UNIVERSIDAD DE VIGO
DEPARTAMENTO DE FiSICA APLICADA
Environmental Physics Laboratory

UniversidaggaVigo

PhD Thesis

DualSPHysics: Towards High Performance Computing
using SPHtechnique

Memoria Presentada por
José Manuel Dominguez Alonso
para obtar al titulo de DOCTOR POR LA UNIVERSIDAD DE VIGO
CON MENCION INTERNACIONAL
Septiembre, 2014

Informe del director

Dr. Alejandro Jacobo Cabrer@respo Contratado Juan de la Ciende la
Universidad de Vigp y Dr. Ramon GOmez GestejraCatedratico del
Departamento de Fisica Aplicada de la Universidad de Vigo:

CERTIFICAN
Que | a pr es eDondlSPHysws mMowardsa Higi Performance
Computingusing SPH technigue, resume el trabaj o de

bajo su direccion, por DON JOSE MANUEL DOMINGUEZ ALONSO en el
departamento de Fisica Aplicada en el programa de doctdeadtiencias del
Clima: Meteorologia, Oceanografia Fisica y Cantblimatico de la Facultad de
Ciencias de Ourense para optar al titulGld®CTOR POR LA UNIVERSIDAD
DE VIGO CON MENCION INTERNACIONALDS .

Y para que conste y en cumplimiento de la legislaciéon vigéintean el
presente informe en Ourens&3de Septiembe del 204.

Fda Dr. Alejandro Jacobo Fdo. Dr. Ramén Gomez Gesteira
Cabrera Crespo

Acknowledgements / Agradecimientos

En primer lugar me gustaria mostrar mi agradecimientdloncho por
abrirme las puertas del apasionante mundo de la investigacion, por su confianza y
su tiempo. A él le debo gran parte de las nuevas experiencias vividas estos afios,
los lugares que he visitado, las cosas que he aprendido. Aunque también las
noches sin dormir tratando de ir siempre un poco mas alla.

A Alex, mi director, comparfiero y amigo. Gracias por su ayuda inestimable
y todo su tiempo, tanto en el trabajo como fuera. Sin él, gran parte de lo
conseguido no hubiera sido posible.

A todos mis corpafieros de ahora y antes: Anxo, Orlando, FAamgel,
Xurxo, Isabel Alex y Maruxa que siempre logran hacer del trabajo un lugar
ameno. Sin olvidar a toda la gente del laboratorio.

To people in Manchester: Ben, Georgios, Athanasios and Abouzied, for
their hospitality and help when | wasvayfrom home.

A mis amigos de Orense: Diego, Noe, Sandra, Noelia, Victor, Dani, Carlos,
Edu y Marta, por estar siempre ahi y hacer imposible que me sintiese solo en esta
ciudad.

A mis amigos de siempre: David, Hugo, EvViatxo, Arancha, Nuria,
Borja, Vero, Alberto, Mar, Dosy, Lucy, Dulci, Juan, Fernando, Ester y Toni, por
los innumerables dias y noches que he disfrutado de su compaiiia.

A Patricia por su cari Yo, Ssu apoyo,
sabe que nosgfacil.

Muy en especial a mi madre, mi padre y mi hermana, que sin ellos no seria
nada. Por ese amor incondicional que por mucho que lo intente, nunca podré
devolverles en la misma medida en que lo recibo.

This work was partially supported B¥unta de Galicia undeAxudas de
apoio a4 etapa predoutoral do Plan Galego de Investigacion, Innovacion e
Crecemento 2012015, Axudas a grupos de investigacion do Campus de
Ourense (INOU2013)project Programa de Consolidacion e Estructuracion de
Unidades de Inastigacion Competitivas (Grupos de Referencia Competitiva),
funded by European Regional Development Fund (FEDER) and Ministerio de
Economia y Competitividad under project BIA2632676C03-03.

Abstract

Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly
used in Computational Fluid Dynamics (CFD). SPH is @dal technique to
simulate freesurface flows. Its range of application is very wide, ingigd
sloshing and flooding eventde design of coastal defencedams ordevices to
gener at e r en e Wa te¢cheiquescasdso g iused fér engineering
purposes in those problems involving the complex interaction between water and
structures. In general, all these problems involve lag®mains that should be
solved with fine resolution, which makes the model expensive in terms of
computational requirements. This is the reason whisse codes should be
optimized and acceleratad much as possible

The aim of this work is to use High Pemmance Computing tanprove a
Smoothed Particle Hydrodynamics model in order to develop a SPH code
capable of performing simulations of ré& applicationsat areasonable time.

The main goals to develop an optimized version of the ofurce code
DualSPHysics (http://dual.sphysics.org), which can be used both on classic CPUs
(Central Processing Unit) and novel GPUs (Graphics Processing Units).
DualSPHysics has been designed to be run on Hecwi@ CPUs, which is a
relatively common resource, buisa on GPUs. The GPU technology has
experienced a rapid development during the last few years and constitutes a fast
and cheap alternative to classical computation on CPUs. Nevertheless, a single
GPU is not enough to run large domains due to memory reagirs and huge
execution times. Thus, a mul@PU version of the code has also been developed.

In addition, preprocessing and pegirocessing tools have been developed to
take advantage of DualSPHysics capabilities.

SPH codes like DualSPHysics can be splinto three main steps; (i)
generation of a neighbour list, (i) computation of forces between particles and
(i) integration in time of thephysical quantitiesof all particles The step
devoted to compute forces consumes more than 90% odtddexeaition time,
whereby it is thekey stepto be accelerated. However, its implementation and
performance depends greatly on the previous step (neighbour list generation)
therefore a study about different neighbour list approaslassfirstcarried out.

The ue of Celllinked list and Verlet list with several variatiors compared,

being the Cellinked list chosen to be implemented since it provides the best
balance between performance and usage of memory.

Four optimizations are implemented for the CPU cod®ualSPHysics.
The first one applies symmetry in particle interactions, the second one divides the
domain into smaller cells, the third one uses SSE instruction and the fourth one
uses OpenMP to implement mudidbre executions. Three different approacbies
the multicore implementation are presented. The most efficient OpenMP
implementation outperforms the singlere by 4.6 using the available 8 logical
cores provided by the CPU hardware used in this study.

CUDA (Compute Unified Device Architecture) issed to exploit the huge
parallel power of preserstay GPUs and several optimizations are presented for
the GPU implementations; maximization of occupancy to hide memory latency,
reduction of global memory accesses to avoid-cmaesced memory accesses,
simplification of the neighbour search, optimization of the interaction kernel and
division of the domain into smaller cells to reduce code divergence. The GPU
parallel computing developed here can accelerate serial SPH codes with a
speedup of 56.2x whening the Fermi GPU, but this speedup rises to 148.8x
using the latest GPU GTX Titan. Finally, the speedup of the latest GPU over a
multi-core CPU is more than 33x when using an optimised +tiuktiaded
approach.

The multtGPU approach includes CUDA and MiPMessage Passing
Interface) programming languages to combine the parallel performance of
several GPUs in a host machine or in multiple machines connected by a network.
The multtGPU implementation has shown an efficiency close to 100% using
128 GPUs of th®&arcelona Supercomputing Center, whemiBion particles per
GPU have been simulated. Moreover, an application with more tHgratttles
is presented to show the capability of the code to handle simulationsdtikat
require large CPU clusters or supomputerstherwise.

Finally, an efficient solution was implemented to avoid some problems of
precision that can appear when the simulatimolvesa very large domain and
very high resolution.

Table of contents

TABLE OF CONTENTS

TABLE OF CONTENTS ..ot I
LIST OF FIGURES ...t rerne e AV
LIST OF TABLES ... et vnmme e e Xl
NOMENCLATURE ..o e ennme s XII
1. INTRODUCTION ..o ceremr et mmmr e 1
1.1 NUMERICAL MODELING ..ttttuuuuaaaaeeeeeeaaaeeetimaaaasaeeeaseaateeeessssssnsimmmseseeeessnssnes 1
1.2 SMOOTHED PARTICLE HYDRODYNAMICSccctutiineeaiieiinieeeeaeaseeseeennnnaeanss 2
1.3 HIGH PERFORMANCE COMPUTING ...tuuuuuiiiaeiaeeaeeaaeeeeeimnmaaeeeeeeeaeeeeeeessnnsnnnnns 3
1.3.1 OpenMP (Open MUultProcessing)............ccccccvvvvvvviimmmnnceinnnnnnnnnn 4
1.3.2 MPI (Message Passing Interface)...............vvvviiiccreeeevvevvnicenn, 5
1.3.3 GPGPU (GenerdPurpose Computing on Graphics Processing Urts)
1.4 DUAL SPHYSICS PROJECT ...uiiiiiieeeieeeeiieeeiiiiinnneeeeeeeeeeeessesnnnnnnnssmmmeesssssnnnnd
1.5 THESIS OULTINE uuituiiitiieiteeitee et e eemmes e e e e et e e e e e ean e e sammnn e e eneeenaeaneeennnees 10
2. SPH FORMULATION ...t eeemme e 13
2.1 THE SMOOTHING KERNEL ..ccvuuiiiiiiieieiiieesetinsesesssessneeeesnnsesessnsesssnmmssnneesees 14
2.2 MOMENTUM EQUATIONciitiiiiiieii et eeeee et eemmaae e e e eens 16
2.2.1 Artificial VISCOSItY......uvuuuiiiiiiie e ceeeiee e eeeeeeee e 16
2.2.2 Laminar viscosity and SuBatrticle Scale (SPS) Turbulence........ 16
2.3 CONTINUITY BEQUATION ettt et et e et e et et e et smmm s s aaanas 18
2.4 EQUATION OF STATE ..iiuuiiitieiiieeitieeiteetimmeaeeeteeetaeestaeesneestnamreeesneesneessnaes 19
2.5 PARTICLE MOTION ..iiiiiuiiiiiiieeiiieeeeti e s e e et e e e eaa s e e eas e e s enmmessnaeseann e eennns 19
2.6 SHEPARD FILTER ..uuiiiiiiiiii it emme e e e e et emmea e e e e e e e e e e e ennns 20
2.7 TIME STEPPING ...ctuittttuetetteesettssaeneesatneeeatnseeessneeessmmnsaeaessneaesnnsesesnnnns 20
2.7.1 Verlet SChEME.......oiiieiiiee e eeeer e e e 21
2.7.2 SYmMPpIectiC SChEME..........ovvivice e 21
2.73 Variable TimMe STEP.........uuuuiiiiiiiiiiiiii e 22
2.8 BOUNDARY CONDITIONS ..uuiititunieeitueeessneesenmmsssseeessneesssneeessnnsmnnsesssnneeees 23
2.8.1 Dynamic Boundary Condition............ccoeeeeeiiiiiiiccceeee e 23
2.8.2 Periodic Open Boundary Conditian............ccccevviiiiiceeieeeneiiiinnn, 23
2.8.3 Preimposed Boundary MotiQn............coooieeiiimiimmnnn e 24
2.8.4 Fluid-driven ODJECtS.........coiiiiiiiie e eeeee e 24
3. NEIGHBOUR LIST IMPLE MENTATIONccocoviiiiiieiieeeeeee, 27

Table of contents

3.1 STEPS OF THE SPHCODE ...ttt emr e 28
I I =S 07X = 29
3.3 DIFFERENT AP PROACHES OF NEIGHBOUR LIST ...ciiviiiiiiiiiiieeieceieceemeee e 30
CPU ACCELERATION .ot iemie e e 41
4.1 CPUOPTIMIZATIONS .iituiiuiitiitieteetieensinmats st et sens st esses e ssanersneenss 41
4.1.1 Applying symmetry to partickparticle interaction......................... 41
4.1.2 Splitting the domain into smaller cells............ccevviiiiiiieeciiiiiieeee, 42
4.1.3 Using SSE INSIUCLIONS..........ccovvveiiiiiiiiimmmeeeeeeeeveeaaaiee e eennnes 43
4.2 OPENMP IMPLEMENTATION iuuiiuiieniiinietieen it eeimneeteeasesnsesnsenssnsssmnnesnses 44
G T 4 =T I S T 46
GPU ACCELERAT ION ..eimeee e e 49
5.1 CUDA PROGRAMMING MODEL ..ccutivniiiniitiieiieineetscemmteenssansesnsenesnsssn s enmnns 49
5.2 CUDA IMPLEMENTATION ivuiiitiiiitieeeteesteestimsesesnessnessneessnseesnsmnnssnesnnns 51
5.3 GPU OPTIMIZATIONS .eiitniitiiitiii i ceeme e e e s e e s ea s emmmsasea e eneeenees 57
5.3.1 Maximizing the occupancy of GRU.........ccccoeeiiiiiiiiceeiiieeee 57
5.3.2 Reducing global memory acCesses..........ccceeeevvivivieeeii e 59
5.3.3 Simplifying the neighbor search...............ccccovie s 59
5.3.4 Adding a more specific CUDA kernel of interaction.................... 60
5.3.5 Division of the domain into smaller cells..........ccooovviiiiiiiiceeennnnn! 61
LT A 4 =1 U] I 61
5.5 PERFORMANCE WITH THE LATEST GPU (AUGUST 2014).........cccevvvvvrninnns 65
MULTI -GPU ACCELERATION ..o 69
6.1 MPI IMPLEMENTATION cituiittienienieteeteensrmmreeenssassetesnsssnsesnssrmnesanseneenss 71
6.1.1 Subdivision of the dOMaAIN.............oiiiiiiiiiiiiie e 73
6.1.2 Communication amMONQg PrOCESSESuuuurrrrrrrreeeeeeeemrerrereeeeeeaaaaaess 75
6.1.3 Dynamic load balancing...........cccceeeeeeiieeceeciiiiiceie e eeeeeeeeeenn 77
T =1 = 79
6.2.1 Testcases and hardWare............coooevveiiiieemeiiieeeie e eeeen e 79
6.2.2 Applying dynamic load balancing in a homogeneous cluster.....81
6.2.3 Applying dynamic load balancing in a heterogeneous cluster.....82
6.2.4 Efficiency and scalablyccccuiiiiiiiieeci e 83
6.2.5 Bottlenecks: Loss of effiCienCy.............uuvviiiiiiiiccccceee e 86
6.2.6 MEMOrY reqUIrEMENTS......cuiiiiiiiiieeeeee e 88
6.3 APPLICABILITY TO REAL ISTIC PROBLEMS ...ivviiiiiiiiiiiieeniiieetimnmeieeneeeneenns 89
DOUBLE PRECISION ... e 93
7.1 THE PROBLEM OF PRECISION ...utuituitnitneteteteeeemeessasanssnsssssansssnnnaesnss 93
7.2 SOLUTIONS USING DOUBL E PRECISION ...cuuivniiiniiieetieneesnsmnmtneesneenesneesneees 96
7.2.1 Solution FUIIDOUDBIE..........coouiieeee e 96
7.2.2 Solution POSDOUDLE.........ccuiiiiiiee e 96
7.2.3 SOIUtION POSCEIL.....coveiiieeeeee e 96
7.2.4 Solution POSDOUDIEFASL..........oovviiiiiiiceee e 98
7.3 PERFORMANCEuicutittiiteiteet ettt immss st s et eetssssseanses s snmnsessssnsssnserseraernes Q9
CONCLUSIONS AND FUTURE WORK ...ccviiiiiiiiieeee e, 103
8.1 CONCLUSIONS ..utittiiiiitieet ittt e ser et s et st e et s et ses st nrsaesbaseb s esnessnseaanns 103
8.1.1 NeighbOUr LiST......cooiiiiiiiiiiiteees s eeee e 103

Table of contents

8.1.2 CPU ACCEIBIAtION.......uiiviiiii it eeeme e eaaas 104

8.13 GPU ACCEIEIatiON........cevvviiiii e evenme e 104

8.1.4 Multi-GPU ACCEleration..........cuuvieuiiiiiiiieee e e e 105

8.1.5 ISSUE Of PreCiSION.......ccceiviiiieeiiiiiieeee e e 106

8.2 FUTURE WORK cutiitiiii ittt e e et e et s et s e s e e st seaeenas 106

A. DUALSPHYSICS DOCUMENTATION ..cooiiiiiiiiiieemee, 107
YA R o 18 = o = = [= 107

A2 COMPILATION 1uuiitieiitieitieeeteetteeemmeteesteesteestessneernmntessneessneessresseees 110
A3 FILES AND FORMAT tutittiitiiitiitiitieetiesmreeen et setesnessnssan et snemrsssnsansranaens 110

A.4 RUNNING DUALSPHYSICS.. oot ceemt et eemma e 112

B. PRE-PROCESSING TOOLS.......coiiiiieee e 115
B.1 PARTICLE GENERATION ..ituitiiuitiitiitietiisesimmmtesseseeseeseeseeserseesimnnsesseeseees 116
B.1.1 Predefined ObJECIS........cvvviiiiiiic et 118

B.1.2 EXternal ODJECTS.cooeiiiiiiiiee e 118

B.1.3 Filling algorithm..............cooiiiiiieee e 119

B.1.4 Other design to0IS..........oooiiiiiiiiie e eeer e 120

B.2 FLOATING OBJIECTS ..ivtuiiitiiiiieitiieetiessimmeeeteeeteeeteesteesssannesssnsssnessnnns 122

B.3 INITIAL CONDITIONS eutituiitniitieniitneetesreeeaseenseanseassnssansssmnnranssrssnreanss 123

B.4 MOVEMENT DEFINITION ivuuiituiitteitnieetnesrmmeessnesesneesseessesssmneessneesns 125

B.5 NORMAL VECTORS ..itiitiitiitiitiitiit it et imemteeseeaeeseeseraeessessesimnmseesseneenseneene 126

B.6 EXAM PLES AND PERFORMANCEucivuiitteitieeetnieinmmteeetesesneesnessnessnnns 127
B.6.1 TESICASE SINK...uiivniiiiiiii e e e e e e e e 128

B.6.2 TESICASE MIXBE ... cieveiiiiiiieiei e eeeer e e e e e e e e eaas 129

B.6.3 TESICASE PUMP.....coiiiiiiiiiiiiiie e 130

B.6.4 Testcase MiNi COOPEL.......cccceveeiiieeiieiiiieeeee e 130

TR 4= Y = 1 T 131

C. POST-PROCESSING TOOLS. ...t 133
Ot T = = Y I 133
C.2 MEASURET OOL «.cviiitiieniii e iee e et tem s et et s e e s st s sa s smmn s sassnssanseansenses 134

C.3 I SOSURFACE ...uiitii ittt mee et e e et e e e e mee b s s e e b s e b e ea e anebans 135
(O 5 =T | V- 1 = 136
C.5 BOUNDARYVTK ittt ermmt e e e e e 137
C.6 MEASUREBOXEScivniitiiiiitiiee s iemm e e et e et s e s rmm s sea s e e e e eaas 138

O A I =¥ Yo = AV I < 139
BIBLIOGRAPHY oot mrmr e e e 141
LIST OF PUBLICATIONS ... et 153

List of figures

LIST OF FIGURES

Figure 11. FloatingPoint Operations per Second for the CPU and GPU (source:
CUDA Programming GUIAE VB.5).........oiiiiiiiiiieieiiccin e eeee s 6

Figure 2. DUaISPHYSICS WEDSITE........oiiiiiiiiiiiiiiii e vneme e 9
Figure 3. Number of code lines in the programs of DualSPHysics projetd

Figure 4. Number of individual files in the programs of DualSPHysics project.

.. 10
Figure 21 Cubic Spline kerneand its derivative divided by the dimensional
FACTIOT @ ceiiiiii i 15
Figure 22. Quintic kernel and its derivative divided by the dimensional factor
T 15
Figure 31. Conceptual diagram summarising the implementation of a SPH code.
.. 27
Figure 32. Different instants of the dam break evolution using 300,000 particles.
.. 29
Figure 33. Sketch of the Celinked list (CLL).........uuuviiiiiiiiiiiiiiiiieeeeeeeeeeeas 32
Figure 34. Sketch othe Verlet list (VL)....cocoveoiiiieiiiieiee e 34

Figure 35. Computational runtime of different approaches for neighbour. 85t.
Figure 36. Memory requirements of different approaches for neighbour.|&5.

Figure 37. Improvement in time usingLc andVLx compared t€CLL. All cases
were calculated with N=31,239.........cccoiiiiiiiiiiiiimreiein e nnme e 36

Figure 38. Allocated memory irCLL, VLyx andVLc. All cases were calculated
WITh N=31,239... ittt rr e e e e e e aneeas 36

Figure 39. Improvement comparison betweéhy andVL referred toCLL. ...37

Figure 310. Comparison betweeWLy with and without kernel gradient
correction (KGC). The improvement is referredCtiol..............ccceveeiivveiiicanes 38

List of figures

Figure 41. Interaction cells in 3D without (left) and with (right) symmetry in
particle interactions. Each cell interacts with 14 cells (right) instead ¢ERY.

Figure 42. Sketch of 3D interaction with close cells using symmetry. The
volume searched using cells of side 2h (pefhels) is bigger than using cells of
side h (right PaNeIS).......ccoveviiiiiii e e A3

Figure 43. Sketch Pseudocode in C++ showing the force computaitween
the particles of two cells without vectorial instructions (up) and grouping in
blocks of 4 pakwise of interaction using SSE instructions (down)............44

Figure 44. Example of dynamic distribution of cells (in blocks of 4) among 3
execution threads according to the execution time of each.cell................ 45

Figure 45. Speedup achieved on CPU for different number of particles (N) when
applying symmetry, the use of SSE instructions. Two different cell sthesn(d
2h/2) Were CONSIAEIEA.oi i e e e e eeeed 47

Figure 46. Speedup achieved on CPU for different number of particles (N) with
different OpenMP implementations (using 8 logical threads) in companigbn
the most efficient singleore version that includes all the previous optimizations.

Figure 51. Grid of thread blocks i€@UDA (source: CUDA Programming Guide
1718) PSSP RURRRRR 50

Figure 52. Memory hierarchy (source: CUDA Programming Guide v6.5)51
Figure 53. Conceptual diagram of the partial (left) and full (right) GPU

implementation of the SPH code..........ccoooiiiiiiiiiiieee, 52

Figure 54. Example of the Neighbour list procedure................ooooeiiiieee 54

Figure 55. Pseudocode of the System update procedure implemented on CPU
AN GPU ... e —————— 55

Figure 56. Pseudocode of the Particle interaction procedure implemented on
CPU ANd GPU.... . eeees 56

Figure 57. Occupancy of the GPU for different number of registers with a
variable and a fixed block size of 256 threads............cccccoovviiiceeiiiin, 58

Figure 58. Interaction cells in 3D without symmetry but using 9 ranges of three
consecutive cells (right) instead of 27 cells (left)........cccccoeeeviiiiiceceeiee s 60

Figure 59. Computational runtimes (in seconds) using GTX 480 for different
GPU implementations (partial, full and optimized) when simulating 500,000
= 1o 1 RPN 63

Figure 510. Memory usage for different GPU versions implemented in
DT F= TS o 1] oV 65

Figure 511. Runtimes for different CPU and GPU implementations......... 65

Vi

List of figures

Figure 512. Runtime for CPU and diffene GPU cards............ccccccceiiiiiieeneee 66
Figure 513. Speedups of GPU against CPU simulating 1 million particle€7

Figure 514. Computational runtime distribution on CPU and GPU simulating 1
million particles. Neighbour List corresponds to blue bars, Particle Interaotion t

red bars and System Update to the green.bars.............coovvvieceeeeieerennnnnn. 67
Figure 515. Maximum number of particles simulated with different GPU cards
USNG DUAISPHYSICS COUE.......uuuiiiiiiieiiiiieiiieeee ettt eerree e eeaaeees 68
Figure 61. Scheme of technologies and its scope of application.............. 70
Figure 62. Domain subdivision in fOur ProCeSSES.........ooevvvvvvevivivimmmreeerinnns 73
Figure 63. Example of subdivision of a domain (halos and edges)........... 4
Figure 64. Scheme of the commications among 3 MPI processes........... 76

Figure 65. Example of the dynamic balancing scheme between 2 GRUs78
Figure 66. Testcasel: Dam break flow impacting on a structure.............. 79
Figure 67. Testcase2: Dam break floW..........ccocovvviiiiiiieeen 80

Figure 68. Different instants of the simulation of testcasel when using the
dynamic load balancing according to the number of particles.................. 31

Figure 69. Distribution of the fluid particles and execution times of force
computation among the 3 GPUs of system #1a Usid balancing according to
the number of PartiCIES..... ... 82

Figure 610. Distribution of the fluid particles and execution times afcdo
computation among the 3 different GPUs of system #1b using load balancing
according to the number of particleS.........cccccoovieveiiceceei e 82

Figure 611. Distribution of the fluid particles and execution times of force
computation among the 3 different GPUs of system #1b using load balancing
according to the computation tIMEe..........oveevriiiiii e ieree e e e 83

Figure 612. Execution times of the 3 GPUs of the system #1b used individually
and together applying dynamic load balancing...........cccccccov i, 383

Figure 613. Speedup for different number of GPUs using strong and weak
scaling with the hardware systems #1a, #2 and. #3...............cco e, 85

Figure 614. Percentage of time dedicated to tasks exclusive of the-Gfelli
executions using the System £3.........coo oo 86

Figure 615. Percentage of the computational time dedicated to specific MPI
tasks simulating 16M particles using different number of Tesla M2050 GPUs
(left) and simulating dferent number of particles with 16 Tesla M2050 (right).
.. 87

Vii

List of figures

Figure 616. Percentage of time dedicated to tasks exclusive of thie-GfU
executions including the latest improvements (using the system.#2)........ 88

Figure 617. Maximum number of particles that cd&® simulated for the
testcase2 with the systems #1a, #2 and.#3.............ccoovvvvieee e 89

Figure 618. Realistic dimensions of the oil rig simulatedha application....90

Figure 619. Different instants (2.2s, 3.2s and 10s) of the simulation of a large

wave interacting with an oilg using more than 109 patrticles..................... 90
Figure 71. Testbed to study problems of precisian.............ccccoeeeevveeeeennnn. 93
Figure 72. Different instants of the simulation of the testhed.................... 95
Figure 73. Relative error in the distance between two particles interacting using
double and single precision for different particle positians....................... 95
Figure 74. Different instants of the previous simulation improving precision in
the position Of the PartiCleS ..o 97
Figure 75. Relative error in the position of the particles for different distances to
zero and using different approaches............cccvvvviiicriiceiicic e 98
Figure 76. Loss of efficiency compared with simple precision simulations using
a 3D darrbreak with 4M partiCles...........oouvvviiiiiiii e 99
Figure 77. Percentage of occupancy according to the number of registers and
compute capability Of GPU...........ccooeiiiii e e 100
Figure B1. Generation of a 2D triangle..............coovviiiiiiieeeiiiiiiiiind 117

Figure B2. Discretization accuracy for different number of particles.The
absolute measures of the object are 0.39 x 0.46 X.0.42..........ccceeevveviennn. 117

FigureB3. Some predefined object.s.....1b80x, spht

FigureB4 . Basi c shapes..fis.ol.i.da..and. 168 ace o0 .
Figure B5. Mixer: 3D model (left) and point distribution (right)............... 119
Figure B6. Filling an irregular beach with fluid................ccccoov v, 120
Figure B7. Example of rotation @ahscaling of a 3D model......................... 121
Figure B8. Creating a balustrade starting from a primitive element........ 121
Figure B9. Merging objects with different label..............ccccccoo v, 121

Figure B10. Gravity center and inertia (lower pannel) computed starting from
different particle distributions (upper pannel)............cccoiiiiiiiieciiiiiiieee, 122

Figure B11. Different initial configurations depending on the value of lattice for
fluid (blue points) and boundary (black points) particles..............ccccev... 123

viii

List of figures

Figure B12. Initial density diStribution...........ccooviiiiiiiiiieee e 124
Figure B13. Mixing Of tWO flUIdS.........coooiiiiiiiiiiiiii e 124
Figure B14. Different instants of a pendulum movemguotational, circular and
rectilinear sinUSOIdal)............ooouiiiiiiii e 125
Figure B15. Mixer as an example of hierarchy of movemenits................ 126
Figure B16. Normal vector (n) computation for a triangle....................... 126
Figure B17. Normal vector computation for a 3D object......................... 127
Figure B18. Sink wth floating object (polygons and particles)................. 128
Figure B19. Execution runtimes for the Sink.............ccceeiviiiiiiceeiiiee, 129
Figure B20. Mixer (polygons and particleS).........ccccceeeveeveiiiicccieiee e, 129
Figure B21. Execution runtimes for the MiXer............ccccovvvvvivvimeeniiieeinnnns 129
Figure B22. Pump (polygons and particles)........ccccceevveeveivicccieieeeeeeinnnn 130
Figure B23. Execution runtimes for the Pump.........ccccccovviiiiiiicccieene e, 130
Figure B24. Mini Cooper (polygons and Wir€)........cccceeeeevevevvvvimmmneeeeennnnns 131
Figure B25. Execution runtimes for the MinidBper..........c.cccevevviveeieiiiicenes 131
Figure G1. Visualisation of density from a fluid block of particles............ 133

Figure G2. Example of graph with wave elevation at a specific position.134
Figure G3. Visualises the wave elevation for a slice of fluid.................... 134

Figure G4. Conversion of points to surfaces, from particles to isosurfac#35

Figure G5. Original isosurface of fluid (left) and simplified isosurface by
Decimate program with a reduction t0 10%............covevvieiiiicceiee e, 136
Figure G6. Floating body movement represented using a haox............... 137

Figure G7. Appliactionof MeasureBoxes to measure a flow at complex terrain.

