISBN: 978-0849312380.

[Vacondio et al., 2012] R. Vacondio, B.D. Rogers, P.K. Stansby and P. Mignosa

(2012). A correction for balancing discontinuous bed slopes in two-

dimensional smoothed particle hydrodynamics shallow water modelling.

International Journal for Numerical Methods in Fluids 71, 850–872.

[Vacondio et al., 2013a] R. Vacondio, B.D. Rogers, P.K. Stansby and P. Mignosa

(2013). Shallow water SPH for flooding with dynamic particle coalescing and

splitting. Advances in Water Resources 58, 10-23.

[Vacondio et al., 2013b] R. Vacondio, B.D. Rogers, P.K. Stansby, P. Mignosa

and J. Feldman (2013). Variable resolution for SPH: a dynamic particle

coalescing and splitting scheme. Computer Methods in Applied Mechanics

and Engineering 256, 132-148.

[Valdez-Balderas et al., 2012] D. Valdez-Balderas, J.M. Domínguez, A.J.C.

Crespo and B.D. Rogers (2012), Towards accelerating Smoothed Particle

Hydrodynamics simulations for free-surface flows on multi-GPU clusters.

Bibliography

151

Journal of Parallel and Distributed Computing, DOI:

10.1016/j.jpdc.2012.07.010.

[Verlet, 1967] L. Verlet (1967), Computer experiments on classical fluids. I.

Thermodynamical properties of Lennard-Jones molecules. Physical Review

159, 98-103.

[Viccione et al., 2008] G. Viccione, V. Bovolin and E.P. Carratelli (2008).

Defining and optimizing algorithms for neighbouring particle identification in

SPH fluid simulations. International Journal for Numerical Methods in Fluids

58, 625–638, DOI: 10.1002/fld.1761.

[Vila, 1999] J.P. Vila (1999). On particle weighted methods and SPH.

Mathematical Models and Methods in Applied Sciences 9, 161–210, DOI:

10.1142/S0218202599000117.

[Violeau, 2012] D. Violeau (2012). Fluid Mechanics and the SPH Method:

Theory and Applications, Oxford University Press, ISBN: 0199655529.

[Wendland, 1995] H. Wendland (1995). Piecewiese polynomial, positive definite

and compactly supported radial functions of minimal degree. Advances in

Computational Mathematics 4, 389-396.

[Whitehead and Fit-Florea 2011] N. Whitehead and A. Fit-Florea (2011).

Precision & performance: Floating point and IEEE 754 compliance for

NVIDIA GPUs, NVIDIA Technical White Paper

List of Publications

153

LIST OF PUBLICATIONS

[Domínguez et al., 2011a] J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira

and J.C. Marongiu (2011). Neighbour lists in Smoothed Particle

Hydrodynamics. International Journal for Numerical Methods in Fluids 67,

2026-2042.

[Crespo et al., 2011] A.J.C. Crespo, J.M. Domínguez, A.Barreiro, M. Gómez-

Gesteira and B.D. Rogers (2011). GPUs, a new tool of acceleration in CFD:

Efficiency and reliability on Smoothed Particle Hydrodynamics methods.

PLoS ONE 6 (6), e20685, DOI: 10.1371/journal.pone.0020685.

[Gómez-Gesteira et al., 2012a] M. Gómez-Gesteira, B.D. Rogers, A.J.C. Crespo,

R.A. Dalrymple, M. Narayanaswamy and J.M. Domínguez (2012). SPHysics

- development of a free-surface fluid solver- Part 1: Theory and Formulations.

Computers & Geosciences 48, 289-299.

[Gómez-Gesteira et al., 2012b] M. Gómez-Gesteira, A.J.C. Crespo, B.D. Rogers,

R.A. Dalrymple, J.M. Domínguez and A. Barreiro (2012). SPHysics -

development of a free-surface fluid solver- Part 2: Efficiency and test cases.

Computers & Geosciences 48, 300-307.

[Valdez-Balderas et al., 2012] D. Valdez-Balderas, J.M. Domínguez, A.J.C.

Crespo and B.D. Rogers (2012). Towards accelerating Smoothed Particle

Hydrodynamics simulations for free-surface flows on multi-GPU clusters.

Journal of Parallel and Distributed Computing, DOI:

10.1016/j.jpdc.2012.07.010.

[Domínguez et al., 2013a] J.M. Domínguez, A.J.C. Crespo and M. Gómez-

Gesteira (2013). Optimization strategies for CPU and GPU implementations of

List of Publications

154

a smoothed particle hydrodynamics method. Computer Physics

Communications 184(3), 617-627. DOI: 10.1016/j.cpc.2012.10.015.

[Domínguez et al., 2013b] J.M. Domínguez, A.J.C. Crespo, D. Valdez-Balderas,

B.D. Rogers and M. Gómez-Gesteira (2013). New multi-GPU implementation

for Smoothed Particle Hydrodynamics on heterogeneous clusters. Computer

Physics Communications 184(8), 1848-1860, DOI: 10.1016/j.cpc.2013.03.008

[Barreiro et al., 2013] A. Barreiro, A.J.C. Crespo, J.M. Domínguez and M.

Gómez-Gesteira (2013), Smoothed Particle Hydrodynamics for coastal

engineering problems. Computers and Structures 120(15), 96-106.

[Altomare et al., 2014a] C. Altomare, A.J.C. Crespo, B.D. Rogers, J.M.

Domínguez, X. Gironella and M. Gómez-Gesteira (2014). Numerical

modelling of armour block sea breakwater with Smoothed Particle

Hydrodynamics. Computers and Structures 130, 34-45.

[Barreiro et al., 2014] A. Barreiro, J.M. Domínguez, A.J.C. Crespo, H.

González-Jorge, D. Roca and M. Gómez-Gesteira (2014). Integration of UAV

photogrammetry and SPH modelling of fluids to study runoff on real terrains.

PLoS ONE, DOI: 10.1371/journal.pone.0111031.

[Crespo et al., 2014] A.J.C. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-

Gesteira, S. Longshaw, R. Canelas, R. Vacondio, A. Barreiro and O. García-

Feal (2014). DualSPHysics: open-source parallel CFD solver based on

Smoothed Particle Hydrodynamics (SPH). Computer Physics

Communications, DOI: 10.1016/j.cpc.2014.10.004.

[Altomare et al., 2014c] C. Altomare, A.J.C. Crespo, J.M. Domínguez, M.

Gómez-Gesteira, T. Suzuki and T. Verwaest (2014). Applicability of

Smoothed Particle Hydrodynamics for estimation of sea wave impact on

coastal structures. Coastal Engineering, submitted 2014.

[Canelas et al., 2014] R. Canelas, J.M. Domínguez, A.J.C. Crespo, M. Gómez-

Gesteira, R.M.L. Ferreira (2014). A Smooth Particle Hydrodynamics

discretization for the modelling of free surface flows and rigid body dynamics.

International Journal for Numerical Methods in Fluids, submitted 2014.