Figure G8. Waves interaction with a coastal structure consistirgntfers and
trajectories of fluid particles between antifers..........cccccceeiviiiiiceeeiiiie e, 139

List of tables

LIST OF TABLES

Table 31. Comparison of Celinked list (CLL) and Verlet list YL): percentage
of the total runtime of the datreak simulation using 300,000 particles....31

Table 41. Speedup achieved on CPU simulating 300,000 particles when using 4

and 8 threads compared to the single CPU version...........ccccccevvveeeereeeennn 48
Table 51. Technical specifications of GPUs according to the compute capability.
.. 58
Table 52. List of variables needed to calculate forces.............cccoevvvvvieeen.. 59

Table 53. Improvenent achieved on GPU simulating 1 million particles when
applying the different GPU optimizations using GTX 480 and Tesla 106@%2

Table 54. Results of the CPU and GPU simulations.............ccccooeeevieeeennn. 64
Table 55. Specifications of different execution devices.............cccceeeeveneeee. 66
Table 61. Features of the different systems used..............cccccoevieeeeneeeenns 80
Table 62. Formulae to measure efficiency and scalability........................ 84
Table 71. Dowble precision implementations..............cccoooiiiiieeeiiiiiiiiienee, 98
Table A1. List of source files of DualSPHysics code.............cccccevvevvieeen. 107

Table A2. List of source files of DualSPHysics code not related to the SPH
510 1V RN 108

Table A-3. List of source files of DualSPHysics code for the SPH execulif.

Table A4. List of source files of DualSPHysics code for the SPH execution on

P UL e e e e e e e e e e e e ennnr e 109
Table AS5. List of source files of DualSPHysics code for the SPH execution on
GPU enenraaaaaaaaarees 109
Table A6. List of execution parametersDtialSPHysICS............ccceeeeee. 113

Xi

List of tables

Table Bl. Features Of the CASES. ... 127

Xii

Nomenclature

NOMENCLATURE

Symbol

Definition

Abitrary function.

Speed of sound.

Particle spacing.

Force per unit mass.

Gravity force.

Smoothing length.

Particle where the interpolation is performed.

Neighbouring particle.

. o
ol | |=+gom

=

Unit vectors

Particle mass

Mass of the floating object

Particle pressure

Non-dimensional distance between particleb)(

Distance between particles

Position vector

Py
S

Centre of mass of the floating object

Time

Velocity

Smoothing kernel

Zeroth order corrected kernel

Artificial viscosity parameter

Kernel normalisation factor

Polytropic index

Dirac function

Time step

o |Qlc|e|F =S |< |~

Dynamic viscosity

W
o

Laminar kinematic viscosity

Artificial viscosity term

~|T0

Particle density

Reference density

Rotational velocity of the floating object

xiii

Chapter 1. Introduction

1. INTRODUCTION

In this first chapter, a general overview of the numerical methods and, more
specifically, of the Smoothed Particle Hydrodynamics (SPH) method is provided.
The advantages and disadvantages of the SPH methods when compared with
other methods are also described. Furthermore, different High Performance
Computing techniques are presahto accelerate the SPH method. Finally, the
DualSPHysics code is presented.

1.1 NUMERICAL MODELING

Nature can be modelled looking for analytical solutions of the equations that
define a system (or mathematical model). Once the equations are validated, the
behaviour of the system can be predicted tuning some parameters and imposing a
set of initial conditions. The numerical modelling looks for solving these
equations in a numerical way instead of analytically. So that, designing
algorithms that use numbers asmnnple mathematical rules that can simulate
complex processes of the real world. The numerical simulation is a powerful tool
that allows for understanding the behaviour of complex systems and even for
predicting their evolution starting from initial cotidns. Numerical modelling
becomes more important with the arrival of the computers since these machines
can perform thousands of million mathematical operations per second. This
allows for the simulation of very complex systems in few time using simple
mathematical operations.

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that studies
the behaviour of the fluids using numerical modelling. The main advantage of
this technique is the capability to simulate complex scenarios and provide
physical data that can be difficult, or even impossible, to measure in a real model.
Despite of the accuracy of the numerical models, these cannot replace the

Chapter 1. Introduction

construction of scale models, but they can reduce significantly the number of
physical tests. Thideads to an important saving since the construction of
physical models is very expensive and slow.

There are two numerical approaches to describe the fluid motion; Eulerian and
Lagrangian. The Eulerian approach solves the equations at the fixed naes of
mesh. In the Lagrangian description, the positions where equations are solved
move with the fluid and a fixed mesh is not used. The meshbased methods (finite
elements, finite differences and finite volumes) are currently very robust, well
developed and dve been applied to a wide range of applications providing
highly accurate results. These meshbased methods are ideal for systems where
the domain is perfectly defined and for simulations where the boundaries remain
fixed. However the creation of the mesdn be very inefficient if the system is
complex. In recent years, numerous meshless methods have appeared and grown
in popularity as they can be applied to problems that are highly nonlinear in
arbitrarily complex geometries and are difficult for méstied methods. Within

the meshless methods now available, Smoothed Particle Hydrodynamics (SPH)
is, possibly, the most popular and has attained the required level of maturity to be
used for engineering purposes.

1.2 SMOOTHED PARTICLE HYDRODYNAMICS

Smoothed Partie Hydrodynamics (SPH) is a Lagrangian meshless method that
is increasingly used for an extensive range of applications within the field of
Computational Fluid Dynamics (CFD). Originally invented for astrophysics
during the seventied_{icy, 1977 Gingold and Monaghan, 19/7t has been
applied in many different fields atuding fluid dynamics and solid mechanics.
The method uses patrticles to represent a fluid and these particles move according
to the governing dynamics. More complete description of the SPH formulation is
found in Chapte 2. When simulating fresurface flows, the Lagrangian nature

of SPH allows the domain to be multiptpnnected, with no need of a special
treatment of the surface, making the technique ideal for studying violent free
surface motion.

SPH has been useddescribe a variety of fregurface flows (wave propagation
over a beach, plunging breakers, impact on structures and dam breaks).
[Monaghan, 199 presented thefirst attempt to study fresurface flows.
Monaghan also studied the behaviour of gravity curremorfpghan, 1999,

2

Chapter 1. Introduction

solitary waves (flonaghan et al., 199Pand wave arrival at a beactMpnaghan
and Kos, 199P. Later on, themodel was applied to the study of the wave
structure interaction such as i@dlagrossi and Landrini, 20D8hat considered
the study of interfaal flows. The classical dafioreak problem was also studied
in 3D by [GomezGesteira and Dalrymple, 20P4Within the area of coastal
engineering SPH was firstly employed to study walkesakwater interaction in
[Gotoh et al., 2004and [Shao, 200f and to predict wave impact pressure due to
sloshing waves inkhayyer and Gotoh, 2009

However, the high computational cost @ important drawback of this
technique. Thus, a short period of physical time applications requires a large
execution time when running on a single Central Processing Unit (CPU) due to
the large number of interactions for each particle at each timestep.h@hi
hindered the development of SPH and its industrial use to solve real problems.
Hence, the ability to perform computations involving millions of particles in a
reasonable time is essential to perform simulations that are industrially relevant.
However this is only possible if some hardware acceleration techniques are
employed.

1.3 HIGH PERFORMANCE COMPUTING

High Performance Computing (HPC) is a very dynamic field that deals with the
study and usage of new computational resources and technologies. isstaim
solve very complex problems that require high computational capacity so that
cannot be solved with conventional computer systems, making necessary the use
of clusters or supercomputers. A supercomputer is a computer with a very high
computational spmd dedicated on the execution of parallel operations and
designed for intensive computation. These are extremely expensive machines. On
the other hand, a cluster is a collection of computers connected through a high
speed network and considered as a singdehine. This is a cheaper option as it
can be integrated by more conventional machines, which currently have high
performance at very low prices. They also offer the possibility to extend their
computing capacity, theoretically unlimited, by simply agdmore computers.

HPC includes multiple techniques of parallel computing and distributed
computing. In the main, parallel computing consists of executing several
operations simultaneously.

Chapter 1. Introduction

This parallelism can be applied at instructlemel, since curnet processors
divide the execution of an instruction in several stages, so they can keep running
several instructions at different stages (instruction pipelines). In addition, the
superscalar microprocessors can execute multiple instructions simultaneously
when there is no data dependency among them. Theletask parallelism
consists of dividing a volume of data into different computing nodes to perform
the same set of operations. Finally, the ti@siel parallelism distributes the
execution of differentcomputations, on the same or different data, among
multiple processing units.

Parallel computing can be applied with hardware of shared memory in which a
machine has one or more processors that use the same memory space. In this case
the more extended ttsof programming ar@threads[Buttlar et al, 199 and
OpenMP {Chandraet al, 1996 Chandraet al, 2003 that can be considered as

the standard for this kind of systems with shared mentrg to the advantages

over other standard paralHefogramming modelsdQagum and Menon, 1998
Parallel computing can be also appliedh systems of distributed memory in
which each processor is associated with a memory space and cannot directly
acacess to the memory associated with other processors. In these systems, the data
exchange between processors must be carried out explicitly using a message
passing model. The most common options for this kind of programming are
PVM [Geistet al, 1994, BSP Bisseling, 200ffand MPI [Pachecol1996 Snir et

al., 1998 Groppet al, 1999 that is the standard one.

It is also important to note that in recent years, tise of speciapurpose
processors as general purpose parallel systems are becoming increasingly
important in HPC. Hence, Processing Graphics Units (GPU), Digital Signal
Processors (DSP), Field Programmable Gate Array (FPGA) and other systems
are used ascgentific computer systems rather than for its original purpose.

The following explains in more detail the main HPC techniques used to
accelerate SPH.

1.3.1 OpenMP (Open Multi-Processing)

OpenMP [http://www.openmp.org is a model of parallel programming for
systems of shared memory. It provides an Application Program Interface (API)
in C, C++ and Fortran applications. OpenMP is a portable and flexible
programming interface where multiple threads of execution perforiks tas

4

Chapter 1. Introduction

defined by OpenMP directives. Its implementation does not involve major
changes in the code. Using OpenMP, multiple threads for a process can be easily
created. These threads are distributed among all the cores of the CPU sharing the
memory. Thus, therés no need to duplicate data or to transfer information
among threads. For these reasons OpenMP is the best option to optimize the
performance of the multiple cores of the current CRUark, 1998.

1.3.2 MPI (Message Passing Interface)

MPI is a messagpassing library specification for parallel computers and
clusters where a distributed memory system is ugil.is not a language or a
compile or a specific implementation, it simply defines a library of functions
that can be calledrom C, C++, and Fortran programs. In this parallel
programming model, an execution consists of one or more processes that
communicate by calling routines of a By to send and receive messages
among processes. Although designed for distributed memory systems, its use
with shared memory systems can lead to an improvement since MPI encourages
memory locality. The use of MPI is typically combined with OpenMP intelss

by using a hybrid communication model. In this way, within each machine, the
processors directly access the shared memory and the message exchange with
MPI is used to share information among processes of different machines.

The first implementation fo MPI standard was MPICH [http://wwav
unix.mcs.anl.gov/mpi/mpichl]. Other implementations are LRI
[http://www.lammpi.org/] and more recently, OpenMPI [http://www.open
mpi.org] that is an opesource distribution of the MPI2 specification.

1.3.3 GPGPU (Generd-Purpose Computing on Graphics
Processing Units)

GPGPU involves the study and use of parallel computing ability of a GPU to
perform general purpose programs. Graphics Processing Units are powerful
parallel processors originally designed for graphics nemgle Due to the
development of the video games market and multimedia, their computing power
has increased much faster than CPUs [Sgare 1-1). Therefore GPUs cabe

used for scientific applications achieving speedups of 100x or more. This joined
to their very low cost and that GPUs can be used on a personal computer made
GPGPU very popular in recent yeafBwWenset al, 2007 Nickolls and Dally

201Q. In fact, new computation centres based on GPUs are emerging driven by

5

Chapter 1. Introduction

their computing power and comparatively low energy costs per KE@Rting

point Operations Per Secorid)jcinstoshSmith et al., 2012 Indeed, the current
number two of the TOP500 List of the
June 2014 [http://www.top500.org/lists/201dJ0ds Titan, a Cray XK7 system

that has 560,640 processors, including 18,68&lid K20x accelerator GPU
cards.

Theoretical GFLOP/s 5 A
CUDA Programming Guide v6.5

5750
5500
5250
5000

4750
4500 Intel CPU Double Precision

4250 emgmm|ntel CPU Single Precision

4000
3750
3500
3250
3000
2750
2500
2250
2000
1750 Testa K40
1500 Tesla K20X
1250

1000 Tesla M2090

NVIDIA GPU Single Precision
e NVIDIA GPU Double Precision

750 Tesla C2050
500 Tesla C1060

Harpertown
250 Woodcrest P

vy Bridge
Sandy Bridge.

&

0 Pentium4. hd Bloomfield Westmere
Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

Figure1-1. FloatingPoint Operations per Second for the CPU and GPU (source:
CUDA Programmig Guide v6.5)

GPUs are optimized for floatirgoint parallel operations, it is important to note
that not all applications are suitable for GPU, only those that exhibit a high
degree of parallelism. In addition, the features of the GPU architecturémieed
taken into account to obtain the maximum performance. While CPUs are
designed for an efficient random memory access, GPUs provide a more
restrictive memory access and a careful usage of the memory hierarchy is
fundamental. This requires a new impleraion of the algorithms used in CPU

for an efficient use in GPUs.

Much of the success of GPGPU is the appearance of general purpose
programming languages and APIs such as Brook and CUDA since they provided
an easier access to the computing power oftllesices. Brook was a compiler

and runtime implementation of a stream programming language for modern
graphics hardware of ATl Technologies. CUDA (Compute Unified Device

6

Chapter 1. Introduction

Architecture) is both a programming environment and language for parallel
computing pecifically for Nvidia GPUs Nickolls et al, 2008 CUDA
Programing Guide Currently CUDA is the most popular programming graphics
model due to the large amount of documentation and utilities that can be found in
the CUDA web (https://developer.nvidia.com/ctztme).

The framework called OpenCL (Open Computing Languagkjdnos, 200Dis
becoming increasingly important in GPGPU. OpenCL is a framework to code
programs that are exated across heterogeneous platforms including GPUSs,
CPUs, DSPs, FPGAs and other processors. It is an open standard maintained by
Khronos Group and adopted by the most important technology companies such
as Intel, AMD and Nvidia.

1.4 DUAL SPHYSICS PROJECT

SPHyscs was an opesource SPH model developed by researchers at the Johns
Hopkins University (US), the University of Vigo (Spain), the University of
Manchester (UK) and the University of Rome, La Sapienza. The software is
available to download from www.sphysiorg, a complete guide of the
FORTRAN code is found inGémezGesteira et al., 2012&6mezGesteira et

al., 2012p. The SPHysics code was validated for different problems of wave
breaking Palrymple and Rogers, 20)6dambreak behaviourJrespo et al.,
2008, interaction with coastal structureS¢mezGesteira and Dalrymple, 204

or with a moving breakwateRjpgers et al., 20J0A shallow water version was
also devedped Macondio et al.,, 20%2Vacondio et al., 2013a Although
SPHysics allows modelling problems with high resolution, the main problem for
the application to real engineering problems is its high computational cost,
therefore SPHysics is rarely applied to large domains. Hardware acceleration and
parallel computing r@ required to make codes such as SPHysics more useful and
versatile

The code DualSPHysics has been developed by starting from the FORTRAN
SPH formulation implemented in SPHysics, this code was considered robust and
reliable but not optimised for largerailations. DualSPHysics is implemented in
C++ and CUDA and is designed to launch simulations either on multiple CPUs
using OpenMP or on a GPU. The GPU portion of DualSPHysics implements the
most appropriate parallelisation to maximise speedup duringleaititeraction
computation

Chapter 1. Introduction

The code can be executed either on the CPU or on the GPU since all
computations have been implemented both in C++ for CPU simulations and in
CUDA for the GPU simulations. The philosophy underlying the development of
DualSPHysts is that most of the source code is common to CPU and GPU
which makes debugging straightforward as well as the code maintenance and
new extensions. This allows the code to be run on workstations without a
CUDA-enabled GPU, using only the CPU implemeptatiOn the other hand,

the resulting codes should be necessarily different since code developers have
considered efficient approaches for every processing unit. As explained below,
the same programming strategy can be efficient on a CPU but inefficieant on
GPU (or vice versa). Thus, comparisons between the performances of both
approaches are more reliable since appropriate optimisations have been
considered for every case

The first rigorous validation of the GPU implementation of DualSPHysics code
was pesented inCrespo et al., 20]1The code has been developed to simulate
reatlife engineering problems using SPH models such as the computation of
forces exertedy large waves on the urban furniture of a realistic promenade
([Barreiro et al., 201]3 or the study of the ruap in an existing armour block sea
breakwater (Altomare et al., 2014n Other recent examples of the study of
wavestructure interaction, by means of the DualSPHysics model, are the works
of [Ren et al., 2014 where the SPH model is validated against other available
numerical results and against experimental data for wave damping over porous
seabed with different levetd permeability. Other recent example is the work of
[StGermain et al., 20140 investigate the hydrodynamic forces induced by the
impact of rapidly advancmtsunami like hydraulic bores

DualSPHysics is an opesource code developed and redistributed under the
terms of the GNU General Public License as published by the Free Software
Foundation (www.gnu.org/licenses/). The software is available to free dagnl

at www.dual.sphysics.org Figure 1-2). Along with the source code,
documentation that describes the compilation and execution of the source files is
also distribted. This documentation has been created using the documentation
system Doxygen (www.doxygen.org). One of the purposes of this code is to
encourage other researchers to try SPH. Most downloads to date have been
registered by researchers and students #nat honducted their research on fluid
dynamics using SPH models. Furthermore, the code has been downloaded not

Chapter 1. Introduction

only by students and researchers from universities and institutes but also by
companies with industrial interests

DualSPHysics

Downloads DualSPHysics Project GPU Computing SPHysics Project Validation

Applications Animations References Forums FAQ News Contact

UniversidajVigo UIRW @S| %%T‘ER

The University of Manchester

DualSPHysics is based on the Smoothed Particle Hydrodynamics model
named SPHysics (www.sphysics.org).

The code is developed to study free-surface flow phenomena where Eulerian
methods can be difficult to apply, such as waves or impact of dam-breaks on
off-shore structures.

DualSPHysics is a set of C++ and CUDA codes to deal with real-life

engineering problems.

Contact E-Mail: dualsphysics@gmail.com

Figurel-2. DualSPHysics website.

DualSPHysics package includes not only the source files of the SPH solver but
also some advanced ppeocessing tools to create more complex geometries and
postprocessing tools to analyse easily numerical results. Any complex geometry
can be loaded fromifferent format files such as .cad, .3ds, .stl, .ply, .dwg, .dxf,
.shp, .igs, .vtk, .csv... and then converted into SPH particles. For example, a CAD
file is converted into particles representing the boundary starting from a
triangul at i o nrfacef follawbdeby a fillingeatgorithrm. Tise pest
processing tools allowhe computation ofnagnitudes of interest such as vorticity

at different planes, forces exerted on different objects, maximum wave heights or
just plotting the different physical quidires of the particles.

In order to give an idea about the size of the DualSPHysics prbjgare 1-3

and Figure 1-4 shows the number of code lines and files (.cpp, .h, .cu) that are
integrated in the DualSPHysics project. This includes the SPH sdlppedix

A) and preprocessingAppendix B and posiprocessing Appendix Q tools. It

can be noticed that most of the developed code is shared among several codes
being 172 different files with around @500 code lines.

Chapter 1. Introduction

DualSPHysics

GenCase2

PartVTK
MeasureTool
IsoSurface
Decimate
BoundaryVTK

MeasureBoxes = Shared code
TracerVTK B Exclusive code

0 10,000 20,000 30,000 40,000
Code lines

Figurel-3. Number of code lines in the programs of DualSPHysics project.

DualSPHysics

GenCase2

PartVTK
MeasureTool
IsoSurface
Decimate

BoundaryVTK

MeasureBoxes = Shared files
TracerVTK m Exclusive files

0 20 40 60 80 100 120
Code files

Figurel-4. Number of individual files in the programs DtialSPHysics project

1.5 THESIS OULTINE

The thesis provides a description of the DualSPHysics code and its
implementation using different acceleration approaches. It is organized in a total
of 8 chapters that are briefed as follows:

Chapter 1 introduces background knowledge of numerical simulation. The main
features of the SPH method are briefed. Some general ideas of HPC are
described. DualSPHysics code associated with this thesis is introduced

Chapter 2 provides fundamentals and basic concepts of the SPH method such as
integral interpolants, smoothing kernels, the governing equations, time step
algorithm and solid boundaries treatment

10

Chapter 1. Introduction

Chapter 3 describes the main steps of the SPH simulation and its
implementation in DualSPHysics. More detailed is focused on the creation of the
neighbour list of the code, which is based on the journal p&mmihguez et al.,
20114].

Chapter 4 deals with different strategies for CPU optimizations applied to
DualSPHysics. Implementation following OpenMP is addressedresults of

the performance are shown. This chapter is based on the journal paper
[Dominguez et al., 2013a

Chapter 5 deals with different strategies for GPU optimizations applied to
DualSPHysics. Some of the GPU optimizations applied here present not only the
suggested basic optimizations described in the CUDA manuals, but also other
GPU optimizations intrinsic to theP&l method. Their impact on the efficiency
achieved with different GPU architectures is also shown. GPU performance is
also compared to CPhulti-core. Implementation with CUDA is also described.
This chapter is based on the journal pap€re$po et al., 201-and [Dominguez

etal., 2013h

Chapter 6 presents a novel SPH implementation that utilizes MPI and CUDA to
combine the power of different devices making possible the execution of SPH on
heterogeneous clusters. Specifically, the proposed implat@ntenables
communications and coordination among multiple CPUs, which can also host
GPUs, making possiblewulti-GPU executions. This chapter is based on the
journal paperPominguez et al., 2013b

Chapter 7 addresses the issue of precision and solutions using double precision
are presented for GPU computing looking for the minimum loss of performance.
This chapter is &sed on the proceedings pafd@ominguez et al., 2014

Chapter 8 draws together conclusions and ongoing research.

Appendix A contains all the DualSPHysics documentation with a summary of
the source files, how to compile and run the code and description of the input and
output files and their format. This appendix is lsher the journal papg¢Crespo

et al., 2014

11

Chapter 1. Introduction

Appendix B describes the prprocessing tool that creates the configuratiuat
will be loaded by the SPH solver as initial condition for the simulation. This
appendix is based on the proceedings pEpeminguez et al., 2011b

Appendix C describes the pogtrocessing tools that help to analyse the
numerical results and to visualise the simulation

12

Chapter 2. SPH Formulation

2. SPH FORMULATION

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless method. The
technique discretises a continuum using a set of material poinsrticles

When used for the simulation of fluid dynamics, the disseetiNavierStokes
equations are locally integrated at the location of each of these particles,
according to the physical properties of surrounding particles. The set of
neighbouring particles is determined by a distance based function, either circular
(two-dimensional) or spherical (thremensional), with an associated
characteristic length asmoothing lengtloften denoted ak. At each timestep

new physical quantities are calculated for each particle, and they then move
according to the updated values.

The conservation laws of continuum fluid dynamics are transformed from their
partial differential form to a form suitable for particle based simulation using
integral equations based on an interpolation function, which gives an estimate of
values at a sgific point. Typically this function is referred to as the kernel
function (W) and can take different forms, with the most common being cubic or
quintic. Any functionF(r) is defined at' by the integral approximation

FOr) =@)W(r - r',h)dr’ (2.1)

The smoothing kernel must fulfil several propertieMpnaghan, 1992 Liu,
2003, such as psitivity inside a defined zone of interaction, compact support,
normalization and monotonically decreasing with distance and differentiability.
For a more complete description of SPH, the reader is referrddawaghan,
2005 Violeau, 2012

The functionF in Eq. 2.1 can be approximated in a noontinuous, discrete
form, based on the set of particles. In this case the function is interpolated at a

13

Chapter 2. SPH Formulation

particle @) where a summation is performed over all the pagithat fall within
the region of compact support, as defined by the smoothing langth

F(r.)° a Fr)W(r, - ry,h)opy (2.2)

where qu, is the volume of a neighbouring particle).(If py=m, /r,, with m

and} being the mass and the density of particleespectively then EqR.2
becomes

F()° & F () W, - 1, h) (2.3
b b

2.1 THE SMOOTHING KERNEL

Performance of an SPH model depends heavily orthibee of the smoothing
kernel. Kernels are expressed as a function of thedmoansional distance
between particlesgf, given byq=r/h, wherer is the distance between any two
given particlesa andb and the parametdr (the smoothing length) controls the
size of the area around partiéen which neighbouring particles are considered.
In the text that follows, only kernels with an influence domainto(q ¢ 2) will

be considered. Within DualSPHysics, tger is able to choose from one of the
following kernel definitions:

a) Cubic spline

& 3, 3,
1- — — O0¢qgcil
12q +4q q
w(rh)=Gi (2-af 1¢qe2 (2.4)

0 q? 2

—_—) =)) —)

where bya_, is equal to 10/7 hin 2-D and 17 fin 3-D.

The tensile correction method, proposed byipaghan, 2000 is only actively
used in the cases kernels whose first derivative goes to zero with the particle

14

Chapter 2. SPH Formulation

distanceay. The shape of this function and its dative can be observed kigure
2-1.

1.25
1.00
0.75
0.50
0.25
0.00

-0.25
-0.50

-0.75
-1.00 | —Cubic-spline kernel
—— Derivative of the kernel

-1.25
-2 -1.5 -1 -0.5 0 0.5 1 15 2
q

Figure 2-1 Cubic Splinekernel and its derivative divided by the dimensional
factor a, .

b) Quintic [Wendland, 199

N Q
ooy,

W (r,h)=0, (29+1) o0¢qe2 (2.5)

O&QJO

wherea is equal to7/4ph* in 2-D and 21/160h° in 3-D. The shape of this
function and its derivative can be observeéigure2-2.

1.25

1.00
0.75
0.50
0.25

0.00
-0.25
-0.50

-0.75
.1.00 | —Quintic kernel
—— Derivative of the kernel

-1.25

-2 -1.5 -1 -0.5 0 0.5 1 15 2
q

Figure 2-2. Quintic kernel and its derivative divided by the dimensional factor
ag.

15

Chapter 2. SPH Formulation

2.2 MOMENTUM EQUATION

The momentum conservation equation in a continuum is

dv 1 -
—— =-—PP+g+i
i 9 (2.6)

where U refers to dissipative terms angd is gravitational acceleration.
DualSPHysic®ffers different options for including the effects of dissipation.

2.2.1 Artificial Viscosity

The artificial viscosity scheme, proposed Wohaghan, 1992 is a common
method within fluid simulation using SPH due primarily to its simplicity. In SPH
notation, Eq(2.6) can be written as

dv . ap P 0
a m, _bz+_2+ ab8Da ab (27]
b b a

Where B, and r, are the pressure and density that correspond to pakt{ee
evaluated ah or b). The viscosity ternd,, is given by

Uc,.€.,
}ab

Vab ®ab < O

Hab = (28]

—_— —/—)m.

O Vab c"Dab > 0

where J,, =050, +},), M, =r.- T, and v,, =V, - v, with 1, and v, being the
particle position and velocity respectively. 7 = V., @,/ (ra, + 17),

Cv =0.5(6 +G) ig the mean speed of soura', is a coefficient that needs to be
tuned in order to introduce the proper dissipation /4> =0.01n* avoids

numerical divergence when the distance between particles tends to zero.

2.2.2 Laminar viscosity and SubParticle Scale (SPS) Turbulence

Laminar viscous stresses in the momentum equation can be expredseduad [
Shao, 200p

16

Chapter 2. SPH Formulation

é‘ 4g)rab a ab
éﬁ;a-l-;b)(rab-l-d.)8/ab

(@p™), =& m, (2.9)
b

whereq, is kinematic viscosity (typically I®m?’s for water). In SPH discrete
notation this can be expressed as

dv apR
dt z

a —_ P6 4'ngab a ab 0 \
=- +28O W, +g+ \ 2.10
S HAH a""% ST LA

The concept of th&ub-Particle Scale (SPS) was first described Ggtphet al,
200] to represent the effects of turbulence in their Moving Particle Semi
implicit (MPS) model. The mmentum conservation equation is defined as

=

2\/ - -bP+g+gb V+;DGF (2.11

Y—

where the laminar term is treated as per E§and I represents the SPS stress
tensor. Favraveraging is needed to account for compressibility in weakly
compressible SPH Dalrymple and Rogers, 20D6where eddy viscosity
assumption is used to model the SPS stress tensor with Einstein notation for the

shear stress component in directionant j n%sj 8- %Q i,

where 7 is the sukparticle stress tenSO\\/t:[(CScpl] B the turbulent eddy

viscosity, k the SPS turbulence kinetic enerdys the Smagorinsky constant
(0.12),CI=0.0066,p the particle to particle spacing and |S|=0.5&Bwhere $

is an element of the SPS strain tensbalfymple and Rogers, 20D&troduced
SPS into weakly compressible SPH using Favre averaging?.Etjcan be re
written as

dv aP P @
a:-arnJ _g+_38DaWab+g

dt b Q b J’a+

. a 4gr,®W, 0

tam, an T 2.12
b E%a"'lb (r;b+q2)§/b (’

17

Chapter 2. SPH Formulation

where the superscripts refer to particeandb.

2.3 CONTINUITY EQUATION

Throughout the duration of a weaktpmpressibleéSPH simulation (as presented
herein) the mass of each particle remains constant and only their associated
density fluctuates. These density changes are computed by solving the
conservation of mass, or continuity equation, in SPH form:

= a rnovabc.b)av\/ab (213:
b

Within DualSPHysicst is also possible to applydelta SPHformulation, which
introduces a diffusive termMolteni and Colagrossi, 20090 reduce density
fluctuations

d, . . . —ay 01 ‘
2 =4 my,, OM, 20 19 : 2.14)
ot abm, b b 9%%%: azbJr—a W (

where ¢, =05, +¢,) and u is the delta SPH coefficient. This technique is

designed to filter relatively large wave numbers from the density field while
solving for the conservation of mass of each particle, therefore reducing noise
throughout the system of particles. The term can be expanded ifitst and
second order contributions, where the second order corresponds to its diffusive
nature and the first order is approximately zero if the kernel is complete
[Antuono et al., 2012 However, at open boundaries, where a-oomplete
interpolation kernel is inevitably present, the first order term originates a net
contribution. For this reason, it is advised thatde#aSPHscheme is disabled

for cases tht rely on hydrostatic equilibrium. If the case represents a very
dynamic situation the term contributes with a force that may be several orders of
magnitude smaller than the pressure and viscous terms, not contributing to a
significant degradation of thsolution. A deltaS P H qoefficient of 0.1 is
recommended for most applications.

18

Chapter 2. SPH Formulation

2.4 EQUATION OF STATE

Following the work of Monaghan, 1994 the fluid in the SPH foraism
defined in DualSPHysics is treated as weakly compressible and an equation of
state is used to determine fluid pressure based on particle density. The
compressibility is adjusted so that the speed of sound can be artificially lowered;
this means thathe size of time step taken at any one moment (which is
determined according to a Courant condition, based on the currently calculated
speed of sound for all particles) can be maintained at a reasonable value. Such
adjustment however, restricts the soupdesl to be at least ten times faster than
the maximum fluid velocity, keeping density variations to within less than 1%,
and therefore not introducing major deviations from an incompressible approach.
Following [Monaghan et al., 1999and [Batchelor, 1974 the relationship
between pressure and density follows the expression

%;0 2
P=B&g§- W (2.15
a0

where g=7, B=c?r,/g Where r =1000kgm*® is the reference density and

c, =c(s,)=-/(P/y jL which is the speed of sound at the reference density.

2.5 PARTICLE MOTION

Particles are moved according to a method proposed by Monaghan and referred
to as XSPHMonaghan, 1989 This aims to move patrticles with a velocity close

to the average of the velocity of all particles in their neighbourhood in order to
assure a more ordered flow and to prevent penetratitwebe continua,
particles are therefore moved using

op. M
a = v, + La :bvbaWab (216:

where U is a problem speci J,=05,+},)r ameter

19

Chapter 2. SPH Formulation

2.6 SHEPARD FILTER

The Shepard filter is a correction to the density field that caappked every
time steps according to the following procedure

mo_

ri"=ar, ~ab a ”LVVab (2.17
b ry »

where the kernel has been corrected using a zerdtr correction

w. ™ (2.18

In cases where theelta SPHmethod is in use, it may not be sensible to apply
the Shepard density filter as well, however it is possible for both methods to be
used simultaneously within DualSPHysics. The frequeMgythat the filter is
applied is a free parameter that can be sbetweenl and an unbounded upper
limit; however it is recommended that the value is set to a value rangin@@om

to 40time steps.

2.7 TIME STEPPING

DualSPHysicsincludes a choice of numerical integration schemes, if the
momentum(v,), density(}) and position(ry), equations are first written in the
form

dv

i=F 2.19
dt a (a
d, :

a=D)
2e=D, (2.19b
dr

a=y 2.19¢c

Where v, may also include an XSPH correction when these equations are
integrated in time using a computationally simple Verlet based scheme or a more
numerically stable but computationally intensive {stage Symplectic method.

20

Chapter 2. SPH Formulation

2.7.1 Verlet Scheme

This algorithm, whichis based on the common Verlet methdtédlet, 1967 is

split into two parts and benefits from providing a low computational overhead
compared to some other integratiosheiques, primarily as it does not require
multiple (i.e. predictor and corrector) calculations for each step. The predictor
step calculates the variables according to

VI =V 2D kM =D+ D +05DF]) £ = st + 20D (2.20,

where £ and D! are calculated using Ef.7 (or Eq.2.12) and Eq2.13(or Eq.
2.14) respectively.

However, once every N\ime steps (wherN_° 50 is suggested), variables are
calculated according to

VI =VI DRSS =1l + D +05DEF,) £t = !+ D] (2.21,

This second algorithm is designed to stop divergence of integrated values
through time as the equations are no longer coupled. In cases where the Verlet
scheme is used but it is found that numerical stability is an issue, it may be
sensible to increase thifeequency at which the second part of this scheme is
applied, however if it should be necessary to increase this frequency beyond
Ns=10 then this could indicate that the scheme is not able to capture the dynamics
of the case in hand suitably and 8ymplectic scheme should be used instead.

2.7.2 Symplectic Scheme

Symplectic integration algorithms are time reversible in the absence of friction or
viscous effects LJeimkuhler et al, 19969. They can also preserve geometric
features, such as the energy tilmgersal symmetry present in the equations of
motion, leading to improved resolution of long term solution behaviour. The
scheme used here is an explicit secordtr Symplectic scheme with an
accuracy ithantinveless apredidof apd corrector stage.

During the predictor stage the values of acceleration and density are estimated at
the middle of the time step according to

21

Chapter 2. SPH Formulation

1 D: 1
2 = = 2 — n 7Dn \
ra ra + 2 Va ra ra + 2 a (2.22‘
where the superscriptdenotes the time step ané nDx .

1
During the corrector stagev, 2/dt is used to calculate the corrected velocity,
and therefore position, of the particles at the end of the time step according to

(2.23

and finally the corrected value of densily™/dt= D is calculated using the
updated values of~* and r** [Monaghan, 2005

2.7.3 Variable Time Step

With explicit time integration schemes the time step is dependent on the Courant
FriedrichLevy (CFL) condition, the force terms and the viscous diffusion term.
A variabke time stepeetis calculated according tdVfonaghan and Kos, 1999
using

Dt = 0.2¢nin (Dt ,Dt,,)

o1, =min, |1,
’ (2.24

Dt,, =min h r
2 hvab CDab
C+max —=—=-
b (rab +h)

w h e rt;a@s based on the force per unit magg () , t.acanmbines the Courant
and the viscous time step controls.

22

Chapter 2. SPH Formulation

2.8 BOUNDARY CONDITIONS

In DualSPHysics, the boundary is described by a set of particles that are
considered as a separate set to the flaidicles. The software currently provides
functionality for solid impermeable and periodic open boundaries. Methods to
allow boundary particles to be moved according to fixed forcing functions are
also present.

2.8.1 Dynamic Boundary Condition

The Dynamic Boudary Condition (DBC) is the default method provided by
DualSPHysics Crespo et al., 2007 This method sees boundary particles that
satisfy the same equations asdlparticles, however they do not move according
to the forces exerted on them. Instead, they remain either fixed in position or
move according to an imposed/assigned motion function (i.e. moving objects
such as gates or waweakers).

When a fluid partie approaches a boundary and the distance between the
boundary particles and the fluid particles becomes smaller than twice the
smoothing lengthh), the density of the affected boundary particles increases,
resulting in a pressure increase. In turn, teisults in a repulsive force being

exerted on the fluid particle due to the pressure term in the momentum equation.

Stability of this method relies on the length of time step taken being suitably
short in order to handle the highest present velocity of fund particles
currently interacting with boundary particles and it is therefore an important issue
when considering how the variable time step is calculated.

2.8.2 Periodic Open Boundary Condition

DualSPHysics provides support for open boundaries in the &bren periodic
boundary condition. This is achieved by allowing particles that are near an open
lateral boundary to interact with the fluid particles near the complementary open
lateral boundary on the other side of the domain.

In effect, the compact spprt kernel of a particle is clipped by the nearest open
boundary that it is nearest to and the remainder of its clipped support applied at
the complementary open boundary.

23

Chapter 2. SPH Formulation

2.8.3 Pre-imposed Boundary Motion

Within DualSPHysics it is possible to define a-prgposed movement for a set

of boundary particles. Various predefined movement functions are available as
well as the ability to assign a tiateependant input file containing kinematic
details.

These boundary particles behave as DBC desciibefection2.8.1, however
rather than being fixed, they move independently of the forces currently acting
upon them. This provides the ability to define complexusiion scenarios (i.e.

a wavemaking paddle) as the boundaries influence the fluid particles
appropriately as they move.

2.8.4 Fluid -driven Objects

It is also possible to derive the movement of an object by considering its
interaction with fluid particles andsing these forces to drive its motion. This
can be achieved by summing the force contributions for an entire body. By
assuming that the body is rigid, the net force on each boundary particle is
computed according to the sum of the contributions of allosading fluid
particles according to the designated kernel function and smoothing length. Each
boundary particlé therefore experiences a force per unit mass given by

f=a fa (2.25,

al WPs

where f,, is the force per unit mass exerted by the fluid parteclen the
boundary particlé, which is given by

rn<fka=_ rnafak (226:

For the motion of the moving body, the basic equations of rigid body dynamics
can then be used

\Y/ .
M Ocln = amf, (2.27a
ki BPs
d . :
a4 am(r.- R)? f, (2.27b

dt ki BPs

24

Chapter 2. SPH Formulation

whereM is the mass of the objedtthe moment of inertiay the velocity,q the
rotational velocity andRr, the centre of mass. EquatioB@27aand 2.27b are
integrated in time in order to predict the valued/aindq for the beginning of
the next time step. ERcboundary particle within the body then has a velocity
given by

u =V +a?s (.- R) (2.28

Finally, the boundary particles within the rigid body are moved by integrating
Eq. 2.28in time. Both Monaghan et al., 200&nd Monaghan, 2005showed
that this technique conserves both linear and angular momentum.

25

Chapter 3. Neighbour List Implementation

3. NEIGHBOUR LIST IMPLEMENTATION

The DualSPHysics code is the result of an optimised implementation that uses
the bestapproaches for CPU and GPU computatadnSPH with simulation
accuracy, reliability and numerical robustness given precedence over
computational performance where neeegsSPH software frameworks (such as
DualSPHysics) can be split into three main stépgufe 3-1); (i) generation of a
neighbour list (NL), (i) computation of foes between particles and solving
momentum and continuity equations (PI) and (iii) integrating in time to update
all the physical properties of the particles in the system (SU). Running a
simulation therefore means executing these steps in an iterativemann

; Initial Data

\

[Neighbor list ‘
’ (N)

/
N

Particle | N

\ System

 Interaction (PI) L—) . Update (SU)
s

Save Data |

 (occasionally) |

— —

Figure3-1. Conceptual diagram summarising the implementation of a SPH code.

27

Chapter 3. Neighbour List Implementation

3.1 STEPS OF THE SPHCODE

During the first step the neighbour list is generated. Particles only interact with
neighbouring parties located at a distance less tl#m Thus, the domain is
divided into cells of size2hx2hx2h) to reduce the neighbour search to only the
adjacent cells and the cell itself. The Aalked list described infJominguez et

al., 2011 was implemented in DualSPHysics. Another traditional method to
perform a neighbour search is creating an array with all the real neighbours of
each particle of the system (named Velilg), however the main drawback of
this approach is its higher memory requirements compared to thénked list.

In the DualSPHysics, two different cell lists were created; the first one with fluid
particles and the second one with boundary partidllesrefore, this process can

be divided into different operations: (i) domain division into square cells of side
2h, (or the size of the kernel domain), (i) determining the cell to which each
particle belongs, (iii) reordering the particles accordindheodells, (iv) ordering

all arrays with data associated to each particle and, finally, (v) generating an
array with the position index of the first particle of each cell. Note that an actual
neighbour list is not created, but also a list of particles ezetaccording to the

cell they belong to, which facilitates the identification of real neighbours during
the next step. More details about the neighbour list implementation are provided
in Section3.3,

Secondly, the force computation is performed so that all particle interactions are
solved according to the SPH equations. Each particle interacts with all
neighbouring particles located at a distance less2ha@nly particles inside the

same cell and adjacent cells are candidates to be neighbours. Kernel and kernel
gradient symmetry, avoids unnecessary repetition of particle interactions leading
to a minor improvement in performance. When the force interactioanef
particle with a neighbour is calculated, the force of the neighbouring particle on
the first one is known since they have the same magnitude but opposite direction.
Thus, the number of adjacent cells to search for neighbours can be reduced if the
symmdry in the particle interaction is considered, which reduces the
computational time. The equations of conservation of momentum and Bwass (

2.7 and Eq.2.13 respectively are computed for the paivise interaction of
particles.

Finally, the system is updated. New time step is compuigdZ.24 and the
physical quantities are updated in the next step starting from the values of
physical variables at the present time step, the interaction forces and the new

28

Chapter 3. Neighbour List Implementation

time step valueHqg. 2.190. In addition, particle information (position, velocity
and density) are saved on local storage (the hard drive) at defined times.

3.2 TESTCASE

The experiment of Yeh and Petroff at the University Washington is
numerically reproduced using DualSPHysics in order to analyse the performance
of the code. This experiment, also describeddarmezGesteira and Dalrymple,
2004 for validation of their 3D SPH model, consists of a dam break problem
confined within a rectangular box 160 cm long, 67 cm wide and 40 cm high. The
volume of water initially contained behind a thin gate at one end of theslatix i

cm long x 67 cm x 30 cm high. A tall structure, which is 12 cm x 12 cm x 45 cm
in size, is placed 50 cm downstream of the gate and 24 cm from the nearest
sidewall of the tank. A physical time of 1.5 seconds is calculated. Different
instants of the sioation can be observed gure3-2.

Time: 0 s Time: 0.15 s

Time: 0.3 s Time: 0.45 s

Time: 0.6 s Time: 0.75 s

Figure3-2. Different instants of the dam break evolution using 300,000cfeesti

29

Chapter 3. Neighbour List Implementation

A validation of DualSPHysics using this testcase has already been shown in
[Barreiro et al., 20]]3vhere experimental forces exerted onto the structeme
in good agreement with the numerical values.

As mentioned above, the SPH method is expensive in terms of computational
time. For example, a simulation of this dam break evolution during 1.5s of
physical time using 300,000 particldsgure 3-2) takes more than 15 hours on a
singlecore machine. The first limitation is the small time step®10° s)
imposed by forces and velocitieBlgnaghan et al., 1999 Thus, in this case,
more than 16,000 steps are needed to complete the 1.5s of physical time. On the
other hand, each particle interacts with mévant250 neighbours, which implies

a large number of interactions (operations) in comparison with the methods based
on a mesh (Eulerian methods) where only a few grid nodes are taken into
account. In this case, as it will be shown, the particle interatala@s more than

90% of the total computational time when executed on a seayke CPU. Thus,

all the efforts to increase the performance of the code must be focused on
reducing the execution time of the particle interaction stage.

3.3 DIFFERENT APPROACHES OF NEIGHBOUR LIST

As mentioned above, the particle interaction step is the most time consuming part
of the algorithm in terms of computational time. Before the acceleration of this
step, attention must be focused on the neighbour list. The approach ussatdo cr

the neighbour list needs to be optimised as much as possible to achieve the best
performance during the particle interaction.

The determination of which particles are inside the interaction range requires the
computation of all paiwise distances, arocedure with high requirements in
terms of computational time for large domains. The efficiency of this procedure,
which involves a number of interactions on the order ofding N the number

of particles), is so poor that this brute force evaluatioimteractions can only be
used in academic exercises as pointed owicclone et al., 2008

Different approaches coexist in SPH to create a list of beigis. Here we will
focus on just two of them, the cdithked list and the Verlet list. There are more
methods, such as ettee methods that are used mostly in astrophysical problems
[Stellingwerf and Wingate, 1994vhere different variable time scales and long
range interactions like gravity take place.

30

Chapter 3. Neighbour List Implementation

In the celtlinked list (CLL from now on), the computational domain is divided in
cells of side2h (cut-off limit), then particles are stored according to the cell they
belong to. Thus, an array of particles reordered through the cells is obtained. This
array is used during the paife interaction stage, where each patrticle of interest
only looks for its potential neighbours in the adjacent cells (the candidates to be
neighbours). When the distance between two particles is les2ithtdren a real
neighbour of the particle of inteskis found and forces will be computed. In this
case, a list will be associated with each cell. In the simplest version of Verlet list
(VL from now on), the domain is also divided in cells of dlaeand the particles

are also allocated in an array whéney are grouped according to the cell they
belong to. However in this case, a new array is obtained from the previous one,
the properly named neighbour list includes all the particles of the adjacent cells at
a distance shorter théth for each particleof the domain. Thus, this so called
Verlet list contains the real neighbours of each particle. This array of neighbours
is used during the force computation where only the computation of the
interaction forces between neighbouring particles is carriedRantentages in
Table 3-1 are referred to the 100% total runtime of the simulation of a dam
break, which implies the execution of several time steps. These valuetated

to a given solution where particle forces are computed once. The creation of the
VL is more complex since it involves all calculations needed to ger@ratand

the additional construction of the Verlet list. However, this list can be kept during
several time steps considering cells of size slightly higher 2haas it will be
shown.

Table 3-1. Comparisorof Celllinked list (CLL) and Verlet list YL): percentage
of the total runtime of the dafire&k simulation using00,000 particles

SPH step Cell-linked list CLL) Verlet list (VL)
Neiahbour | cells division cells division particles in cells

. g . . 1.7% search of neighbours in adjacent c¢ 20.5%
List particles in cells . . .

neighbour list construction
Force neighbours search load neighbour list
| negnbo 96.7% | . 9 78%

Computation| interaction forces interaction forces
System solve variables of nex .

y 1.6% solve variables of next step 1.5%
Update step

31

Chapter 3. Neighbour List Implementation

A cell-linked list (CLL) can be calculated by means of thkkowing steps:
1) The computational domain is divided into cells of side 2h.

i) Particles are stored according to the cell they belong to.

The sketch of this method is shown kiigure 3-3. The possible neighbours
(coloured dots) of a particla are placed in the adjacent cells, but only those
particles placed at a distance shorter t@an(dark colour) interact with the
particlea.

o
0% 05 9" 0%
00”009 (©0:09 09

<+—>
2h

Figure3-3. Sketch of the Celinked list (CLL).

On the other hand, the main advantage of a Verlet list is the possibility of
keeping the same list during several consecutive time steps. Although, the
technique is well known, it hag®me intrinsic limitations that must be eliminated

to obtain a more efficient code. Here, we will first describe the classical method
and then the possible improvements. Let us assume that in the classical Verlet list
(VLc from now on) the list is requirdd remain fixed for the neX@ time steps:

a) The computational domain is divided in cells of sildd = 2 h,+ogwig
ph = 3 (A B X dhere V. is the maximum velocity of any patrticle of
the system, multiplied by 2 since the worst situation appears when two
particles with the maximum velocity are moving apart ansl a parameter
slightly higher than 1C is the number of time steps the list igirgg to be
kept. Note that this part of the method is commo@Glib wheng k0.

b) Search for potential neighbours at the adjacent cells. When the distance
between the particle of interest, and another particldy, is less tharRH

32

Chapter 3. Neighbour List Implementation

(rax<2H) that particle isadded to the list of potential neighbours. Note that
the patrticle is only a candidate to interact vattiuring the followingC time
steps but only particles with,<2h will interact during the present time step.

c) The list of potential neighbours is loadaedd kept during the following@
time steps. Only those particles with<2h will interact. Note that particles
move in time, in such a way that from the initial set of candidates only a
percentage of the total interacts each time step, and the intgrpatiticles
can change every time step.

The method presents several drawbacks. On the one hand, the list is not checked
every time step and particles can leave or enter the neighbourhood without being
detected. The imposed condition gnhdepends on,,,x and dt, which do not

remain constant during the time stepsVyax can vary due to flow acceleration
anddt is variable. This fact can give rise to inaccuracies in calculations. This
effect can be prevented by usiag= 1in the definition ofgh althoughthis

implies higher memory requirements and will slow down the code since the
number of Afal sed candidates i ncreases
inefficient in terms of computational time. An initial condition is imposedydn

but that condition casiders the worst situation at the first step from @hsteps

the list is kept. However, velocity can decrease duringCthiene steps and the
interaction between two particles with the maximum velocity does not
necessarily take place. In summary, theisidikely to remain valid for more than

C time steps.

The following Verlet list ¥Lx from now on) is proposed. In this cagehis
calculated in the same way asVihc. However, the number of steps the list is
kept X instead ofC) is only tentative, assumed at the first time step, but it can be
longer or shorter depending on the calculation. The position of all particles in the
domain is also recorded at the first time step. During the following time steps the
position of the paitles is checked. When the distance travelled by any particle
from the first step is longer thaph Ah2 Verlet list is recalculated and assumed
to last forX time steps. Note that the drawbacks mentioned above disappear with
this approach. When a pargcenters or leaves the neighbourhood of partcle
the list is recalculated, even when the number of steps is less Xhan
Furthermore, the list can be kept even when the number of steps is high¥r than
if no particle has left or entered the neighbourhobdiny particlea. Finally,
3=1. 0 i s odcalaulatiorebécausano extra distance is add@ditsince

the real position of the particles is checked every time step.

33

Chapter 3. Neighbour List Implementation

The sketch of Verlet List approach is shown kigure 3-4. The possible
neighbours (coloured dots) of the particle are placed in the adjacent cells. Only
those particles placed at a distance shorter 2h(dark colour) will potentially
interactwith particlea and will be included in the list. Note that during the first
time step only the particles marked with black dots will interact with paticle

Figure3-4. Sketch of the Verlet list (VL).

The case shown ifrigure 3-2 is used here to compare both neighbour lists.
Hence, differences in the computational runtime can be obserda@dure 3-5.

In both simulations, particles have been sorted according to the ¢Ells
slower thanCLL for any number of particles. In particular, the method is about
13% slower for 15@00 particles. This difference is due to the time needed to
create the real neighbour list WL. However, the power of this method has not
been properly exploited since the same list can be kept for several time steps,
which alleviates the additional llen associated with the creation of the Verlet
list.

From the point of view of memory requirement, is less efficient tharCLL
(Figure 3-6). Thus, for example, thallocated memory is 18 times highenih

when using 150,000 particles. In addition, this ratio increases almost linearly
with N.

34

Chapter 3. Neighbour List Implementation

10

= CLL
—\/L

»

T (hours)

0

0 50,000 100,000 150,000
N

Figure3-5. Computational runtime of different approaches for neighbstur

30
= CLL
25 —\/L

Memory (Mb)
= N
(6] o

=
o

0
0 50,000 100,000 150,000

N
Figure3-6. Memory requirements of different approaches for neighbour list.

Figure3-7 shows the different performances\df: andVLy in terms of runtime
depending on the number of time stepg the list is kept € or X depending on
the approach). BotNL: andVLy showed tobe less efficient tha€LL for low

and highns values. However, there is an intermediate regibn (QO 1] ehere
both methods showed to be faster tl@o.. In particular, the most efficient
region is obtained fons~7 time steps, wher&Ly is about 4% faster tha@LL
andVL¢ 3% faster. In addition, the meth&lyx has shown to be faster thdfhc

for any ns. Obviously, the particular location of the maximum and the interval
where the methods based on the Verlet list are more efficient depethe case
under study, although other calculations with different test cases showed a
similar behaviour. A similar figure can be obtained for different valués of

35

Chapter 3. Neighbour List Implementation

10%

e \/LX

VLc
5%

0%

5% | |

Improvement

-10%

-15% —
0 5 10 15 20 25 30 35 40
ns

Figure3-7. Improvement in time usinyLc andVLx compared taCLL. All cases
were calculated with N=31,239.

The memory requirements of the different methods are showsigumre 3-8.
Thus, whileCLL always requires the same amount of memory, the increase is
almost parabolic witlmg in VLc andVLy. In the present casbl=31,239 particles,

the memory allocated fdCLL is on the order of 0.25 Mb and it can even be on
the order of 25 and 40 Mb fMlLy andVLc respectively. In the region where both
methods are efficienn{~7) the allocated memory is about 30 times higher than
in CLL. In addition, it should be noted thélt: has higher memory requirements
than VLx for any ns. This is a direct consequence of the different valua of
considered in both approaches (gekdefinition).

50

e CLL
B Vix
40 VLc
35
o)
s 30
>
5 25
g 20
=
15
10
5 e —
0
0 5 10 15 20 25 30 35 40

ns

Figure 3-8. Allocated memory irCLL, VLx andVLc. All cases were calculated
with N=31,239.

36

Chapter 3. Neighbour List Implementation

Figure 3-9 shows the comparison betwe®ih: and VLy in terms of runtime
improvement compared tG€LL. This comparison wasarried forne= 7 time

steps which corresponds to the most efficient value for the methods based on a
Verlet list as shown irFigure 3-7. For any number of particles, both methods
have shown to be faster th&@ilL, with an improvement that tends to increase
with N. In addition,VLc was observed to be slower thdlhy for anyN. The
maximum improvement (~5.7%) was obtainedVay with 150,00 particles.

10%
e \/LX (7 StEpS)

VLc (7 steps)
8%

6%

Improvement

4%

2%

0%

0 50,000 100,000 150,000
N

Figure3-9. Improvement comparison betwe¥hy andVLc referred taCLL.

The observed improvement in velocity is moderate, especially when the memory
requirements of the Verlet list are oretarder of 30 times higher than fGLL in

the most efficient region (sdegure 3-7 and Figure 3-8). However, this result

can be improved in those cases where the loop over particles should be carried
out more than once per time step. This is the case, for example, of different
improvements in classical SPH formulation as Mfiigers ([Colagrossi and
Landrini, 2003, [Dilts, 1999), kemel and kernel gradient corrections
([Belytschko et al., 1998 [Bonet and Lok, 1999 [Vila, 1999, [Chen and
Beraun, 200]) or Riemann solverg[Marongiu et al., 201]). In CLL the
potential neighbours placed in adjacent cells are checked several times every
time step, while in the methods based onlétdrst the same list is loaded more
than once but not recalculated several times every time step.

Figure 3-10 shows the comparison betweeviLy in terms of runtime
improvement compared ©LL. Two different approaches have been considered
in this case. This line coincides with the red solid line shmwifigure 3-9. The

red dashed line corresponds to the same model with the kernel gradient

37

Chapter 3. Neighbour List Implementation

correction described irBpnet and Lok, 1999 In the case with kernel gradient
correction, the velocity improvement was calculated comparing the runtime
using VLyx with the runtime usingCLL and the same gradient correction.
Comparison wasarried out assuming the most favourable case/(seeFigure

3-7). Obviously, the improvement is higher in the corrected case, reaching a
percentage higher than 8% td+£150,000 particles.

10%

VLx (7 steps)
=== VLx (7 steps) KGC

8%

-

cfrmaem=="

6% | /

4%

Improvement

2%

0%
0 50,000 100,000 150,000
N

Figure 3-10. Comparison betweerVLyx with and without kernel gradient
correction(KGC). The improvement is referred @i_L.

In general VL needs much more memory th@hL, which is the main drawback

of the method. In terms of runtime, the main advantagd.a$ the possibility of
keeping the same list during several consecutive tEteps. The improved
version Y¥L,) of the classical Verlet list showed to be dependent on the number
of stepsns, that the list is kept. For low and high valuesngthe CLL method

was faster thaW'L,. Only in an intermediate regidrL, was faster tha@LL with

a maximum improvement close to 6% for=7 time steps. This runtime
improvement is rather moderate, especially when considering the memory
requirements of the method comparedtd.. A better improvement in terms of
runtime can be achieved when SPH has to loop over the particles more than once
per time step, since the same list is kepVin but the code is forced to a new
search when usin@€LL. An improvement in runtime higher tha8fo was
obtained when using a SPH formulation with a kernel gradient correction, which
implies a double loop every time step. Further improvement is expected when the
number of loops per time step increases. To sum up, the choice of the neighbour
list appoach CLL or VLy) depends on the specific simulation under st@hyL

is suggested for use when running a serial code since the number of particles is

38

Chapter 3. Neighbour List Implementation

high and the memory requirementsMh, are too expensive to be balanced by a
runtime improvement on therder of 10%.

DualSPHysics is designed to simulate large number of particles. So that, the
Cell-linked list is implemented since it provides the best balance between the
performance and the memory usage. Once the neighbour list has been optimised
with themost efficient algorithm, the force computation can ben now accelerated
with the best CPU and GPU strategies, as it will be presented in the following
chapters.

39

Chapter 4. CPU Acceleration

4. CPUACCELERATION

Some features intrinsically linked to the Lagrangian nature of SPH models
should be mentioned before going into details about optimization strategies. The
physi cal vari ables corresponding to eac
are stored in array®uring the Neighbour List stage (s€bapter 3, the cell to

which each particle belongs is determined. This makes possible to reorder the
particles (and the arrays with particle data) following the oofl¢he cells. Thus,

if particle data are closer in the memory space, the access pattern is more regular
and efficient{lnmsen et al., 201]. Another advantage is¢ ease to identify the
particles that belongs to a cell by using a range since the first particle of each cell
is known. In this way, the interaction between particles is carried out in terms of
the interaction between cells. All the particles inside lhieteract with all the
particles located in the same cell and in adjacent cells. Force computations
between two particles will be carried out when they are closer than the
interaction range2h).

4.1 CPUOPTIMIZATIONS

Some standard and wddhown CPU optimizations have been applied to
DualSPHysics such as: applying symmetry to parpeldicle interaction,
splitting the domain into smaller cells, using SIMD instructions and roait
programming with OpenMP.

4.1.1 Applying symmetry to particle-particle interaction

When the forcef,, exerted by a particlea, on a neighbour particley, is
computed, the force exerted by the neighbouring particle on the first one can be
known since it has the same magnitude but opposite diredtion-{,,). Note

that DW,, =- B[, in Eq.2.7 and Eq.2.13 Thus, the number of interactions to

41

Chapter 4. CPU Acceleration

be evaluated can be reduced by two, which decreases the computational time. For
this purpose, in 3D, each cell only interacts with 13 cells and, partially, with
itself (symmetry is also applied for the particles inside the same cell), instead of
27 as shown ifrigure4-1.

Figure 4-1. Interaction cells in 3D without (left) and with (right) symmetry in
particle interactions. Each cell interacts with 14 cells (right) instead of 27 (left).

4.1.2 Splitting the domain into smaller cells

Usually, in particle methods, the domain is spitbicells of size ([2x2hx2h) to
reduce the neighbour search to only the adjacent cells. Thus, in 3D and without
considering symmetry, a volume ®7(2h} is searched for every cell to look for
potential neighbours. This volume is considerably higher than the volume of the
sphere of radiu$ around the target particl@, where its real neighbours are
placed Vsprers (4 1 3 3-4.2¢(2h%. JThis can be gemalized to any division of

the computational domain into cells of si@db/n Thus the ratio between the
searched volume and the sphere volume beco@egl/n))¥ ((4 wBich ") ,
tends asymptotically t6 / whenn goes to infinity. Thus, a suitable technicoe
diminish the number ofalse neighbours would be to reduce the volume of the
cell. Unfortunately, each cell requires the storage of information to identify its
beginning, end and number of particles, which prevent the use offageaes.

A balance btween decreasing the searching volume and limiting memory
requirements should be found. According to our experiencealues on the
order of 2 are recommended. In fact, the kernel support of the chosen kegynel (

42

Chapter 4. CPU Acceleration

2.4and Eqg.2.5 is 2h so the smaller cells will be of the size 21i/2 (h)in this
caseFigure4-2 shows the comparison between dividing the domain into cells of
side2h (n=1) and side&h/2 (n=2).

Figure4-2. Sketch of 3D interaction with close cells usgygnmetry. The volume
searched using cells of side 2h (left panels) is bigger than using cells of side h
(right panels).

4.1.3 Using SSE instructions

The current CPUs have speci al i nstruct.i
type (Single Instruction, Multiple Daj} that allow performing operations on data

sets. A basic operation (addition, subtraction, multiplication, division,
compari sonéeé) of four real number s (i n
simultaneously. Another advantage is the straightforward tramsledgimachine

code providing a higher performance. However this optimization also presents

two disadvantages: first, coding is quite cumbersome and, second, the technique
can only be applied to specific cases where the calculations are performed in
packs 6 4 values. Although modern compilers implement the automatic use of
these SIMD instructionsPickson et al., 201Jlemphasize the need of making an

explicit vectaisation of the computations to obtain the best performance on the
CPU. Therefore, these instructions are applied to the interaction between
particles that were previously grouped into packs of 4 to compute forces
simultaneously. An example of a simplifigdeudocode can be seenFigure

4-3.

43

Chapter 4. CPU Acceleration

for (i=ibegin;i<iend;i++) {
for (j=jbegin;j<jend;j++) {
if (Distance between particle[i] and particle[j] <) ComputeForces (i,3) ;
}
}

int npar=0;
int particlesi[4],particlesj[4];
for(int i=ibegin;i<iend;i++){
for(int j=jbegin;j<jend;j++){
if (Distance between particle[i] and particle[j] <) {
particlesi[npar]=i; particlesj[npar]=j;
npar++;
if (npar==4){
ComputeForcesSSE (particlesi,particlesj);
npar=0;
}
}
}
}

for(int p= ;p<npar;p++)Ccmputchrces(particlesi[p],pa:ticlesj[p]);

Figure 4-3. Sketch Pseudocode in C++ showing the force computation between
the particles of two cells without vectorial instructions (up) and grouping in
blocks of 4 pakwise of interaction using SSE instructions (down).

4.2 OPENMP IMPLEMENTATION

The main CPU optimization described in this work is the implementation of a
multi-core programming with OpenMP (as describedSection1.3). Current

CPUs have several cores or processing units, so it is essential to distribute the
computation loadamong them to maximize the CPU performance and to
accelerate the SPH code. There are two main options to implement a parallel
code in CPU, namely MPI and OpenMP. MPI (also describetkntionl.3) is
particularly suitable to distribute memory systems where each processing unit
has only access to a portion of the system memory and the different processes
need to exchange data by passing messages. However the anchitsed in

this work uses shared memory system, where each process can directly access to
all menory without the extra cost of the message passing in &RBhownin

SPH in [Goozee and Jacobs, 2002s mentioned, OpenMP is portable and
flexible whose implementation does not involve major changes in the code. All
the cores of the CPU share the same memory space so data transfer is
required among threads. Therefore, OpenMP is used in DualSPHysics when
executing the code in a muttore CPU machine.

Several parts of the SPH code can be parallelised, which is especially important
for force calculation that is the most expensivet p& the code. The minimum
execution unit of each thread is the cell, so that all particles of the same cell are

44

Chapter 4. CPU Acceleration

processed sequentially. Neighbouring particles are searched in the surrounding
cells and the particle interaction is computed. However,nbtsstraightforward

to apply symmetry to particlparticle interaction when several execution threads

of a CPU are used in parallel since the concurrent access to the same memory
positions for readvrite particle forces can give rise to unexpected reslulésto

race conditior. In addition, special attention should be paid to the load balancing

to distribute equally the work among threads. Therefore, three different
approaches were proposed to avoid concurrent accesses and obtain load
balancing:

a) Asymmetric: Concurrent access occurs in force computation when applying
symmetry, since the thread that computes the summation of the forces on a
given particle also computes the forces on the particles placed in the
neighbourhood of the first one. Neveslbss, these neighbouring particles
may be simultaneously processed by another thread. To avoid this conflict,
symmetry is not applied in a first approach. The load balancing is achieved
by using the dynamic scheduler of OpenMP. Cells can be assignetly(usua
in blocks of 10) to the threads as they run out of workléaglire4-4 shows
an example of dynamic distribution of cells (in blocks of 4) among 3
execution threagl according to the execution time of each cell, which
depends on the number of neighbouring particles. The main advantage is the
ease of implementation, being the main drawback the loss of symmetry.

Thread0) (Thread1l) (Thread2)
40,49 L] L] . = - = ‘e o
° o — — —
° o
O o 00-03 04-07 08-11
L] L]
30-39 |® e
° o
. . ?
..... Qo000 00o00O0000 L]
eco0ooj0cocoolecooojoooe o 12-15 ES
20-29 [#00ecleo0ccjocoocfocos o 3
ecococolooccoloccoo/oocos o H
ecooolooooolocooolooooasle o o
®cocoo0cco0oco000000/0000000 ° -
R R I o 16-19 2
10-19 |®#eoeolecooofcccosooccsooce o =
O O T R R RN ° 20-23 24-27 5
ecoccleocccloccccjoocosecosele ° =
$0000/00000(00000(0000000000(000 0 B
eccoolcooccloccoo/cooocooocccccce o 28-31 8
00-09 [*eeo0locoosfcoccc/oooecooeoclocososloe o 2
ecocoojoocec/oocoojocoeccocccjesccnfoce o 32:35)
©00cojecccc/evccsoeccsoccccoccccocccsoccccoccnsonnce S
36-39 40-43
f e Boundary particle 40-43
Cells ID e Fluid particle aa 48-49 v

Figure 4-4. Example of dynamic distribution of cells (in blocks of 4) among 3
execution threads according to the execution time of each cell.

b) Symmetric: In this approach, the dynamic scheduler of OpenMP is also
employed distributing cells in blocks of 10 amodiferent threads. The
difference with the previous case lies in the use of the symmetry in the
computation of the particlparticle interaction. Now the concurrent memory
access is avoided since each thread has its own memory space to allocate

45

Chapter 4. CPU Acceleration

variables vhere the forces on each particle are accumulated. Thus, the final
value of the interaction force for each particle is obtained by combining the
results once all threads have finished. This final value is also computed by
using multiple threads. The advageaof this approach is the use of the
symmetry in all the interactions and the easy implementation of the load
dynamic balancing. The main drawback is the increase in memory
requirements, which depends on the number of threads. Note that memory
duplicationfor each thread is efficient when using a system with a small
number of threads (as the hardware available in this work), but it does not
scale on a system with much wider CPUs which can execute much more
threadsFor example, memory requirement increasgsa factor of 2 when
passing from 1 to 8 threads in the testcase.

c) Slices: The domain is split into slices, so that the number of slices is the
number of available execution threads. Symmetry is applied to the
interactions among cells that belong to theme slice, but not to the
interactions with cells from other slices. Thus, symmetry is used in most of
the interactions (depending on the width of the slices). The thickness of the
slices is adjusted to distribute the runtime of the particle interactiaghgw
each slice (dynamic load balancing). The division is periodically updated to
keep the slices as balanced as possible. This thickness is adjusted according
to the computation time required for each slice during the last time steps,
which allows a moreorrect dynamic load balancing. The main drawbacks
are the higher complexity of the code and the higher runtime associated to
the dynamic load balancing.

4.3 RESULTS

The DualSPHysics code will be used to run the tmeak simulation described
in Section 3.2 The system used for the CPU performance testing is the
following:

A Hardware: | nt el E Core E i7 940 at 2.93 GHz
cores with Hypethreadim), with 6 GB of 1333 MHz DDR3 RAM.

A Operating system:Ubuntu 10.10 64bit.

A Compiler: GCC 4.4.5 (compiling with the optidrO3).

Figure4-5 shows the achieved speedup on CPU for different number of particles
(N) when applying the three first optimization strategies explain&gation4. 1;

46

Chapter 4. CPU Acceleration

symmetry in particle interaction, division of the domain into cells of sizé 2

and use of SSE instructions. The blue lineFigure 4-5 shows the speedup
obtained using symmetry and the red line includes the speedup when using SSE
instructions and symmetry, the value in parentheses is the cell size. Using
300,000 particles, a maximum speedup of 2.3x is obtainedy ubese CPU
optimizations when compared to the version of the code without optimizations.

2.5
2.0 / ———-
A I T Lty
=] - -
e}
o
& | _
15 ——— SSE(2h/2)
=== SSE(2h)
e Symmetry(2h/2)
=== Symmetry(2h)
1.0
0 100,000 200,000 300,000

N

Figure4-5. Speedup achieved on CPU for different number of particles (N) when
applying symmetry, the use of SSistructions. Two different cell size&hand
2h/2) were considered.

The speedup obtained with the mudare implementation on CPU of the SPH
code for different number of particles is observe#igure4-6. In the figure, the
performance of the different OpenMP implementations (using 8 threads) is
compared with the most efficient singtere version (that includes symmetry,
SIMD instructions ad cell size equal ta2h/2. The most (less) efficient
implementation isSymmetriqAsymmetriy. A speedup of 4.5x is obtained with
Symmetricwhen using 8 threads. The approaches that divide the domain into
slices Gliceg offer a higher performance whencreasing the number of
particles since the number of cells also increases, allowing a better distribution of
the workload among the 8 execution threads. USihces the efficiency does

not depend on the direction of fluid movement. Similar performanaeh®ved
when creating the slices in X or-trection, since the workload is distributed
equally among the slices.

47

Chapter 4. CPU Acceleration

Table4-1 shows the computational times and speedups on CPU using the most
efficient version of OpenMPSymmetrit with 4 and 8 threads compared to the
singlecore CPU version. Note that the evaluation of the speedup is not expected

to be linear with the number tiireads since the available CPU hardware is the
physi-traddingc or es
and Table 4-1 shows results using logit cores instead of physical ones.
Therefore, the parallel CPU version with 8 threads is 4.6 times faster than single

Speedup
w

— A Sy MIMELTIC

m— Symmetric
—Slices-X

e S | CE S-Y

Figure4-6. Speedup achieved on CPU for different number of particles (N) with
different OpenMP implementations (using 8 logical threads) in comparison with
the most efficient singteore version that includes all the previous optimizations.

nt el

100,000

E Core E

N

200,000

7 Wi

t h

4

300,000

core version and the speedup is 3.9x using 4 threads.

Table4-1. Speedup achieved on CRlimulating 300,000 particles when using 4

and 8 threads compared to the single CPU version.

Total Number | Computed | Speedup
Version simulation | of steps per |vs. CPU
time Steps second Single-core
C.PU 24,520 s 16,282 0.66 1.0x
Singlecore
CPU
4 Threads 6,375s 16,275 2.55 3.9x
CPU
5,414 s 16,284 3.01 4.6X
8 Threads

48

Chapter 5. GPU Acceleration

5. GPU ACCELERATION

Nowadays, GPB can be used for general purpose applications, achieving
important speedups in comparison with classical CPUs. However, an efficient
and full use of the capabilities of the GPUs is not straightforward and it is
necessary to know and to take into accoustdhbtails of the GPU architecture

and the CUDA programming modeéscribedn [CUDA Programing Guide On

the other hand, SPH method is not very suitable to run on GPU dsedau
presents several problems like divergence and irregular memory access. Hence,
this kind of problems must be minimised to obtain good speedups.

5.1 CUDA PROGRAMMING MODEL

The GPU card is a specialized hardware to execute in parallel the same
instruction m many data elements (SIMD parallelism). Therefore, it is especially
well-suited to address problems with high arithmetic intensity and low flow
control. CUDA (Compute Unified Device Architecture) is a programming
environment for GPU computing. It includes C/C++ language extension, a
compiler called nvcc, libraries and tools to develop programs for Nvidia GPUSs.
A more complete description of CUDA programming model can be found in
[CUDA Programing Guide so only some basic concepts are introduced. here

A program implemented with CUDA contains a part that is executed on CPU
(host) and another part executed on GPU (device). The code executed on GPU
consists of set of functions called kernels. The CPU memory and GPU memory
are independent memory spaces, therefore an explicit memory transfer from CPU
memory to GPU memory has to be carried out before running a GPU kernel. The
same process has to be performethenopposite direction to recover the results

of a kernel execution. These data transfers can reduce the performance and
should be minimised

49

Chapter 5. GPU Acceleration

A kernel has a set of instructions which are executed with an element or data.
Each element in CUDA is processky an independent thread. The threads are
grouped into blocks of threads and each block is executed in a SM (Streaming
Multiprocessor). The maximum number of threads per block is 512 or 1024
depending on GPU model. The blocks are grouped into ¢sesFigure 5-1)
whose maximum size is 65535 x 65535 and higher in the most modern GPUs. In
this way, a grid of 3907 blocks with 256 threads per block wbaldecessary to
process 1 million elements. The size of the block and the grid can be defined
using one or several dimensions to better suit the nature of the problem. During
the kernel execution, the number in the block, block number in the grid, size of
block and size of grid are known by each thread

Grid

Block (0, 0) | Block (1,0) | Block (2, 0)

Block (0, 1)’ Block (1,1) NBlock (2, 1)

/ ’ i N
/ / \ N\
/ Block (1, 1) \

Figure5-1. Grid of thread blocks in CUDAsource: CUDA Programming Guide
v6.5)

Each thread has a privdteeal memoryand it cannot access to tloeal memory

of other threads. The threads of the same block haba@d memorand they
can use it to share or exchange data. All threads can access to thgidaahe
memory The memory hierarchy of GPU is showed in fgure5-2. The speed
of access is different for eadtind of memory.Global memoryis the largest
(hundreds of megabytes or gigabytes), but also it is the slowesto(ders of
magnitudeslower). Theshared memorycan be as fast as the local memory

50

Chapter 5. GPU Acceleration

(registers) but its maximum size is 64 KB. The speed of acces®e shared
memorydepends on the access pattern (regutairregular) and GPU model.

Two additional reagbnly memories are theonstant memorgnd thetexture
memory The first one is used to store constant values and the second one offers
different addressing modes. Both memory spaces are accessible by all threads
and a cache is used to improve its access time. The achieved performance
dependgreatly on how this memory hierarchy is used

Thread

_ . Per-thread local
D T memory

Thread Block

i

Per-block shared
mem ory

FY¥Y Y3

YYyYvyYy

Grid 0

Block (D, 0) | Block (1,0) | Block (2, 0)

——p
Block (Block (1, 1) Block (2, 1)
Grid 1
Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
—p
Block (0, 2) Block (1, 2)

b

Figure5-2. Memory hierarchy (source: CUDA Programming Guide v6.5)

5.2 CUDA IMPLEMENTATION

The work presented inCrespo et al.,, 20Q9introduced the framework to
implement SPH codes using the best techniques and performance optimizations
on GPU. That work focused on identifying suitable algorithms for efficient

51

Chapter 5. GPU Acceleration

paralleliztion since a proper and full use of all the capabilities of the GPU
architecture is not easy. As an initial step, the implementation focused on solving
the particle interactions on a GPU using CUDA and the next step was the
implementation of the neighbolist and the time integration in order to develop

an entire GPLSPH model. Different neighbour lists were analyse®attion

3.3 Apart from a nomegligible impovement in the performance of the model,
the work also showed that computing particle interactions is the most expensive
SPH procedure in terms of computational runtime. This influences the
development of a GPU code.

In a first approach (left panel &ligure5-3), it is possible to keep the other two
steps (neighbour list and system update) on the CPU. However, this is less
efficient since particle data and neighboist information must be transferred
between both processing units each time step, which consumes hundreds of clock
cycles. The most efficient option is keeping all data in the memory of the GPU
where all processes are parallelised (right panélignire 5-3). Only output data
requires transfer from GPU to CPU. This process is rarely carried out (one out of
one hundred/thousand time steps) and only represents pelm&ntage of the

total runtime.

Initial Data | Initial Data

2 . = ——

Data transfer

Neighbor List _CPU-GPU
(NL) 2

Neighbor list >

Data transfer e (NL)
CPU-GPU . -

= GPU
Particle

Interaction (PI) |

=y I Particle) System
ouander) N[Sytem Y — \esisisy))
_GPu-CPU /| Update (SU) |

bata \ransfe; \
GPU-CPU)
‘ Save Data
(occasionally) [Save Data
- B (occasionally)

Figure 5-3. Conceptual diagram of the partial (left) and full (right) GPU
implementation of the SPH code.

A preliminary version of the DualSPHysics code with a total GPU
implementation was presented f@rgspo et al., 20]10Initially, data is allocated

on CPU, so there is a single memory transfer (from CPU to GPU). In all
subsequentalculations, the three main steps are then performed on the GPU

52

Chapter 5. GPU Acceleration

device. All the sequential tasks and operations that involve a loop over all
particles are performed using the parallel architecture of the GPU cores. To save
(or output) data, a new memamansfer is needed (from GPU to CPU). If saving
data is not required all particle information remains on the GPU memory and is
only updated each time step.

The neighbour list creation follows the procedure used on a CPU, but with
several differences. Retering the particles according to the cells they belong is
computed using the optimiseddixsortalgorithm provided by CUDA3atish et

al., 2009. Figure5-4 shows a simplified schematic diagram of the method used
to generate an array of particle labels ordered according to cells and an array with
the position index of the first particle in eaddllcFour separate arrays are used:
Id, Cell, IdSort and CellBeginwith a superscript * denoting sorted arrays. The
array Id (array of particle labels) is the starting point with particles randomly
located in the domain, where the order of this array spoeds to the list of
particles inherited from the previous timestep. The neighbour list is created
according to the following steps:

I) Particles are stored according to the cells, so the array IdSort is created.

i) The arrayCell is also created where an entyives the cell to which the
particle of the same index i belongs, e.gld(2) = particle 3 which is
located in Cell 6A henceCell(2) = 6. Cell labels are depicted in green
colour inFigure5-4.

lii) Using the radixsort algorithm fromviia [Satish et al., 20Q9array Cell
is reordered following the order of the six cells &l (reorderedCell) is
used to reordddSortaccording to the cells the particles belong.

iv) Once IdSort is generated, all the arrays with particle informatidah, (
Position Velocity, Density..) are ordered giving rise to the new arrays
(Id_new, Pos_ne, Vel new, Dens_new considering that Ichew [i] =
Id [1dSorf [i]]. For example)d_new[2]=Id[IdSorf[2]]=1d[7]=
4, inFigure5-4 a blue dicle marks the particle 4 and a red circle marks the
7" position.

v) Finally, CellBeginis created with the indexes (position in data arrays) of
the first particle of each cell. Indexes have been written in red colour in
Figure5-4. For example the first particle of the cell number 2 is the particle
7, whose position index is 3 in all particle property arrays, so the second
value ofCellBegin which corresponds to cell mber 2, will be 3. In this

53

Chapter 5. GPU Acceleration

way, the amount of particles in the cell k will @ellBegirfk+1]-
CellBegirfK].

In the latest version of the GPU cod€gllBegin has been replaced by
CellBeginEnd which not only includes the information of the first partiafehe

cell, but also the last particle of that cell. This present an advantage when this
array is loaded in the GPU kernels.

74 5 976_
O

00 | » O
e B 1 2 3

Id IdSort Cell Cell* IdSort* ld_new Cell* Id_new CellBegin
1 1 1 1 1 | 1 g 1 1
1 1 1 1 1 1 ; 1 1 |e "
2 2 ' 2 2 2 ! 2 .2 2 2
3 8| I 6 1] | () SE 4 3
3 3 : 3 3 3 : 3 L3 3 / 3
6 3 B 2 6 i T ' 2 4 4
4 4 4 4 4 4 | 4 4 4
8 4 6 4 3 6 4 6 4
5 5| 5 5 5 5 9 S 5
5 5 6 4 8 2 4 2 6
6 6 6 6 6 6 6 6 6
7 6 4 6 2 3 6 3 6
3 &
G 7 7 7 7 4 7 7 7
@ T 1 6 4 8 6 8 8+1
8 S 8 8 8 8 <] S
2 8 B 6 5 5 6 5
(i) domain divisionin square ; (ii)initial value of | (iii) reordering particles (iv) ordering all particle data (v)vgeneratmg an array_wnh the position
cells, order of arrays array Cellbased | accordingtocellsusing | Zdnew[i] = Id[IdSort*[i]] index of the first particle of each cell
effectively random on previous step | radixsort Posnewl(i] = Pos[ldSort'[i]]

Figure5-4. Example of the Neighbour list procedure.

The system update assdeid with time integration can be parallelised easily on
a GPU. Example pseudocode is showfigure5-5 where similarities between

the CPU and GPU versions are clgavident and demonstrates the advantages
of a using C++ and CUDA when developing code. The new time step is
computed according t&q. 2.24 where the maximum and minimum values of
different variables (force, velocity and sound speed) are calculated. This
calculation is optimised using tmeductionalgorithm (also provided by CUDA).
Reduction algorithm allows obtaining the maximum or minimum values of a
huge data set taking advaneagf the parallel programming in GPUSs.

54

Chapter 5. GPU Acceleration

System update on C++ System update on CUDA
for (unsigned p=Npb;p<NpOk;p++) { template <..> _ _global__ void KerCsComputeStepVerlet(..)
Pos [p] .x+=Vel[p] .x*dt+Ace[p] .x*dtsq_05; {
Pos [p] .y+=Vel[p] .y*dt+Ace[p] .y*dtsq_05; unsigned p=blockIdx.y*gridDim.x*blockDim.x+
Pos[p] .z+=Vel[p] .z¥dt+Ace[p] . z*dtsq_05; +blockIdx.x*blockDim.x+threadIdx.x;

VelNew[p] .x=VelMl([p].x+Ace [p] .x*twodt; if (p<n) {
VelNew [p] .y=VelMl[p].y+Ace[p] .y*twodt; float3 race=ace[p];
VelNew([p] .z=VelMl([p].z+Ace [p] .z*twodt; rpos.x+=rvel.x*dt + race.x*dt205;
} rpos.y+=rvel.y*dt + race.y*dt205;
rpos.z+=rvel.z¥*dt + race.z*dt205;
pos [pl=rpos;
float3 rvelnew, rvelv=velv[p];
rvelnew.x=rvelv.x+race.x*dtdt;
rvelnew.y=rvelv.y+race.y*dtdt;
rvelnew.z=rvelv.z+race.z*dtdt;
velnew [p]=rvelnew;
}
}

Figure5-5. Pseudocode of the System update procedure implemented on CPU and
GPU.

As mentioned above, the particle interactions of the force computation are a key
process that must be implemented in parallel in order to improve the performance
of the model. The use of the shared memory of the GPU was analysed to reduce
the access to the global memory of the GPU. However, when the SPH code is
implemented entirely othe GPU, this technique is not viable. For example,
when the number of particles is large, the size of shared memory is not enough to
allocate the properties of all the particles belonging to the same cell. Particle
interactions can be implemented on thBWfor only one particlaising one
execution thread to compute the force resulting from the interaction with all its
neighbours. This technique presents several limitations mainly due to the
Lagrangian nature of the method. On the one hand, the worklo#lurezids

inside one block is not balanced since particles can have different numbers of
neighbours. On the other hand, code divergence can appear since when the
possible neighbours of a particle are evaluated, some of them are definite
neighbours (interpéicle distance less tha@h) and the force computation is
performed while other particles are not neighbours (at a distance high&hjhan

and no computation is performed. Note that according to the link list described in
Section3.3, the potential neighbours are all particles located in adjacent cells.
Nevertheless, only those particles at distances less Zhainom the target
particle are real neighbours.

An important difference here from the CPU part of the DualSPHysics code is that
the symmetry of the particle interaction cannot be applied efficiently on a GPU
implementation since each thread is responsible for the interaction between a
target particle and itaeighbours, so that each thread must be the only one that
computes the forces exerted on that particle. The access to the global memory of
the device is irregular because there is no way to organise the data to get a
coalescent access for all the particlésa second thread tried to modify those

55

Chapter 5. GPU Acceleration

forces, as could occur when considering particle kernel symmetry, it would
generate erroneous results when both threads accessed simultaneously the same
variable (race conditions). This effect can t@novedby synchronising the
threads but it would dramatically reduce the performance of the model. An
example of the similarity of the C++ and CUDA codes for this illustrative point

is shown inFigure5-6.

Particle interaction on C++ Particle interaction on CUDA

for (int i=ibegin;i<=iend;i++) { template <..> __device__ void KerCsInteractionBox(..)

for (int j=jbegin;j<=jend;j++) { {

float prs=Press[i]/(Rhop[i]*Rhop[i])+ for (int j=jbegin;j<jend;j++) if (i!=j){
) +Press[j]/(Rhop[j]*Rhop([]]) float prs=devspl.x+prrhop(jl;

Ace[i] .x+=-massj*frx* (prs+pi_visc); float p_vpm=-prs*massp2;
Ace[i] .y+=—massj*fry* (prs+pi_visc); Acei.x+=-massj*frx*(prs+pi_visc);
Ace[i] .z+=-massj*frz* (prs+pi_visc); Acei.y+=-massj*fry* (prs+pi_visc);
Ace[]j] .x+=massi*frx* (prs+pi_visc); Acei.z+=-massj*frz*(prs+pi_visc);
Ace[j] .y+-massi*fry* (prs+pi_visc); } -
Ace[j] .z+=massi*frz* (prs+pi_visc); Ace[i]=Acei;

} }

}

Figure5-6. Pseudocode of the Particle interaction procedure implemented on CPU
and GPU.

The main difference between the fulP@ implementation presented here and
the worls of [Kolb and Cuntz, 2005and [Harada et al., 20Q7s that they
implemented a classical SPH approach on GPU before the appearance of CUDA
in 2007 using shader programs written in C for Graphics. In this work, the full
GPU implementation is performed using the parallel programming CUDA as
descibed inSection5.1 CUDA is more independent of the particular hardware.
This allows the code to be run on new incoming GPU cards more efficiently. On
the other hand, CUDA makes easy the maintenance and thgngpdf the code
when including moreomplex algorithms and new SPH formulatiohbe codes
developedby [Anderson et al., 20Q8or MD and by Herault et al., 201]0for

SPH, also was developed entiredy the GPUbut implementing a different
approach for neighbor list, giving rise to @ifént efficiencies in terms of
performance and memory requirements. They implemented the Verlet list, so the
number of particles that can be simulated in the memory space of one GPU card
is much smaller than the number of particles presented here.

This implementation presents different problems to be solved:

a) Code divergence:GPU threads are grouped into sets of 32 naweghsin
CUDA language. When a task is being executed over a warp, the 32 threads
carry out this task simultaneously. However, due to itimmél flow
instructions in the code, not all the threads will perform the same operation,
so the different tasks are executed sequentially, giving rise to a significant

56

Chapter 5. GPU Acceleration

loss of efficiency. This divergence problem appears during particle
interaction sinceeach thread has to evaluate which potential neighbors are
real neighbors before computing the force.

b) No coalescent memory accesse3he global memory of the GPU s
accessed in blocks of 32, 64 or 128 bytes, so the number of accesses to
satisfy a warp depels on how grouped data are. A regular memory access is
not possible in particle interaction since each particle has different neighbors
and, therefore, each thread will access to different memory positions which
may eventually be far from the rest of fhasitions in the warp.

c) No balanced workload: Warps are executed iblocks in the CUDA
terminology. When a block is going to be executed, some resources are
assigned and they will not be available for other blocks till the end of the
execution. So, since each thread may have a different number of neighbors, a
thread may need tperform more interactions than the rest. Thus, the warp
can be under execution while the rest of threads of the same warp, or even of
the block, can have finished. Thus, the performance is reduced due to the
inefficient use of the GPU resources.

5.3 GPUOPTIMI ZATIONS

Several optimizations have been developed to avoid or minimize the problems
previously described. First of alimaximizing the occupancy of GPand
reducing global memory accesseme some of the weknown basic
optimizations described in the CUDAanuals which must be always considered
when porting a code to GPU. Then, more GPU optimizations intrinsic to the SPH
method such asimplifying the neighbor search, adding a more specific CUDA
kernel of interactionand the division of the domain into siiea cells will be
described.

5.3.1 Maximizing the occupancy of GPU

Occupancy is the ratio of active warps to the maximum number of warps
supported on a multiprocessor of the GPU or Streaming Multiprocessor (SM).
Since the access to the GPU global memory igyulee during the particle
interaction, it is essential to have the largest number of active warps in order to
hide the latencies of memory access and maintain the hardware as busy as
possible. The number of active warps depends on the registers requitbd fo

57

Chapter 5. GPU Acceleration

CUDA kernel, the GPU specifications (sEable5-1) and the number of threads

per block. The first option could be reducing the number of regiptithread,
however this implies the increase of memory accesses and the number of
computations in the interaction kernel. Another option is adjusting the block size
in an automatic way according to the registers of the kernel and the hardware
specificationsFigure 5-7 shows the obtained occupancy for different number of
registers and for different computational capabilities of the GPU card when using
256 threads and using othaock sizes. For example, the occupancy of a GPU
sm13 (compilation with compute capability 1.3) for 35 registers is 25% (dashed
blue line) using 256 threads, but it can be 44% (solid blue line) using 448
threads.

Table5-1. Technical specifications of GPUs according to the compute capability.

Technical specifications 1011|112 13|2x |3x
Max. of threads per block 512 1024

Max. of resident blocks per SM 8 16
Max. of resident warps per SM 24 32 48 64
Max. of resident threads per S| 768 1024 1536 | 2048
Max. of 32bit registers per SM| 8 K 16 K 32K | 64K

100%
’ === sm12-13 (256 threads)

=== sm20-21 (256 threads)
sm30-32 (256 threads)
sm12-13 (varying threads)
sm20-21 (varying threads)
sm30-32 (varying threads

80%

\

]

\

60%]
\
| FEGUPEP, V.

40%

20%

0%
16 24 32 40 48 56 64
Registers
Figure 5-7. Occupancy of the GPU for different number of registers with a
variable and fixed block size of 256 threads.

58

Chapter 5. GPU Acceleration

5.3.2 Reducing global memory accesses

When computing the SPH forces during the particle interaction (PI) stage, the six
arrays described ihable5-2 are used. The arragsound prrhop andtensilwere
previously calculated for each particle usigp to avoid calculating them for
each interaction of the particle with all its neighbors. The number of memory
accesses in the interactikarnel can be reduced by grouping part of these arrays
(postpressandvekrhop are combined to create two arrays of 16 bytes each one)
and avoid reading values that can be calculated from other variabtesfand

tensil are calculated fronpresg. Thus,the number of accesses to the global
memory of the GPU is reduced from 6 to 2 and the volume of data to be read
from 40 to 32 bytes.

Table5-2. List of variables needed to calculate forces.

Variable| Size (byes)| Description

pos 3x4 Position in X,Y and Z

vel 3x4 Velocity in X,Y and Z

rhop 4 Density

csound |4 Speed of sound

prrhop |4 Ratio between pressure and density

tensil 4 Tensile correction following\lonaghan, 2000

5.3.3 Simplifying the neighbor search

During the GPU execution of the interaction kernel, each thread has to look for
the neighbors of its particle sweeping through the particles that belasgoten

cell and to the surrounding cells, a total of 27 cells since symmetry cannot be
applied. However, this procedure can be optimised when simplifying the
neighbor search. This process can be removed from the interaction kernel when
the range of parties that could interact with the target particle is previously
known. Since particles are reordered according to the cells and cells follow the
order of X, Y and Z axis, the range of particles of three consecutive cells in the
X-axis (celly, celk:1y, y celkioy ;) is equal to the range from the first particle

of cell, to the last of cell,, . Thus, the 27 cells can be defined as 9 ranges of
particles. The 9 ranges are coloredFigure 5-8. The interaction kernel is
significantly simplified, when these ranges are known in advance. Thus, the
memory accesses decrease and the number of divergent warps is reduced. In

59

Chapter 5. GPU Acceleration

addition, GPU occupancy increases sincss leegisters are employed in the
kernel. The main drawback is the higher memory requirements due to the extra
144 bytes needed per cell.

Figure5-8. Interaction cells in 3D without symmetry but using 9ges of three
consecutive cells (right) instead of 27 cells (left).

5.3.4 Adding a more specific CUDA kernel of interaction

Initially, the same CUDA kernel was used to calculate all interaction forces
boundaryfluid (B-F), fluid-boundary (FB) and fluidfluid (F-F). However,
symmetry in the force computation cannot be efficiently applied and the best
option is implementing a specific kernel for theFBnteraction because only a
subset of the fluid particles is required to be computed for the boundaries. The
effect of this optimization on the overall performance is negligible when the
number of boundary particles is small in comparison with the number of the fluid
ones. On the other hand, the access to the global memory of the GPU is two
orders of magnitude slowahan the access to other registers. In order to
minimize these accesses, each thread starts storing all its particle data in
registers, so the thread only needs to read data corresponding to the neighbor
particles. The same approach is applied to stoee fthrces, which are
accumulated in registers and written in global memory at the end. There are two
types of particles (boundaries and fluids), so there are three interactions to
calculate all the forces {F, B and BF). Therefore, data of the fluid petes
associated to the threads are read twice (when fluid particles interact with other
fluid particles and when they interact with boundaries) and the same occurs when

60

Chapter 5. GPU Acceleration

writing results in the global memory. A way to avoid this problem is carrying out
theinteraction FF and FB in the same CUDA kernel with a single data load and
a single final writing instead of two.

5.3.5 Division of the domain into smaller cells

As mentioned in the optimization applied in the CPU implementat&ct{on

4.1.2), the procedure consists in dividing the domain into cells of 2iZ@

instead of sizeh in order to increase the percentage of real neighbors. Using
cellsof size2h on the GPU implementation, the number of e interactions
decreases. The disadvantage is the increase in memory requirements since the
number of cells is 8 times higher and the number of ranges of particles to be
evaluated in the neighbaearch increases from 9 to 25 (using 400 bytes per
cell).

5.4 RESULTS

The system used for the GPU performance testing:

A Hardwarel: NVIDA GTX 480 (15 Multiprocessors, 480 cores at 1.37
GHz with 1.5 GB of 1848 MHz GDDR5 RAM and compute capability
2.0).

A Hardware2: NVIDA Tesla 1060 (30 Multiprocessors, 240 cores at 1.3
GHz with 4 GB of 1600 MHz GDDR3 RAM and compute capability 1.3).

A Operating system:Debian GNU/Linux 5.0 (Lenny) 64it.
A Compiler: CUDA 3.2 (compiling with the optionuse_fast_math).

Table 5-3 summarizes the improvement achieved on the GPU cards GTX 480
and Tesla 1060 when using the different optimization strategies described before.
All results were btained simulating the testcase ®éction3.2 with 1 million
particles. Two variables are shown: the percentage of improvement obtained
when applying each individual optimization and the cumulative improvement
achieved when including thgresent and the previous optimizations. It can be
also observed the effect of optimizations on both GPU architectures; Tesla 1060
corresponds to the generation of GPUs with 240 cores and with compute
capability 1.3 (sedable5-1) and GTX 480 corresponds to the Fermi architecture
with 480 cores and with compute capability 2.0 (3able 5-1). In fact, this
different behavior of both GPU cards is related not only to the compute
capability and the number of cores but also to the number of registers and some

61

Chapter 5. GPU Acceleration

kind of cache memory available in the Fermi GPUs that reduces conflicts when
accessing to the global memory. For examplaximizing the occupancy of GPU
presents a better improvement with the Tesla card than with the GTX. Due to the
lower occupancy provided by the compute capability sm13 in comparison to
sm20, the margin of impr@ment is higher for the Tesla card (§ggure5-7). In
contrast, the impact afividing the domain into smaller cells more important

with the GTX. The divergencéiminishes when using smaller cells but the
irregular accesses to memory increases and the GTX card presents that kind of
cache memory that helps to mitigate the negative effect of the irregular accesses
while the Tesla cannot. Considering the cumulatasgponse of applying all the
optimizations, the fully optimized GPU code for the GTX 480 is 1.65 times faster
than the basic GPU version without optimizations and, in the case of Tesla 1060,
the achieved speedup was 2.15x.

Table 5-3. Improvement achieved on GPU simulating 1 million particles when
applying the different GPU optimizations using GTX 480 and Tesla 1060.

GTX 480 Tesla 1060
Optimization| Cumulative| Optimization| Cumulative
Maximizing th
aximizing the 7.3% 7.3% 17.4% 17.4%
occupancy of GPU
Reducing global
g9 18.9% 27.6% | 28.9% 51.3%
memory accesses
Simplifying the
_p ying 3.1% 31.5% 12.9% 70.8%
neighbor search
Specific CUDA
P i) 2.6% 34.9% 11.3% 90.1%
kernel of interaction
Division of the domair|
. 22.7% 65.4% 12.8% 114.5%
into smaller cells

The full implementation of the SPH code on GPU is basic since when neighbor
list (NL), particle interaction (Pl) and system update (SU) are implemented on
GPU, the CPUGPU data transfer is avoided in each time dtegure5-9 shows

the computational runtimes using the GTX 480 for different GPU
implementations (partial, full and optimized) simulating 500,000 particles of the
testase. Partial GPU implementation corresponds to a preliminary version
where only the PI stage was implemented on GPU, irfulh&PU version the
three stages of the SPH code are executed on GPWmmilized GPUs the

final version including all the pr@sed optimizations. It can be observed that the
time dedicated to the CRGPU data transfer in the partial implementation is

62

Chapter 5. GPU Acceleration

9.4% of the total runtime. The CPGPU communications are not necessary at
each time step when the SPH code is totally implemeame@PU. The runtimes

of the NL and SU stages decrease when both parts of the code are also
implemented on GPU. Finally, the computational time of the PI stage is reduced
in about 40% when applying all the developed optimization strategies.

Partial GPU

Full GPU

Optimized GPU

Optimized GPU | Full GPU Partial GPU
mNL 64.89 58.30 281.62
mPl 852.46 ‘ 1498.50 1496.78
su 16.78 11.44 198.92
Data transfer 204.97

Figure 5-9. Computational runtimes (in seconds) using GTX 480 for different
GPU implementations (partial, full and optimized) when simulating 500,000
particles.

In the last years, many performance comparisons betweena@&®GPU have

been reported achieving speedups over two or three orders of magnitude.
However, many of these comparisons are not so fair since a highly optimised
GPU code is compared against a basic CPU code, which does not take advantage
of the real poweof CPU [Lee et al., 2010 This work shows a comparison once

both codes (CPU and GPU) were optimised.

The comparison between CPU and GPU can be obseniabla5-4. The table
summarizes the execution runtimes, the number of computed steps and the
achieved speedups. Note that the speedup has been measured here as the ratio
between the number of time steps computed per secorie lwyfferent versions.

The data correspond to the most efficient implementation on GPU versus the
multi-core implementation on CPUBymmetricwith 8 threads) and the single

core implementation. Thus, for example, for one million particles, the
performanceof the CPU is 0.2 time steps per second using the soogée

version and 0.8 using the muttbre version, while 10.1 time steps per second

can be computed with a GPU GTX 480. The whole simulation takes one day, 16
hours and 45 min oandonlyd2 nimon thé GTX@8Dr e E
resulting in a speedup of 56.2x (vs. singtee CPU) and 12.5x (vs. CPU with 8

logical threads). It can be also observed that the speedups with GTX 480 (Fermi

63

Chapter 5. GPU Acceleration

technology) are twice those obtained with Tesla 1060, whicbngslto a
previous generation of GPU cards as mentioned above. Note that, usually, the
works about parallel hardware to accelerate SPH published before the appearance
of GPUs showed speagps considering CPU clusters versus a single core. When
proving the capability of GPU computations for engineering applications,
relative runtimes can be useful, so the speedup in comparison with a single CPU
core is also shown to give an idea of the order of speedup that is possible when
using GPU cards instead of largdaster machines.

Table5-4. Results of the CPU and GPU simulations.

Number | Total Number| Computed Speedup | Speedup
Version of simulation| of steps per |vs. CPU | vs. CPU
particles |time Steps |second | Singlecore| 8 Threads
CPU 503,492 |14.6h |19,855 |0.4 1.0x
Singlecore| 1 011,35440.7h | 26,493 | 0.2 1.0x
CPU 503,492 [3.2h 19,806 | 1.7 4.6x 1.0x
8 Threads | 1 011,3549.1 h 26,511 |0.8 4.5x 1.0x
GPU 503,492 |0.5h 19,832 |10.2 26.8x 5.8x
Tesla 1060 1,011,354 1.5 h 26,509 | 4.9 27.3x 6.1x
GPU 503,492 |0.3h 19,830 | 21.2 55.7x 12.2x
GTX 480 |1,011,3540.7 h 26,480 |10.1 56.2x 12.5x

The fastest GPU implementation uses all the GPU optimizations including
dividing the domain into smaller cell&vthose main disadvantage is the increase

in memory requirements as mentioned above. Therefore, the maximum number
of particles that can be simulated in a GTX 480 using the optimized GPU version
of DualSPHysics is only 1.8 million. Accordingly, three diffat versions of the

code are implemented to avoid this limitation. These different GPU versions are
available in DualSPHysics and the fastest one is automatically selected by the
code depending on the memory requirements of the simulation. The firginversi
contains all the GPU optimizations and it is namk@dtCells(2h/2) the second

one, namedSlowCells(2h/2) is implemented without the optimization of
simplifying the neighbor searcind the third version, name®lowCells(2h) is
implemented withousimgifying the neighbor searcland withoutdividing the
domain into smaller cellsThe memory usage for these three different GPU
versions can be seenkingure5-10. Note the black solid line represents the limit

of memory that can be allocated on a GTX 480 (less than 1.4 GB) and the dotted
line the limit for the Tesla 1060 (less than 4GB). Using all these different

64

Chapter 5. GPU Acceleration

versions, which will be automatically selected for eadnm depending on
memory requirements, DualSPHysics allows simulating up to 9 million particles
with a GTX 480 and more than 25 million with a Tesla 1060. The execution
times corresponding to the three GPU versidras{Cells(2h/2)SlowCells(2h/2)
andSlowvCells(2h) and the times of the sing®re and multcore CPU versions

are also summarized Figure5-11.

Memory (Gb)
\
\
\

FastCells(2h/2)
SlowCells(2h/2)
SlowCells(2h)
—— Limit GTX 480
------ Limit Tesla 106

0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000
N

Figure 5-10. Memory usage for different GPU versions implemented in
DualSPHysics.

10

== CPU Single-core

= CPU 8 threads

Gtx480 SlowCells(2h)
Gtx480 SlowCells(2h/2)
Gtx480 FastCells(2h/2)
=== Teslal060 SlowCells(2h)
=== Teslal060 SlowCells(2h/z
=== Teslal060 FastCells(2h/2

()]

Runtime (h)

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000
N

Figure5-11. Runtimes for different CPU and GPU implementations.

5.5 PERFORMANCE WITH THE LATEST GPU (AUGUST 2014)

GPU technology isontinuously improving, not only their performance increases
but also the architecture is optimised. The results presented above were not

65

Chapter 5. GPU Acceleration

obtained with the latest GPUs in the market. Therefore, new results are presented
in this section using novel and mneopowerful such as GTX 680, Tesla K20 and
GTX Titan. The same testcase is executed now using the Intel Xeon X5500 CPU
and the mentioned GPUs. Note that the previous GTX 480 is also included in the
comparison to highlight the improvement achieved with newasls. General
specifications of the execution devices are summarisédbie5-5.

Table5-5. Specifications oflifferent execution devices.

Memory| Compute
space | capability

Number
of cores

Processor cloc

Xeon X5500 1-8 2.67 GHz

GTX 480 480 1.40 GHz 1.5GB |2.0
GTX 680 1536 |1.14 GHz 2GB 3.0
Tesla K20 | 2496 |0.71GHz 5GB 3.5
GTX Titan | 2688 |0.88 GHz 6 GB 3.5

The performance of different simulations of the same case is presented for 1.5
seconds of physical time. The performance is analysed for different resolutions
by running calculations with different numbers of particles. Computational times
of the executions on CPU and GPU are showrFigure 5-12 where it can be
noticed that for a simulation of 3 million particles takes one hour using the GTX

Titan GPU card wite it takes almost 2 days using a CPU.

10

Runtime (h)

=== CPU Single-core
=== CPU 8 cores
e GTX 480
e GTX 680
GTX Titan

»
0 4,000,000 8,000,000 12,000,000

Figure5-12. Runtime for CPU and different GPU cards.

This important acceleration of the code using the new GPU technology can also
be observed ifrigure5-13, where the speedups of different GPUs are shown by

66

Chapter 5. GPU Acceleration

comparing their performance against the CPU device using a single core and also
the full 8 cores of the Intel Xeon X550B0r the case chosen here, the use of a
GPU can accelerate the SPH computations by almost two orders of magnitude,
e.g. the GTX Titan card is 149 times faster than the single core CPU and 24
times faster than the CPU using all 8 cores.

150

mvs CPU 8 cores
mvs CPU Single-core

100

Speedup

50

0
GTX 480 GTX 680 Tesla K20 GTX Titan

Figure5-13. Speedups of GPU against CPU simulating 1 million particles.

Figure 5-14 shows the runtime distribution of the three main SPH steps;
neighbour list (NL) creation, particle interaction (Pl) and system update (SU)
when simulating one million particles. The particigeraction takes 98.5% of the

total computational time when using a CPU singlee and this percentage
decreases when the code is parallelised. Hence PI takes 90.8% when using the 8
cores of the CPU and it is reduced to 88.3% and 85.7% when using Gi#®dJ car
(GTX 480 and GTX Titan, respectively). On the other hand the percentages of
NL and SU increase with the number of cores to parallelise over.

GTX Titan uPI

mNL

GTX 480

CPU 8 cores

CPU Single-cor

0% 20% 40% 60% 80% 100%
% Total time

Figure 5-14. Computational runtime distribution on CPU andWG§imulating 1
million particles. Neighbour List corresponds to blue bars, Particle Interaction to
red bars and System Update to the green bars.

67

Chapter 5. GPU Acceleration

Finally, Figure5-15 gives an idea of how many particles can be simulated on the
different GPU devices employed when using the DualSPHysics code. It can be
observed that the difference in terms of speedup between GTX 680 and Tesla
K20 is negligible (se&igure5-13) and the main difference of using these two
GPU cards lies in the memory space that allows simulating more than 28 million
particles in one Tesla K20 while less than the haif lba simulated with a GTX

680.

Particles(millions)
= = N N w w
o (6] o [63] o [5)]

a1

0

GTX 480 GTX 680 Tesla K20 GTX Titan

Figure 5-15. Maximum number of particles simulated with different GPU cards
using DualSPHysics code.

68

Chapter 6. MuliGPU Acceleration

6. MULTI -GPU ACCELERATION

In previous chapters, it has already been explained that SPH method presents a
high computational cost and, hence, it is necessary to increase the velocity of the
method. It is imperative to carry out real siations where the number of
particles is very high. The use of GPUs can provide large speedups compared to
classical solutions based on CPUs. However, the use of a single GPU card is not
sufficient for engineering applications that require several milliartigles that
predict the desired physical processes: execution times are high and the available
memory space is insufficient. Multiple spatial scales are present in most
phenomena involving fresurface waves. Scales that range from hundreds of
metres to centimetres are necessary to describe accurately the coastal
hydrodynamics. Thus, most of the relevant phenomena in coastal engineering
involve spatial scales oveii 8 orders of magnitude. For large simulations it is
therefore essential to take advantafythe performance of multiple GPUs.

This section presents a novel SPH implementation that utilizes MPI and CUDA
to combine the power of different devices making possible the execution of SPH
on heterogeneous clustersFigure 6-1). Specifically, the proposed
implementation enables communications and coordination among multiple
CPUs, which can also host GPUs, making possible 1@y executions.

A scheme for multiGPU SPH simulations was presented MaldezBalderas et

al., 2012. In that work, a spatial decomposition technique was described for
dividing a physichsystem into fixed sudomains, and then assigning a different
GPU of a muliGPU system to compute the dynamics of particles in each of
those sukldomains. The Message Passing Interface (MPI) was used for
communication between devices, i.e. when partictegrate from one sub

69

Chapter 6. MuliGPU Acceleration

domain to another, and to compute the forces exerted by particles on ene sub
domain onto particles of a neighbouring sidmain. The algorithm was only
tested up to 32 million particles on 8 GPUs at a fraction of the computatiohal cos
of a conventional HPC cluster.

(CPU ! CPU | CPU
OpenMP 2 X 6 cores 2 X 6 cores 2 X 6 cores

J

| CUDA 1

GPU
480 cores 480 cores

480 cores

MPI

Figure6-1. Scheme of technologies and its scope of application.

In the work of Fleissner and Eberhard, 2Q0TFerrari et al., 2009and more
recently in Maruzewski et al.,, 2010MPI was also used to distribute the work
load of SPH on multiple devices, although these studies used only CPUs. As in
the case ofValdezBalderas et al., 20]2they applied a spatial decomposition

of the domain into subdomains and each one was assigned to a processor but
with a dynamic load balancing algorithm, which is not included ensitheme of
[ValdezBalderas et al., 20]2However, in both cases the efficiency drops
quickly by increasing the numbeof execution devices. A multi-GPU
implementation of th&PH method waslso presented iffRustico et b, 2014.

In thatwork an asynchronous ARbffered by CUDA was usednstead of MPI

to execute the modeh several GPUd$osted in onemachine.Apart from the

work of [ValdezBalderas et al., 20]2ittle research has been published using
multi-GPU schemes for SPH, but other types of parbesed simulations have
already been the target of parallelization on mM@BRU systers. The field of
classical molecular dynamics (MD) has perhaps seen the most extensive use of
this technology, given the widespread use of this technique in the fields of
physics, material science, and biology. For example, a series of publications
focusing on the muliGPU implementation of the code LAMMPS has been

70

Chapter 6. MuliGPU Acceleration

written recently. Those include the work &rpwn et al., 201]Ldescribing the
implementation of a hyhdi GPUCPU code for MD systems of shaegnged
interactions; Trott et al., 201Ppwho presented more general capabilities added to
LAMMPS to simulate a wide variety ohaterials; and the efforts oAfarwal et

al.,, 2012 on porting, optimizing, and tuning LAMMPS for biological
simulations. Other significant works on MD on mu@#PU heterogeneous
systems areQiang et al., 2012 Although SPH and classical MD are both
particlebased simulation techniques with strong similarities in their etgos

and data structures, they are intended for simulations of different types of
systems. In MD the particles represent atoms, molecules, or araised
model modelling of a material system, a continuum is discretized in SPH, and
particles representnierpolation nodes. Consequently, interactions, boundaries
and initial conditions are different. SPH in the form presented here is intended to
simulate freesurface hydrodynamic flows, which inherently present abrupt
variations of the density at the flusdirfaces, which, in turn, move rapidly during

a simulation. MD, on the other hand, is typically tested on systems in which
comparatively smaller fluctuations of density both in space and time, while at the
same time tend to include a wider variety of mée8 and types of interactions.
Consequently, one can expect that aspects of the problem, like the dynamic
balancing of computing load among all available devices, be significantly
different in SPH and in MD.

6.1 MPI| IMPLEMENTATION

The parallel programming dritecture Compute Unified Device Architecture
(CUDA) developed by Nvidia is used to obtain an efficient and extensive use of
the capabilities of the GPU architecture. In addition, a second level of
parallelisation is applied by using MPI, where a set okdlives enables
communication between devices and allows combining the resources of several
machines connected by a network. The execution power can therefore be
increased easily by adding new machines. However, the division of the work
load among diffenet independent devices implies an extra computational cost.
This extra runtime comes from; (i) the execution of new processes dedicated to
manage the distribution of the work load, (ii) the time dedicated to data exchange
and, (iii) the time consumed dugnsynchronisations. These were investigated
previously by VValdezBalderas et al., 2012

71

Chapter 6. MuliGPU Acceleration

The parallel implementation for SPH methods presentddisnwork use these
parallelisation technigques with one or several machines connected in a network.
This enables computations on heterogeneous clusters taking advantage of all
available processing units. This is important since clusters can then be dxtende
with new GPUs of different specifications. In the next section, we introduce a
new implementation of this parallelism to obtain greater efficiencies from the
additional hardware.

This section describes in more detail the proposed MPI implementationitihat
give rise to some interesting improvements but also to drawbacks (these will be
assessed iSection6.2.9.

The physical domain of the simulation is divided into subdomains among the
different MPI processes. In this way, each process only needs to assign resources
to manage a subset of the taatount of particles for each subdomain. Thus, the
size of the simulation scales with the number of machines.

The two main sources of efficiency loss when the number of MPI processes is
increased include data exchange between the devices managed ycHsses

and synchronisation. In the previous MPI implementatidaldJezBalderas et

al., 2012, it was observed that the time dedicated to commtinit@onstitutes a

high percentage of the total execution time and that this percentage increases
significantly with the number of processes. One option to reduce this time is to
subdivide the calculation of forces on each subdomain so that communications
and computation can overlap. When considering synchronisation of processes
across devices, the SPH algorithm benefits from using a variable time step
computed followingEq. 2.24 The new value is obtained from variables (force
and viscous terms) that are known only after computing all particle interactions,
that is, when all MPI processes have finished the force computation step. This
synchronisation requires all processes to waittiie slowest process. Since the
number of steps to complete a simulation is large, typically on the ordef-of 10
10°, this implies a nomegligible loss of efficiency that also increases with the
number of processes. To address this problem, the comgpaidbad or demand

must be evenly divided among all processes, minimising the difference between
the computation time needed for the fastest and the slowest process.

72

Chapter 6. MuliGPU Acceleration

6.1.1 Subdivision of the domain

As mentioned above, the domain is divided into subdomainslamkd of
particles that are assigned to the different MPI procedsgsiré 6-2). This
division can be performed in any direction (X, Y or Z) adapting to the nature of
the simulation case. In this way, each subdomain has two neighbouring
subdomains, one on either side, except those subdomains at the perimeter of the
simulation box, which have only one neighbour. Each MPI process needs to
obtain, at every time step, thdata of neighbouring particles from the
surrounding processes within the interaction distaitehere). Therefore, to
calculate the forces exerted on the particles within its assigned subdomain, each
process needs to know the data of particles from the neighbouring subdomains
that are located within the interaction distance. We call thishdie of the
process (or subdomain) existing on thege of the neighbouring process (or
subdomain).

Process 2

Figure6-2. Domain subdivision in four processes.

Figure 6-3 shows the division of a domain into three subdomains (0, 1 and 2).
Thus, grey particles belong to subdomain 1 but some of them, those that are in
the leftedgeand at a distance less thamfBom domain 0, constitutdhe halo of
subdomain 0 while the grey particles in the riglige constitute thehalo of
subdomain 2.

Unlike the scheme presented MaJdezBalderas et al., 20]12the data ohalo
particles of a given subdomain are not stored in the same data structure that holds
the subdomain particles. Instead, in order to determineh#he® of a given
subdomain, information from a previous stage in the algorithosed. That is,
during the neighbour list stage, particles are sorted in cells of dize 2
[Dominguez et al., 2013and the order can be XYZ, XZY or YZX according to

the division axis Z, Y or X. As a consequence of this cell sorting, particles are

73

Chapter 6. MuliGPU Acceleration

also sorted within slices h2wide within each subdomain. The subdomain
assigned to each process is chosen to have a nmmiwmidth of éh to ensure a
minimum size of B for the twoedgesof that domain (B from left edge+ 2h
inside the domain +2from rightedgg.

o

. ool
14 CH o o
.....5. o (500 o ofo
®* e o 000" 0% 000 © 09
o ey, de| be 0% %
L e i 0

e ol |oi "8 o oo

0q o} ¢ o, 0 O,
° o |ooi ielog o °
te | o
q -

o
o
L]
=]
o
o
o

°e s o 000 q i ie o000 ©g 0 io
L o 9 ig ‘o - -
H o o el ¢ - %o
..o. o oo 5'0 00000 iow-q--
*” 00 %0 seloy Pefoo Y0 o :
s * e ' o HE) e o © o

olo i i @]|p o” o
o io o .

halo of domain 0 and edge of domain 1

Figure6-3. Example of subdivision of a domain (halos and sjige

This approach to divide the domain among the MPI processes where particles are
reordered according to the direction of the domain subdivision gives rise to
interesting advantages that increase performance:

a)

b)

d)

If particles of a subdomain are not mergethvparticles of thdalo, no time

is wasted in reordering all particles when receiving data frorhdteebefore

a force computation, and no time is wasted in separating them after the force
computation. The memory usage is also reduced since only the basi
properties ohalo particles need to be stored (position, velocity and density).

Each process can adjust the size of its subdomain with the limits of the fluid
particles inside. With the number of cells minimised for each subdomain, the
total number of ells over the entire is also minimised leading to a reduction
of the execution time and memory requirements.

Particle data of the subdomains is stored in slices. Data existing edgles
can be sent to the neighbouring processes much faster since all data is
grouped in consecutive memory positions.

This reordering system also enables automatic identification of particles
contained in a subdomain needing to interact with the halo. Thsis, ta

74

Chapter 6. MuliGPU Acceleration

overlapping is possible by computing particle interactions of particles not on
an edge while simultaneously performing the reception of tiado (needed
only by edgepatrticles), thereby inherently saving the communication time.
For example, the grey pales inFigure 6-3 that belong to the le#dgeof

the subdomain 1 also form tlmalo of subdomain O and force interactions
between red particles not on tbeégeof subdomain 0 can be computed while
they wait for thehalo.

e) Symmetry of pairwise interactions is not necessary for the particles of the
halo sincehalo andedgeparticles only interact once in each process. This is
relevant to the GPU implementation ssnsymmetry is not applied for the
pairwise computations and does not represent any loss of performance in
comparison to singl&PU version.

6.1.2 Communication among processes

Reducing time dedicated for exchanging data among MPI processes is essential
to increase the number of processes without drastically decreasing efficiency.
One method to achieve this is by overlapping the communication with the
computation using asynchronous communications. Hence asynchronous send
operations and synchronous receptionsused in the present algorithm. In this
way, one process can send information to another while carrying out other tasks
without waiting for the end of the transfer. This is an improvement over an
algorithm that uses synchronous operations, in which an Médeps cannot
continue execution of tasks until the operation is complete, implying a wait to
receive data from another process or processes, thereby rendering computational
resources idle, and consequently causing loss of efficiency.

Figure6-4 shows the data exchanges that take place at each time step when using
MPI. Three different processes are considered in this example. There are two
important communications; éfirst one occurs during the neighbour list creation
(solid arrows inFigure6-4) and the second one in the force computation (dashed
arrows inFigure6-4). The dark arrows represent the submissions from prdtess

to procesN+1 and the light ones from procelgo procesdN-1. Doubleheaded
arrows show the synchronisation poatfter the force computation stage. Note
that all the tasks corresponding to interactions among particles correspond to the
boxes with grey background in the figure.

75

Chapter 6. MuliGPU Acceleration

Initiate
+ - +
—| Send displaced —| Send displaced — Send displaced
particles d particles d particles
L €L L
Check own Check own Check own
particles particles particles
L L L
Recv. and check > Recv. and check Recv. and check
new particles new particles new particles
+ v +
Sort particles Sort particles Sort particles
€L €L L
Send edge ' Sendedge . |.{ Sendedge
il (e — —
Compute forces | i /| |Compute forces | i /| | Compute forces
. . I
Recv. halo and ‘;‘\) Recv. halo and ““'“b Recv. halo and
compute forces compute forces compute forces
L L L
Calculate dt «3—{> Calculatedt =<3}—{> Calculatedt
v | v | v
Update particles Update particles Update particles
] L]]
Process 0 Process 1 Process 2

Figure6-4. Scheme of the communicatiocasiong 3 MPI processes.

At the beginning of each time step, during the neighbour list creation, each
process looks for the particles that move from one subdomain to another and
these displaced particles are sent to the corresponding process. This search i
only performed checking the particles of tedges(2h wide) of the domains
since a particle cannot travel further thdnd2iring one time step. While data of
displaced particles are sent (solid arrow§igure 6-4), the neighbour list of the
particles in theinterior of the domain (particles not in asdgeg is processed.
Finally, the new particles that entered the domain are received for each process
andall particles are sorted. At this stage, the computation time that is overlapped
with the transfer of particles is reduced, but this is not a problem because the
number of particles that change from one domain to another at each step of the
simulation is typically mah smaller than the number of particles in a giver sub
domain. This occurs regardless of the flow direction and flow speed, since the
duration of the step is adjusted accordingly.

76

Chapter 6. MuliGPU Acceleration

During the force computation, each process sendsdgesto the surroundig
processes (dashed arrowdrigure6-4). While edgesare being sent and ttmalo

is received, computation of the force on thierior particles is performed. Once

this is finished, the process waits for the reception of thelalstand computes
forces of oneedgewith this halo. After that, the process waits to receive the
secondhalo and computes the forces of the otkdge Thus he most expensive
halo-edge data transfers are overlapped by calculating the forces between
particles (also very time consuming). All particle data are allocated in the GPU
memory, so data transfer is also needed between CPU and GPU memories.
However, it flould be noted that the cost is negligible since the volume of
information is low and one of the advantages of the method proposed here is that
the data to be transferred are stored in contiguous memory locations, which
accelerates the process.

6.1.3 Dynamic load balancing

Due to the Lagrangian nature of SPH, particles move through space during the
simulation so the number of particles must be redistributed after some time steps
to maintain a balanced work load among the processes and minimise the
synchronisationtime. Most of the total execution time is spent on force
computation, and this time depends mainly on the number of fluid particles. For
an equal load per processor, the domain must be divided into subdomains with
the same number of fluid particles (inding particles of thdalog or with the
number of particles appropriate to the computing power of the device assigned to
it.

Two different dynamic load balancing algorithms are used. The first one assigns
the samenumberof particles to each computingwee, and is suitable when the
simulation is executed on machines that present the same performance. The
second load balancing algorithm is used when hardware of different
specifications and features are combined, such as different models of GPU. This
second approach takes into account tBrecution time on each devich
particular, a weighted average of the computing time per integration step over
several steps (on the order of 30) is used, with a higher weight to the most recent
steps. An average overamy time steps is chosen because a single time step
presents large fluctuations. This average time is used to distribute the number of
particles so that the fastest devices can compute subdomains with more particles
than the slowest devices.

77

Chapter 6. MuliGPU Acceleration

The example épicted inFigure6-5 can help to explain the second approach that
takes into account thexecution time on each devite balance the work load
between GPUs. Thus, ithe example, the first row ifigure 6-5 shows the
distribution of the slices between two GPUs at a given step where the average
time of the force computation durinige last 30 steps was 9 ms in the first GPU
and 6 ms in the second one. Therefore, a new distribution of the slices between
GPUs is desired where the maximum computation time must be minimal. The
second row shows the actual time dedicated to force congutat each device

since this time is the summation of the times required to compute forces of
particles within the slices plus the particles of tiado, i.e. 9ms+ 1 ms=10ms

for the first GPU and éhs+1ms=7ms for the second one. That is, the
maximum computation time in this case is 10 ms and it is therefore desirable to
apply a new balancing if the current maximum time can be reduced in a given
percentage. In the third row of the figure, it can be seen how a redistribution of
the slices betweethe two GPUs is performed where the second GPU (GPU1)
will compute particles within one extra slice originating from GPUOQ. So that the
maximum time has been reduced from 10 ms to 9 ms leading to an improvement
of a 10% can be achieved with this exampsgribution.

Distribution of the slices between two GPUs

fluid particles

Gpu0 (t=9ms) Gpul (t=6ms)

2ms 2ms 2ms Current balancing (tmax=10ms)

Ims 1ms 1ms Ims 1ms 1ms 1ms 1ms 1ms

t0=10ms t1=7ms

Zms 2ms 2Zms New balancing (tmax=9ms)

Ims 1ms Ims 1ms 1ms 1ms 1ms 1Ims 1ms

pa
t0=8ms t1=8ms

Figure6-5. Example of the dynamic balancing scheme between 2 GPUs.

78

Chapter 6. MuliGPU Acceleration

This second type of dynamic load balancing enables the adaptation of the code to
the features of a heterogeneous clustdriesng a better performance. Thus
although the balance is checked every few steps, it is only applied when it
implies an improvement in the performance, and therefore its cost is minimal. In
fact, the runtime consumed by this checking is usually highan tthe
computational time dedicated to balance since this is not carried out very often.

6.2 RESULTS

6.2.1 Testcases and hardware

Two testcases are used to analyse the performance of the nevZUNIA
implementation. The first one is the tescase already us8ddtion3.2 Figure

6-6 shows a sketch and several instants of the simulation of the testcase involving
six million particles for a physical time of 1.5 seconds.

Obstacle
-

Time: 0.3 s Time:05s

0.40m
[—

045m

4
|0.30m
L3

0.90m 0.12m 0.58 m

Time: 0.8 s Time:1.2s

Y 0.67m
0.12m
v

A
0.24m
X

Figure6-6. Testcasel: Dam break flow impacting on a structure.

The second testcase is also a dam break similar to the previous one, but the main
differences are that there is no obstacle in the middle of the numerical tank and
the width of the tank can be modified according to the number of particles to be
simulated. Mte that modifying the width, the number of particles can vary
keeping the same number of steps to complete the simulation and the same
number of neighbouring particles of each particle. Thus, this testcase, shown in
Figure6-7, is used to analyse the performance for different numbers of particles
(from 1 to 1,024 million) to simulate 0.6 seconds of physical time.

79

Chapter 6. MuliGPU Acceleration

0.50m

|

IO.ZS m 0.26 m

2.00m

Time: 0.3 s

Figure6-7. Testcase2: Dam break flow.

The simulations were carried out in four different systems at the University of
Vigo (Spain), the University of Manchester (United Kingdom) and the Barcelona
Supercomputing Center BSCNS (Spain). The specifications ofcbaof those
systems are summarisedTiable6-1. Two systems that belong to the University

of Vigo (system#la and system#1b) which have only one node were used to
evalate the different approaches of the dynamic load balancing (according to the
number of particles and according to the time required for each machine). The
system #2 (The University of Manchester) and system #3 {BSS) are built

with several nodes (8 a4 respectively) and they were used to analyse the
performance and scalability (strong and weak scaling). The efficiency achieved
using 8 nodes (16 GPUs) will be also confirmed analysing the efficiency with 64
nodes (128 GPUs). All the results presentedhis work were obtained using
CUDA 4.0, single precision and Erroorrecting code memory (ECC) disabled.

Table6-1. Features of the different systems used.

- CentOS 5.5

- MPICH21.2.1
- CUDA4.0

- gcc4d.12

Software

System #1al homogenousode with:
- 2 x Intel Xeon E5620 (4 cores at 2.4 GHz with 16 GB RAM)
- 4 x GTX 480 Fermi (15 Multiprocessors, 480 cores at 1.40 GHz, 1.5 GB GDDR5, Compute capabil

System #1b:1 heterogeneousode with:

- 2 x Intel Xeon E5620 (4 cores at 2.4 GHz with 16 GB RAM)

- 1 x GTX 680 Kepler (8 Multiprocessors, 1536 cores at 1.14 GHz, 2 GB GDDR5, Compute capabilit]
- 1 x GTX 480 Fermi (15 Multiprocessors, 480 cores at 1.40 GHz, 1.5 GB GDDR5, Compui#ityapa)
- 1 x GTX 285 (30 Multiprocessors, 240 cores at 1.48 GHz, 1 GB GDDR5, Compute capability 1.3)

- Red Hat Enterprise Linux Server 6.2

- Open MPI11.5.4

- CUDA 4.0

- gcc4.4.6

System #1

Hardware

Software

8 nodes connected via QDR Infiniband with:
- 2 xIntel Xeon L5640 (6 cores at 2.27 GHz with 24GB RAM)
- 2 x Tesla M2050 (14 Multiprocessors, 448 cores at 1.15 GHz, 3 GB GDDR5, Compute capability 2

System #2

Hardware

80

Chapter 6. MuliGPU Acceleration

- Red Hat Enterprise Linux Server 6.0
- BulxMPI11.1.11

- CUDA4.0

- Intel C++ Compiler XEL2.0

Software

128 nodes connected via QDR Infiniband with:
- 2 x Intel Xeon E5649 (6 cores at 2.53 GHz with 24GB RAM)
- 2 x Tesla M2090 (16 Multiprocessors, 512 cores at 1.30 GHz, 6 GB GDDR5, Compute capability 2

System #3

Hardware

First, the difference of the differetwad balancing schemes are compared for
homogeneous and heterogeneous clusters

6.2.2 Applying dynamic load balancing in a homogeneous cluster

This section presents the results when using the dynamic load balancing
according to the number of particles. Testcagadure 6-6) is simulated using
system #la (3 x GTX 480) so the domain is divided in 3 processes (3 GPUSs)
along thex-direction. Different instants of the simulatioase shown inFigure

6-8. The limits of the three different subdomains are depicted using coloured
boxes. The size of the different subdomains changes with time tatkeepork

load evenly distributed among processes (similar number of particles per
process).

Time: 0.3 s Time: 0.7 s

Figure 6-8. Different instants of the simulation of testcasel when using the
dynamic load balancing accordingttee number of particles.

The left panel ofigure 6-9 shows the distribution of the fluid particles among

the 3 processes showing how the balancing is achieved since about the 33.33% of
the particles are always computed for each process dimengirnulation. Since
system #1a is homogeneous with the same three GPUs, the time dedicated to the
force computation step for each GPU is also balanced as seen in the right panel
of Figure 6-9. A total amount of 42,624 steps were performed to complete this
simulation, the balancing was checked every 50 steps, so 852 times (0.04% of the
total simulation time) but it was performed only 94 times (0.03% of the total
simuldion time).

81

Chapter 6. MuliGPU Acceleration

0 300
60% = nFluid (GTX 480) tForces (GTX 480)

= nFluid (GTX 480) tForces (GTX 480)
nFluid (GTX 480) tForces (GTX 480)

40%

[N]
o
S
1

IS oa—

B s e s]

A SIS D B

runtime (ms)

20%

-
o
S

0% 0
0.0 0.5 10 15 0.0 0.5 1.0 1.5
Physical time (s) Physical time (s)

Figure 6-9. Distribution of the fluid particles and execution times of force
computation among the 3 GPUs of system #1a using load balancing according to
the number of particles.

6.2.3 Applying dynamic load balancing in a heterogeneous cluster

The dynamic load balancing scheme was also applied in the same testcasel but
using system #1b, which is a heterogeneous system since the 3 GPUs present
different specifications and performances. Fiéigure6-10, it can be concluded

that the approach of the balancing according to the number of particles is not
suitable in this case since despite the even distribution afuimder of particles
among the processes, the computation times are not balanced at all. The GPU
card GTX 285 is much slower than the other two cards and the time required to

compute the same number of particles is considerably higher than needed for the
other two cards.

0, 500
60% =—nFluid (GTX 680) tForces (GTX 680)

nFluid (GTX 480) tForces (GTX 480)
nFluid (GTX 285) 400 tForces (GTX 285)

40%

e

runtime (ms)

20%

0% 0
0.0 0.5 1.0 1.5 0.0 05 1.0 1.5
Physical time (s) Physical time (s)

Figure 6-10. Distribution of the fluid particles and execution times of force
computation among the 3 different GPUs of system #1b using load balancing
according to the number of particles.

The second proposed option consists of the algorithm descriti&ettion6.1.3
based on the computation time required to compute the forces. In this way, a
numberof particles is assigned to each GPU card according to its performance to
get a correct balance of the work load among the different GRgste 6-11

82

Chapter 6. MuliGPU Acceleration

shows the diffeent distribution of particles assigned to the three GPUs of the
system #1b and the execution times to compute the particle interactions, which
are very similar. Thus, the slowest card no longer represents a bottleneck.

0 500
60% nFluid (GTX 680) ‘ ====tForces (GTX 680)
nFluid (GTX 480) ==tForces (GTX 480)
i nFluid (GTX 285) 400 tForces (GTX 285)
~J

40%

e\

300

runtime (ms)

20%

200 PRS- e
100
0% 0

0.0 0.5 1.0 15 0.0 0.5 1.0
Physical time (5)

15
Physical time (s)

Figure 6-11. Distribution of the fluid particles and execution times of force

computation among the 3 different GPUs of system #1b using load balancing
according to the computation time.

The execution of testcasel on one GTX 680 card tal8eBours; combining this
GPU with GTX 285 and GTX 480, whose performance characteristics are lower,
the run takes 4.6 hours applying the dynamic load balancing according to the
number of fluid particles, and only 2.8 hours applying the balancing badéé on
computation time of each devidéigure6-12 summarises the execution times of
the 3 GPUs of the system #1b when used individually and together.

GTX 285
GTX 480
GTX 680
3 GPUs (bal. particles

3 GPUs (bal. time

0 5 10 15

Figure6-12. Execution times of the 3 GPUs of the system #1b used individually
and together applying dynamic load balancing.

6.2.4 Efficiency and scalability

One of the main objectives of the proposed m@RU implemerdtion using
MPI is the possibility of simulating large systems (10° particles) at

83

Chapter 6. MuliGPU Acceleration

reasonable computational times, which is imperative to use the model-liiereal
applications that require high resolutions. An efficient use of the resources to
minimise the computational and economical cost will make these large scale
simulations viable. Therefore, a study of the efficiency and scalability of the
multi-GPU implementation is shown in this section.

The performance is measured as the number of steps tamper second using
two approaches; (i) strong scaliggfN)that determines how the solution tirfie

varies with the number of processdtdor a fixed total problem size; and (ii)
weak scalings(N) that defines how the solution time varies with the nundfer
processors for a fixed problem size per procedsale 6-2 shows the formulae
used to measure the speedups and efficiency using these two measures.

Table6-2. Formulae to measure efficiency and scalability.

T(N,f)

. _ raf

Strong scalingl 5(N) = ————

9 g S(N) V)
T(N -N

Weak scaling | s(N') =¢
T(N:]) Nraf

Efficiency E(N)= S(N)/N

Testcase2 Kigure 6-7) is used here to evaluate the performance using the
different number of GPUs of the systema#42 and #3. The achieved speedups
are shown irFigure6-13 analysing the strong scaling (left) and the weak scaling
(right) for the different hardware systems.

For system # with only 4 Fermi GTX 480, the speedup is shown for 2, 3 and 4
GPUs simulating the testcase2 with sizes ranging from 1M to 8M particles for
strong scaling and from 1M to 8M particles per GPU to quantify the weak
scaling. As expected, the efficiency desesa with the number of GPUs.
Thereby, using 4 GPUs and analysing the strong scaling, an efficiency of only
66% is achieved simulating 1M particles but 94% is achieved when simulating
8M because the proportion of time spent on communication is far smaller.
Examining the weak scaling, an efficiency of 85.6% is obtained simulating 1M
particles per GPU, but this value increases to 99.9% computing 8M per GPU.

84

Chapter 6. MuliGPU Acceleration

Strong Scaling Weak Scaling

— 1M

System #1
(Fermi GTX 480)

GPUs GPUs

1M/Gpu
— A M /Gpu
12 BM/Gpu
seeveees Ideal

Svstem #2
(Tesla M2050)

0 4 8 12 16
GPUs

1M/Gpu o
e AN GPU
96 8M/Gpu
s Ideal

Svstem #3
(Tesla M2090)

1] 8 16 24 32 1] 32 64 96 128
GPUs GPUs

Figure 6-13. Speedup for different number of GPWsing strong and weak
scaling with the hardware systemsa##2 and #3.

In the case of the system #2 with 16 Tesla M2050, the efficiency analysing the
strong scaling is significantly reduced when the number of GPUs increases for a
small number of particke For example, an efficiency of 50% is obtained
simulating 1M particles with 8 GPUs, but this amount cannot be simulated with
more than 8 GPUs. As mentioned before, a minimum widthho$ @ssigned to

the subdomain of each process, so the maximum nuaillPUs is restricted.

The simulation of 12M particles using the 16 GPUs of the system #2 provides an
efficiency of 81%. The results for the weak scaling are 96.8% simulating 4M
particles per GPU and higher than 99.9% when 8M per GPU are performed.

Finally, for the system #3 using a maximum of 128 Tesla M2090, an efficiency
of 97.4% is achieved simulating 4M per GPU and higher than 99.9% with 8M
per GPU. Note that the highest execution simulated with this system simulates
1,024M (128 GPUs x 8M) to studyehveak scaling.

Values of efficiency higher than 99.9% are obtained since the testcase2 does not
scale perfectly. In spite of the efforts to choose a case where the execution time

85

Chapter 6. MuliGPU Acceleration

per number of particles was the same for different sizes, this was nii@os=

to different factors such as the ratio between fluid and boundary particles. Thus,
the execution time of one step per million particles is slightly higher with the
case of 8M than in the cases with more than 32M. Therefore, when using the case
of 8M as reference to compute the results of weak scaling in comparison to
bigger cases, the efficiency is slightly higher than the expeéigdre 6-14

shows the percgage of time dedicated to tasks exclusive of the pG&mU
simulations, which represent the overcost compared to siBiglé. It can be
observed how these tasks take less than 1.9% when simulating 8M/GPU with 128
GPUs and increases to 3% and 9% with 4M/GiAd 1M/GPU respectively.

0,
12% —T
—4M/gpu

8M/gpu
9% /ep

6%

3%

—

0 32 64 96 128
GPUs

Figure 6-14. Percentage of time dedicated to tasks exclusive of the-@lti
executions using the system #3.

0%

6.2.5 Bottlenecks: Loss of efficiency

This section discusses the origin of the loss of efficiency when the number of
particles per GPU is low. The MPI implementation requires tasks that represent
an extra overhead thereby reducing efficiency. Synchronisation tasks and
communication between presses are unavoidable and their cost increases with
the number of processes. The only way to minimise their impact is to increase the
number of particles per GPU. In the previous section, it was shown how
efficiency about 99.9% is achieved by simulating garticles per GPU, but the
efficiency drops significantly when simulating 1M per GPU or less. The main
causes of this loss of efficiency can be analysed USmgre 6-14 which shows

the percentage of computational time dedicated to the synchronisation tasks
(SynchroDY}, reception and transmission of thalos (RecvHaloand SendHal)

and reception and submission of the particles that have moved among domains
(RecvDiplacedand SendDisplaced Results of the simulations of 16M in 8, 12

86

Chapter 6. MuliGPU Acceleration

and 16 GPUs are shown in the left panel, while results of the simulation of 8M,
16M and 24M in 16 GPUs are shown in the right panel. These plots reflect how
the synchronisation is ther$t cause of loss of efficiency and the second one is
the data exchange of tl@los Hence, this loss of efficiency increases with the
number of GPUs (left panel dfigure 6-15) but decreases with the number of
particles (right panel ofigure 6-15), so the loss of efficiency increases by
reducing the number of particles per GPU.

synchroDt | e, synchroDt |
Recviialo. ey Recviialo |[—
SendHalo |[—— SendHalo [

RecvDisplaced B RecvDisplaced F

8x GPUs 8M

W12 xGPUs m16M

SendDisplaced [W16 x GPUs SendDisplaced S 24M
0% 4% 8% 0% 5% 10%

Figure6-15. Percentage of the computational time dedicated to specific MPI tasks
simulating 16M particles using different number of Tesla M2050 GPUs (left) and
simulating different number of particles Wwil6 Tesla M2050 (right).

The time devoted to communications between the devices is significant since the
overlapping between computation and data exchange between the MPI processes
is not perfect. This data exchange implies four steps: (i) transfer @Bl to

CPU, (ii) data submission through MPI, (iii) data reception and, (iv) transfer
from CPU to GPU. Therefore, new improvements have been applied to reduce
these times of communication. Transfers
using pinned memory.hus, asynchronous transfers can be used to overlap these
times with other tasks of computation. The use of an intermediate buffer,
employed in the submission and reception with MPI, can be removed so time of
communication and required CPU memory are redudde use of streams of
CUDA and the asynchronous memory transfers improve the overlap between
computation and communication. Using these improvements, the force
computation of the particles of each subdomain (very expensive in time) overlaps
with the enire process of sending and receiving the two halos. Before this
improvement, the overlap with the computation of these forces only occurred
with the MPI reception of the first halo, while receiving the second halo
overlapped with the force computation @frficles of the first halo (no expensive

in time).

Figure6-16 shows the percentage of total time dedicated only to tasks exclusive
of the multtGPU simulations sucas synchronisation to compute new time step,

87

Chapter 6. MuliGPU Acceleration

data communication and balancing operations, which represent the overcost
comparing to singl&PU. It can be observed how the latest improvements have
reduced this percentage to the half for different numbeeRfs and different
number of particles.

12%

e 1 M/gpu (Nnew) =-=-==1M/gpu (old)
e AM/gpu (Nnew) =-=-=-=4M/gpu (old)
8M/gpu (new) 8M/gpu (old)

9%

- o
_--————---—-----—---—
- - o o =
P

6%

3% n{ _________________________________
ld
|

0%

0 32 64 96 128
GPUs

Figure 6-16. Percentage of time dedicated to tasks exclusive of the-@ilti
executions including the latest improvements (using the system #2).

6.2.6 Memory requirements

At the beginning, it was mentioned that the use of GPUs is an attractive
alternative to accelerate the SPH simulations, but the limited GPU memory can
be a serious drawback for very largases Therefore, one of the objectives of
this multtGPU implemetation is to eliminate this limitation, so it is necessary to
ensure an efficient use of memory for all the GPUs used in the simulation.

In the DualSPHysics version without MPI, all the required memory is allocated
at the beginning of the execution since the maximum number of cells and
particles is knowra priori. However, in the mukGPU version, this information

is unknown for each GPU and the number of particles and cells allocated in each
GPU change during the simulation. To solve this problem, the amount of
memory needed for the particles and cells and &a 9% is allocated initially,

and only when this memory is no longer enough, a new allocation is performed.
The maximum number of particles that can be simulated with this-@Blil
implementation for the testcase2 is about 7.14 million particles perofGB
memory using single precision. As it can be observddgare6-17, a maximum

of 40M can be simulated with the 4 GPUs of the systeap 200M with the 16
GPUs ofthe system #2 and more than 1,370M with 32 GPUs of system #3.

88

Chapter 6. MuliGPU Acceleration

2GPUs

System #1 W4 GPUs

8 GPUs
M 16 GPUs

System #3 W32 GPUs
System #4

0 500 1000 1500
Particles (million)

Figure6-17. Maximum number of particles that can be simulated for the testcase2
with the systera #1a, #2 and #3.

6.3 APPLICABILITY TO REAL ISTIC PROBLEMS

As mentioned above, one of the main objectives of the 1@itt) code
DualSPHysics is simulating reble applications that require high resolution
over a large domain. Thus, once the different algorithms have been described and
their efficiency ad main drawbacks have been discussed, the code is now
applied to perform a huge simulation with more than particles. This
application consists of the interaction of a large wave with an oil rig using
realistic dimensions and simulating 12 seconds ofsighal time. The fluid
domain is 170m x 114m x 68m and the dimensions of the platform can be seen in
Figure6-18. The initial interparticle distance is 6 cm which implies a simulation

of 1,015,896,172 particles (1,004,375,142 fluid particles). This real application
has been chosen since a huge numbgradicles is required to represent with
very high resolution the smallest spatial scales in some objects of the oil platform
(on the order of centimeters) and also need to describe properly the propagation
of large waves (with wavelengths on the ordeordé hundred meters).

The simulation was carried out using 64 GPUs Tesla M2090 of the hardware
system #3. Different instants of the simulation can seligare 6-19. A total
number of 237,065 steps have been carried out in 79.1 hours. Data were saved
every 0.04 seconds of physical time, which represents more than 8980 GB of
output data.

89

Chapter 6. MuliGPU Acceleration

s

- 11.95m >

25.10m

A .
£ 130.18m
AN

6.10m

12.50m

Figure 6-19. Different instants (2.2s, 3.2s and 10s) of the simulation of a large
wave interacting with an oil rig using more than 109 particles.

In summary, the efficiency and performance of the new -RMBDA
implementation of DualSPHysics were presented and analysed in this chapter.
The main contributions can be summarised as follows:

90

Chapter 6. MuliGPU Acceleration

A A dynamic load balancing is implemented to distribute work loadsacthe
multiple processes to achieve optimal resource utilization and minimise
response time.

A Overlapping between data communications and computations tasks is
introduced to balance latency and to reduce computational times.

A The proposed muHGPU code ca be executed on different GPUs with
identical specifications or old and new cards can be exploited together. Thus,
the heterogeneous version allows a more efficient use of different machines
with different GPU cards.

A The scalability is analysed in term$ strong and weak scaling, indicating
how the runtime varies with the number of processes for a fixed total problem
size and how varies with the number of processes for a fixed problem size per
processor.

A The simulation of billions particles is possible nmediumsize clusters of
GPUs.

91

Chapter 7. Double precision

/. DOUBLE PRECISION

The parallel computing power of Graphics Processing Units (GPUSs) has led to an
important increase in thgize of the simulations but problems of precision can
appear when simulating large domains with high resolution.

The goal of this section is to address the problem of the lack of precision and to
develop the best solutions increasing the precision bupikgethe current
efficiency of the GPU codes. Single precision has been used in most of the cases
presented in this workshowing to be sufficiently accuratélowever, single
precision is not enough for some special ca3ée GPU implementation of
doubleprecision allows simulating real problems where single precision is not
enough. This is especially well suited for problems where very different spatial
scales are involved.

7.1 THE PROBLEM OF PRECISION

The problems of precision mainly appear when the domain is huge in comparison
to the distance of interaction between particles.Figure 7-1, a testbed is
presented Wwere the length of the domaib=18m) is much higher than the initial
depth of the fluid D=0.18m) and huge comparing with irfgairticle distance
(dp=0.01m).The difference between the maximum and minimum spatial scale is
bigger than three orders of magre in this case.

Velocity
: ;
P e \0‘ L u Time: 2.0 s

D=0.18 m dp=0.01m

[=18 m
Figure7-1. Testbed to study problems of precision.

93

Chapter 7. Double precision

The origin of the problem comes from the use of single precision for the
variables to compute and store the position of the partitles.format of real
data in single precision has a size of 32 bits; 1 bit for the sign, 8 bits for the
exponent and the remaining 23 bits for the mantissa. This allows representing
values from 1.17549435438 a 3.402823466e38. Thus, the mantissa has a
predsion of 23 bits which in decimal representation means 7 digitsnore
detailed description of floatingoint encodings and functionality can be found in
[IEEE 754 StandaidTherefore, real numbers are stored in a firgfgesentation
andtheir value has tde rounded.This rounding error is a characteristic feature
of floating-point computationThis is usuallynot a problem, bua fatal error can
appearwhen two numbers 6 very different magnitud are operated. More
information about rounding err@an be foundn [Goldberg 199]Landrelated to

GPU computation inWhitehead and FiElorea 2011

The use of single precision for the variables of the position of the particles
presents problems in different computations:

a) When twoparticles & andb) are close to zero (0.xxxxxXx), a precision of 7
decimal places is achieved when computing the distance between particles
(rap=ra-rp) to obtain the value of the kernal{,). But when the same two
particles are located in the position 1000.xxx only a precision of 3 decimal
places is achieved when computig

b) The same problem appears when updating the new position of the particles
at the next time stepy(t+dt) adding a vey small value to 0.xxxxxx (more
precision) or 1000.xxx (lack of precision)

The effect of lack of precision in the position of the particles is shovAgure
7-2 considering the numerical tank addressedFigure 7-1. The simulation
consists of a 2D numerical tank with a pistixe wavemaker in the left edge.
The physical timés 25 seconds and the piston starts to move at 4.5s.

Difference among velocity values of the particles according to their position can
be observed in the first frame (time=2.0s). This difference is marked at x>8m and
x>16m since the internal representatiof values is binary and therefore the
precision jumps occur in powers of 2. In time, that inaccuracy (registered in
x>2") affects the rest of the domain (> x>2%). Thus, at time=5.0s, particles
with x>16m are being excluded from the simulation (blacknts) since their
values of density are assumed as not valid. At time=10s, the excluded particles

94

Chapter 7. Double precision

appear starting from 8m and finally, at time=25s, the 72% of the fluid particles
have been removed from the simulation.

Velocity Magnitude
iy Maghltude Time: 2.0's

Particles out: 0.0% ; i i

4m 8m 16m

Particles out: 1.4% Time: 5.0 s

Particles out: 24.1% Time: 10.0 s

Particles out: 71.9% Time: 25.0 s

| L _ - N " ’

Figure7-2. Different instants of the simulation of the testbed.

As mentioned above, the internal representation of values is binary and therefore
the precision jumps occur in powers of 2. The distance between two
neighbouring partigdls was computed using double and single precision and the
difference between these approaches is represented for the different positions of
the two interacting particles iRigure 7-3. For eachposition, this calculation is
carried out by changing the distanbetween particlesrom 0 to 2h (kernel
domain).The blue line represents the maximum error and red line is the mean
error. It canbe observed how this differentehigher when the positions of both
particles are farther from the origin.

2.0%

——max (interval 0-2h)

———mean (interval 0-2h)
1.5%
1.0%
0.5%

I
0.0% =
0 256 512 768 1024 1280

position of two particles interacting

Figure 7-3. Relative eror in the distance between two particles interacting using
double and single precision for different particle positions.

95

Chapter 7. Double precision

/.2 SOLUTIONS USING DOUBL E PRECISION

The trivial solution to increase the accuracy is to increase the number of digits
used to store theosition of the particles, which can reduce significantly the
performance. Different approaches have been considered.

7.2.1 Solution FullDouble

The solution to obtain correct results is to use double precision for all variables
of the system and perform all coaotptions (creating the neighbour list,
computing forces and updating variables) in double precision. The format of data
in double precision has a size of 64 bits (8 bytes), so 15 decimal digits. However
this approach presents several limitations. The @rst is that the executions
would be over 7 times slower than using single precision. In terms of GPU
implementation, the loss of performance is due to the increase in the number of
registers in the CUDA kernel of particle interaction which implies a temium

the occupancy of the GPU, so that, a reduction in the GPU performance. On the
other hand, the capacity of calculation in single and double precision of the
GPUs is not balanced. Depending on the model of the GPU, the computation
capability in doul# precision can be several times slower. Another drawback is
the loss of efficiency in muklGPU since there will be more data to be exchanged
and overlapping computatiasommunication is never perfect.

7.2.2 Solution PosDouble

The first feasible and affordabtgption proposed in this work is implementing

only the variable position, in double precision since the lack of precision in the
simulations seems to come from these variable. Therefore, the size of position
(pos.x pos.y pos.2 changes from 3x4 bytes ®x8 bytes. The creation of the
neighbour list is performed using the position of the particle in double precision,
force computation where distance between particles needs to be computed is also
performed in double precision and the variables of posgi@updated using
double precision, too. This approach is still slow (but not as muEhli3ouble)

and implies a higher memory usage on GPU.

7.2.3 Solution PoscCaell

An alternative is maintaining single precision for position, but instead of storing
the real posion of the particler,, the relative position to the cell the particle

96

Chapter 7. Double precision

belongs to is stored. Thus, one advantage is that the size of the position changes
from 3x4 bytes to 4x4 bytesglative pos.x pos.y pos.z+ cell). This also implies

that the valueof the position [fos.x pos.y pos.2 is no longer higher than the
interaction distance, independently on the dimension of the case to be simulated.
The use of double precision is not needed in the force computation with this
approach, which is remarkabéence computing forces takes more than 90% of

the total time in the GPU executions (even higher in CPU executions as shown in
Figure 5-14). Updating position is still performed using double precision,
however this task takes a minimal percentage of the total execution time. The
disadvantage is the complexity of the code.

The kenefits of using th&®osCellapproach are observedkiigure 7-4. It can be
noticed how the problems shownhkigure7-2 are now solved. After 25 seconds

of simulation, only 0.3% of fluid particles were removed from the simulation. In
fact, this low percentage of particles is removed due to instabilities created by the
wavemaker ad not due to precision issues.

Velocity Magnitude
0.1 i 0.2 \ 03 v 94

0.4

LT O R 4 A —

Particles out: 0.0% Time: 15.0 s

Particles out: 0.3% Time: 25.0 s

| - |
[V G atdl & V IWEURE ¥

Figure 7-4. Different instants of the previous simulation improving precision in
the position of the particles.

Figure 7-5 shows the error in the position of the particles (of the testbed) for
different distances from zero. The error is represented for the different
approaches; position in single precisi®o$Smple), position in double precision
(PosDoublé and position in single precision plus the relative position to the cell
(PosCel). This error is computed as the difference between the value of the
position using each of the mentioned approaches and the wélthe position
using FullDouble (full implementation in double precision). And the resulting
difference is expressed as percentage of the interaction distance. The error using
PosDoubleand PosCell is constant (values in left axis of the figure) even
athough the initial position of the computational domain has been shifted in
more than 8,000 meters from zero. The error achieved when Bssgimple

97

Chapter 7. Double precision

(values right axis) is several orders of magnitude higher and increases with the
distance to zero.

0.0001% —= 2%
PosDouble ’,-‘
PosCell 7
-
= === PosSimple 7
rd
”
’I
I"
. 1%
N 22"
l”'
I”’
d”
0.0000% == 0%
0 2,048 4,096 6,144 8,192

Distance to zero (m)

Figure 7-5. Relative eror in the position of the particles for different distances to
zero and using different approaches.

7.2.4 Solution PosDoubleFast

It is basically a modification dPosDouble The only difference lies in the force
computation stage where before computing the distance between pagtrlgs

r,, the variables, andr, which are stored in double precisionResDoubleare
converted here to single precision and the rest of atatipns during particle
interactions are performed in single precision. The approach psehentame
benefits solving the issue of precision as provenPbgDoubleand PosCell
(Figure 7-4), problems will only appear for domains with lengths higher than 2
km using fine resolution (problems beyond scope with SPH). However this
approach will present important advantages in terms of performance since the
force computatin stage is the most time consuming step in the SPH execution
and we can avoid the use of double precision during the computing forces with
this new implementation.

The main features of the different approaches implemented to solve the precision
issue argresented iMable7-1.

Table7-1. Double precision implementations

PosDouble PosDoubleFast PoscCell

4 arrays in SINGLE
precision
(relative pos.x, pos.y
pos.z +cell)

3 arrays in DOUBLE
precision
(pos.x, pos.y, pos.z)

Position 3 arrays in DOUBLE precision
Variable (pos.x, pos.y, pos.z)

98

Chapter 7. Double precision

PosDouble PosDoubleFast PoscCell
. . ti lIs list ti lIs list ti IIs list
Neighbour list _Crealng cells |s. . _Crealngce s lis N F?rea ingcells |s. .
in DOUBLE precision in DOUBLE precision in SINGLE precision

Computingrap, (to useWyy) with r, | Computingr,, (to useW,y,) | Computing ro, (to use

E(())rr:eutation andry, in DOUBLE precision with r, andry W,p) with ry andry,
P but stored in SINGLE precision |in SINGLE precision in SINGLE precision
Updating g(t+dt Updating g(t+dt Updating g(t+dt
Systemupdat.p 9).. -p 9).. .p 9K)..
1 in DOUBLE precision in DOUBLE precision in SINGLE precision

7.3 PERFORMANCE

The implementations PosDouble and PosCell solve the lack of precision but also
imply a high cost in the execution time. Here the loss of performance is analysed
and the computational runtime of both approaches are compared against the
single precision im@mentation. The 3D dafmreak shown irFigure6-7 is also

used here as testbed, where 4 million particles are simulated to perform 0.6
seconds of physical timekigure 7-6 represents the loss of efficiency of
PosDoubleand PosCellcomparing to the single precision implementation for
different GPU models.

m PosCell
m PosDouble

Tesla K20

Tesla
M2090

GTX 480

0% 10% 20% 30%

Figure7-6. Loss of efficiency compared with simple precision simulations using a
3D dambreak with 4M particles.

The loss of efficiency depends on the GPU model. UBiagDouble a loss of
20% is registered with the Tesla K20 (3@%h GTX 480) and usindg?osCel)
less than 8% in Tesla K20 (less than 15% in GTX 480).

The approaclirosCellwas discarded despite being much faster @sDouble

since the complexity of the code increases significantly. This is a key factor since
thecode is developed to be latter released as open source for the whole scientific
community.

99

Chapter 7. Double precision

The

latest option PosDoubleFast (using single precision in the force

computation) allows to obtain the same results without loss of performance. That
is the reason fy this approach was not shownRigure7-6. In fact, there is no

loss of performance even for particles whose position is moved more than 1km
from the origin.

There is no loss of performance usiPgsDoubleFastiue to different reasons:

a)

b)

Force computation represents the 92% (94%) of the execution time using
Tesla K20 (GTX 480). Therefore, using the variables of position in single
precision when computing forcethie impact on the total execution time is
very limited (compared with the original version in single precision),
although double precision is used in other parts of the code.

The rest of the SPH execution, where variables of position are used in
double preision, can also lead to a loss of performance. However, the task
of determining the cell where the particle belongs to during the creation the
neighbour list and updating the new value of position in the system update
stage are only the 0.7% (0.6%) and%.(1.0%) of the total execution time
using Tesla K20 (GTX 480). Thus, there is no impact on runtime reduction
compared with single precision implementation.

The use of double precision implies an increase in the number of registers
that are used in CUDAeknels, which can give rise to a loss of occupancy of
the GPU, so that, the performance decreases. Nevertheless, this only occurs
for high number of registers. When using double precision in the position,
the number of registers increases in 5. This irsgéa the force computation
stage means using 53 registers instead of 48 with a loss of occupancy of
11%. However, there is no loss of occupancy in the system update stage,
where 26 registers are used instead ofR2dure 7-7 shows the occupancy
using 256 threads according to the number of registers to better understand
this last point.

100%

—sm12-13
80% —sm20-21
o
sm30-35
60%
0 24 28 32

40%

20%

0%
2

36 40 44 48 52 56 60 64
Registers

Figure 7-7. Percentage of occupey according to the number of registers and
compute capability of GPU.

100

Chapter 7. Double precision

d) The use of double precision also implies an increase in the volume of data to
be read/written in memory. However, this increase of the volume of data
does not represent a loss of periance in the CUDA kernels used during
the neighbour list creation and system update since the memory accesses are
coalescent in those kernels and there is not divergence. In the case of CUDA
kernels for computing forces among particles, the increase taf tdabe
loaded in the memory gives rise to a significant loss of performance since
these kernels present problems of coalescence and divergence.

101

Chapter 8. Conclusions

8. CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSIONS

SPH is an ideal technique to simulate free surface flows, in particular violent
collisions between water and structures. Its range of application is very wide,
including sloshing and flooding event; design of coastal defedaess, devices

t o generat e renewabl e energiesé Actual
engineering purposes in those problems involving the complex interaction
between water and structures. In general, all these problems involve large
domains that should bsolved with fine resolution, which makes the model
expensive in terms of computational requirements. This is the reason why codes
should be optimized and accelerated.

The main goal of this work was to develop an optimized version of the open
source codeDualSPHysics, which can be used both on CPUs and GPUs.
DualSPHysics has been designed to be run on Hecwi@ CPUs, which is a
relatively common resource, but also on GPUse T&PU technology has
experienced a rapid development during the last few yedrs@rstitutes a fast

and cheap alternative to classical computation on CPUs. Nevertheless, a single
GPU is not enough to run large domains due to memory requirements. Thus, a
multi-GPU version of the code has also been developed. In addition, pre
processig and posprocessing tools have been developed to take advantage of
DualSRHysics capabilities.

The main findings of this research are sumseakin the following subsections.

8.1.1 Neighbour List

SPH software frameworks (such as DualSPHysics) can be split into three main
steps; (i) generation of a neighbour list, (i) computation of forces between

103

Chapter 8. Conclusions

particlesby solving momentum and continuity equations and (iii) integrating in
time to update all thphysical properties of the particles in the system. Running a
simulation therefore means executing these steps in an iterative manner. The step
devoted to compute forces consumes more than 90% of the execution time,
whereby it is the most important part ot be accelerated. However, its
implementation and performance depends greatly on the previous step
(neighbour list generation) therefore a study about different neighbour list
approaches was carried out. The use of-fd#kd list and Verlet list with
sewral variations was compared, being the -GeKed list chosen to be
implemented since it provides the best balance between performance and usage
of memory.

8.1.2 CPU Acceleration

Four optimizations are implemented for the CPU code in DualSPHysics. The
first one applies symmetry in particle interactions, the second one divides the
domain into smaller cells, the third one uses SSE instruction and the fourth one
uses OpenMP to implement mutibre executions. Three different approaches of
the multicore implement#zon are presented. The most efficient version uses the
dynamic scheduler of OpenMP to achieve the load dynamic balancing and
applies symmetry to particle interaction. Thus, the most efficient OpenMP
implementation outperforms the singlere by 4.6 usinghe available 8 logical
cores provided by the CPU hardware used in this study.

8.1.3 GPU Acceleration

CUDA is used to exploit the huge parallel power of preseyt Graphics
Processing Units for general purpose applications such as DualSPHysics.
However, an effiient and full use of the capabilities of the GPUs is not
straightforward.

Several optimizations are presented for the GPU implementations; maximization
of occupancy to hide memory latency, reduction of global memory accesses to
avoid noncoalesced memorgccesses, simplification of the neighbour search,
optimization of the interaction kernel and division of the domain into smaller
cells to reduce code divergence. The optimized GPU version of the code
outperforms the GPU implementation without optimizatidoy a factor on the
order of 1.65 using a GTX 480 (Fermi architecture) and 2.15 using a Tesla 1060.
In general, the designing improvements included in the new Fermi GPUs make

104

Chapter 8. Conclusions

these cards less sensitive to the programming task. The GPU parallel computing
developed here can accelerate serial SPH codes with a speedup of 56.2x when
using the Fermi card. Finally, the speedup of the GPU over a-coutiCPU is

12.5x when using a multhreaded approach.

In addition, an evaluation of performance using the 1a&&Js is also included.
Thus, the new GPUs with Kepler architecture, GTX 680 and Tesla K20 achieved
a speedup of one hundred over single core CPU. This speedup rises to 148.8
using a GPU GTX Titan.

8.1.4 Multi -GPU Acceleration

The multtGPU approach includesUDA and MPI programming languages to
combine the parallel performance of several GPUs in a host machine or in
multiple machines connected by a network.

Dynamic load balancing was implemented to distribute work load across the
multiple processes to achiegptimal resource utilization and minimise response
time. It enables the adaptation of the code to the features of homogeneous and
heterogeneous clusters achieving the best performance.

The multtGPU implementation has shown a high efficiency usirsggaificant
number of GPUs. Thus, using 128 GPUs of the Barcelona Supercomputing
Center, efficiencies of 85.9%, 97.4% and close to 100% have been achieved
simulating 1IM/GPU, 4M/GPU and 8M/GPU respectively.

The possibility of combining the resources ofexal GPUs and the efficient use

of the memory enables simulations with a huge number of particles. For
example, 40M particles can be simulated with 4 GPUs GTX 480, more than
300M with 16 GPUsTeslaM2050 and more than 2000M with 64 GPUssla
M2090.

To show the capabilities of the code, a realistic interaction of a large wave with
an oil rig using more than 1@articles have been carried oattotal number of
237,065 steps have been carried out in 79.1 haing) 64 GPUs M2090

105

Chapter 8. Conclusions

8.1.5Issue of precision

Probkems of precision in DualSPHysics can appear in simulations involving very
large domains at a very high resolution. It has been shown that the source of the
problem comes from the lack of precision to represent the position of the
particles. Several implemgtions have been proposed to solve the issue of
precision measuring the accuracy of the results and the loss of performance for
each approach. Finally, the best solution avoids problems of precision without
loss of performance and without increasing gigantly the complexity of the

code.

8.2 FUTURE WORK

The aim of DualSPHysics is twiold. Firstly the code is a usétiendly platform
designed to encourage other researchers to use the SPH technique to investigate a
large number of novel CFD problems. Sedgndhe method can be used by
industry to simulate real problems that are beyond the scope of classical models.

New features are constantly being integrated into the DualSPHysis code or are
planned to be carried out in the near future. Some of them ateomed here:

A Variable particle resolutiorMacondio et al., 2018§.

A Multiphase cases (gawil-water) Fourtakas et al., 2013Mokos et al,
2014.

New boundary conditiong-purtakas et al2014.
A Coupling with the Discret Element MethodDEM) [Canelas et al., 2014

Coupling with the SWASH Wave Propagation Modaltpmare et al.,
20140).

A Coupling with IBER mode{http://iberaula.es/modeliver/modelo)

A) >\

>

106

Appendix A.DualSPHysics Domumentation

A. DUALSPHYSICS DOCUMENTATION

A.1l SOURCE FILES

A set of C++ and CUDA files need to be compiled to generate the DualSPHysics
binary. Here all the source files are listed, however each file contains more
detailed comments describing the SPH formulation and the algorithms. As
mentioned before, the samepépation can be run using either a CPU or GPU
implementation; therefore some files are common for the SPH solver while
others are specific to CPU or GPU executiohable A1l shows a general
overview of the different source files integrated in the project.

Table A1. List of source files of DualSPHysics code.

No SPH SPH on CPU & GPU
Functions (.h .cpp) main.cpp
JException (.h .cpp) JCfgRun (.h .cpp)
JFloatingData (.h .cpp) JSph (.h .cpp)
JLog2 (.h .cpp) JPartsLoad (.h .cpp)
JObject (.h .cpp) JPartsOut (.h .cpp)
JObjectGpu (.h .cpp) JSphDtFixed (.h .cpp)
JPartData (.h .cpp) JSphVarAcc (.h .cpp)
JPtxaslInfo (.h .cpp) Types.h
JspaceCtes (-h .cpp) SPH on CPU SPH on GPU
JSpaceEParms (.h .cpp)
JSpaceParts (.h .cpp) JSphCpu (.h .cpp) JSphGpu (.h .cpp)
JSpaceProperties (.h .cpp) JSphGpu_ker (.h .cu)
ﬁgngeﬁilter (-h.cpp) JSphCpusSingle (.h .cpp) JSphGpusSingle (.h .cpp)
\]T:mg:'cuda_h JSphTimersCpu.h JSphTimersGpu.h
JVarsAscii (.h .cpp) JCellDivCpu (.h .cpp) JCellDivGpu (.h .cpp)
TypesDef.h JCellDivGpu_ker (.h .cu)
JFormatFiles2.h - _ JCellDivCpusSingle (.h .cpp) JCellDivGpusSingle (.h .cpp)
JFormatFiles2.lib / libjformatfiles2.a| JCellDivGpuSingle_ker (.h .cu
JSphMotion.h I _—
JsphMotion. i ibisphmotion.a | JPeriodicCpu (h.cpp) e ()
JXml.h
JXmllib / libjxml.a JGpuArrayg.h .cpp)

107

Appendix A. DualSPHysics Domumentation

The following tables show the goal of each individual filaple A-2 describes
the files not related to the SPH solvégble A3 describes the files of the SPH
solver common to CPU and GPU implementations; Eadnle A4 andTable A5
describe the files for the specific execution on CPU and GPU, respectively.

Please note that both the C++ and CUDA version of the code contain the same
features and options. Most of the source code is common to CPU and GPU (files
in Table A2 andTable A3).

Table A2. List of source files of DualSPHysics code metated to the SPH
solver.

No SPH FILES

Functions (.h .cpp) Declares/implements basic/general functions for the entire applicati

JException (.h .cpp) Declares/implements the class that defines exceptions with
information of the class and method

JFloatingData (.h .cpp) Declares/implements the class that allows reading/writing files with
of floating bodies

JLog2 (.h .cpp) Declares/implements the class that manages the output of informat
the file Run.out and on screen

JObject (.h .cpp) Declares/implements the class that defines objects with method
throws exceptions

JObjectGpu (.h .cpp) Declares/implements the class that defines objects with method
throws exceptions about tasks in GPU

JPartData (.h .cpp) Declares/implementthe class that allows reading/writing files with dz
of particles in formats binx2,

JPtxaslInfo (.h .cpp) Declares/implements the class that returns the number of regist
each CUDA kernel.

JSpaceCtes (.h .cpp) Declares/implements the clagst manages the info of constants fr

the input XML file

JSpaceEParms (.h .cpp) Declares/implements the class that manages the info of exec
parameters from the input XML file

JSpaceParts (.h .cpp) Declares/implements the class that managesnfioeof particles from
the input XML file

JSpaceProperties (.h .cpp) | Declares/implements the class tima&nages the properties assigneg
the particles in the XML file

JRangeFilter (.h .cpp) Declares/implements the class that facilitates filtermatpueswithin a
list

JTimer.h Declares the class that defines a class to measure short time interv

JTimerCuda.h Declares the class that defines a class to measure short time inter|
GPU using cudaEvent

JVarsAscii (.h .cpp) Declares/implements the class that reads variables from a text f
ASCII format

TypesDef.h Declares general types and functions for the entire application

JFormatFiles2.h Declares the class that provides functions to store particle da
formatsVTK, CSV, ASCII

JSphMotion.h Declares the class that provides the displacement of moving o
during a time interval

JXml.h Declares the class that helps to manage the XML document using |
TinyXML

Table A3. List of source files of DualSPHysics code for the SPH execution.

108

Appendix A.DualSPHysics Domumentation

SPH SOLVER
Main file of the project that executes the code on CPU or GPU

main.cpp
JCfgRun (.h .cpp)

Declares/implements the class that defines the class responsible of col
the executiomparameters by command line

Declares/implements the class that defines all the attributes and functio
CPU and GPU simulations share

Declares/implements the class that manages the initial load of particle d
Declares/implements the class that stores excluded particles at each
till writing the output file

Declares/implements the class that manages the use of prefixed values
loaded from an input file

Declares/implements the class that manages the application of external

JSph (.h .cpp)

JPartsLoad (.h .cpp)
JPartsOut (.h .cpp)

JSphDtFixed (.h .cpp)

JSphVarAcc (.h .cpp)

to different blocks of particles (with the same MK)

Types.h

Defines specific types for the SPH application

Table A4. List of source files of DualSPHysics code for the SPH execution on

CPU.

SPH SOLVER ONLY FOR CPU EXECUTIONS

JSphCpu (.h .cpp)

Declares/implements the class that defines the attributes and fun
used only in CPU simulations

JSphCpuSingle (.h .cpp)

Declares/implements the class that defines the attributes and fun
used only in SinglCPU

JSphTimersCpu.h

Measures time intervals during CPU execution

JCellDivCpu (.h .cpp)

Declares/implements the class responsible of computing the Neig
Listin CPU

JCellDivCpusSingle (.h .cpp)

Declares/implements the class responsible of computing the Neig
List in SingleCPU

JPeriodicCpu (.h .cpp)

Declares/implements the class that manages the interactions be
periodic edges in CPU

Table A5. List of source files of DualSPHysics code for the SPH execution on

GPU.

SPH SOLVER ONLY FOR GPU EXECUTIONS

JSphGpu (.h .cpp)

Declares/implements the class that defines the attributes|
functions used only in GPEimulations

JSphGpu_ker (.h .cu)

Declares/implements functions and CUDA kernels for the par
interaction and system update

JSphGpuSingle (.h .cpp)

Declares/implements the class that defines the attributes|
functions used only in SingieéPU

JSphTimersGpu.h

Measures time intervals during GPU execution

JCellDivGpu (.h .cpp)

Declares/implements the class that defines the class respons
computing the Neighbour List in GPU

JCellDivGpu_ker (.h .cu)

Declares/implements functions and CUD&rnels to computg
operations of the Neighbour List

JCellDivGpuSingle (.h .cpp)

Declares/implements the class that defines the class respons
computing the Neighbour List in Sing@PU

JCellDivGpuSingle_ker (.h .cu)

Declares/implements functionsnd CUDA kernels to comput
operations of the Neighbour List

JPeriodicGpu (.h .cpp)

Declares/implements the class that manages the intera
between periodic edges in GPU

JPeriodicGpu_ker (.h .cu)

Declares/implements functions and CUDA kernels dbtain
particles that interact with periodic edges

JGpuArrays (.h .cpp)

Declares/implements the class that manages arrays with mem
allocated in GPU

109

Appendix A. DualSPHysics Domumentation

A.2 COMPILATION

The code can be compiled for either CPU or GPU execution. In order to compile

the codef or CPU executi on, only a C++ compi
needed with the resultant binary allowing the code to be run on workstations
without a CUDAenabled GPU.

To run DualSPHysics on GPU, arvidia CUDA-enabled GPU is needed and the
latest veron of the GPU driver must be installed. However, to compile the
source code, the GPU programming language CUDA and NVCC compiler must
be installed on the computer. The CUDA Toolkits can be downloaded directly
from Nvidia (https://developer.nvidia.com/cud@wnload¥. CUDA versions

4.0, 4.1, 4.2, 5.0, and 5.5 have been tested (the same numerical results are
obtained with different CUDA versions).

Makefilescan be used to compile the code:

1) Makeif Makefile_cpuonly for CPU compilation (files ofable A5 are not
included in the compilation) leading to the binary
DualSPHysicsCPU_linux64,

i) Makeif Makefile for a full compilation creating a binary for CRGPU
and the result of the compilationtlee binaryDualSPHysics_linux64

The user can modify the compilation options such as the path of the CUDA

toolkit directory or the GPU architecture By default the GPU code is compiled

for Asm_12, compute_ 120 and Asm_20, compu
file generated by the compiler is stored in the El@alSPHysics_ ptxasinfé-or

example, any possible error in the compilation J8phGpu_ker.cican be

identified in thisptxasinfofile. This file is also parsed by the executable on initial

startup in oder to perform hardware specific kernel optimisation.

The same code can be compiled for Windows platform and in that sense a file
with Microsoft Visual Studio project and libraries for Windows are included.

A.3 FILES AND FORMAT

Different files for the inpuaind the output data are involved in the DualSPHysics
execution: .xml, .bi2 and .vtk.

110

https://developer.nvidia.com/cuda-downloads

Appendix A.DualSPHysics Domumentation

The XML (EXtensibleMarkupLanguaggis a textual data format that can easily

be read or written using any platform and operating system. It is based on a set of
labels (ags) that organise the information and can be loaded or written easily
using any standard text or dedicated XML editor. This format is used for input
files for the code.

Data stored in text format (ASCIlI) consumes at least six times more memory
than the ame data stored in binary format. Values stored in text format in the
memory cannot always be recorded accurately due to rounding error introduced
by I/O routines and data truncation. Reading and writing data in ASCII is
computationally more expensive thasing binary (this can be as high as two
orders of magnitude). As DualSPHysics allows simulations to be performed with
a large number of particles, a binary file format is necessary to avoid these
problems. The use of a binary format reduces the staredsithe files and also

the time dedicated to generating them. The format used in DualSPHysics is
named BINX2 (.bi2), these files contain only the meaningful information of
particle properties. Some variables are removed, e.g. the pressure is not stored
since it can be calculated starting from the density using the equation of state as a
pre-processing step. The value for mass is constant for fluid and boundary
particles and so only two values are used instead of an array. The position of
fixed boundary pdicles is only stored in the first file since they remain
unchanged throughout the simulation. Data for particles that leave the limits of
the domain are stored in an independent file which leads to an additional saving.
Hence, the advantages of BINX2 che summarised as: (i) memory storage
reduction, (ii) fast access, (iii) no precision lost and (iv) portability (i.e. to
different architectures or different operating systems).

VTK (Visualisation ToolKit) files are used for final visusdition of the reslts

and can either be generated as apuoEessing step or output directly by
DualSPHysics instead of the standard BINX format (albeit at the expense of
computational overhead). VTK not only supports the particle positions, but also
physical quantitieshiat are obtained numerically for the particles involved in the
simulations. VTK supports many data types, such as scalar, vector, tensor,
texture, and also supports different algorithms such as polygon reduction, mesh
smoothing, cutting, contouring and Rahay triangulation. The VTK file format
consists of a header that describes the data and includes any other useful
information, the dataset structure with the geometry and topology of the dataset
and its attributes. Here VTK files of POLYDATA type withgkcybinary
format is used. This format is also easy for reaitle operations.

111

Appendix A. DualSPHysics Domumentation

A.4 RUNNING DUAL SPHysIcS

The input files to run the DualSPHysics code include one XML @lasg.xml

and a binary file Case.bi2. Case.xmlkontains all the parameters of the syst
configuration and its execution, such as key variables (i.e. smoothing length,
reference density, gravity, coefficient to calculate pressure, speed of sound), the
number of particles in the system, movement definition of moving boundaries
and propertieof moving bodies. The binary fil€ase.bi2contains the initial
particle data; arrays of position, velocity and density and headers. The output
files of DualSPHysics consist of binary format files (by default) with the particle
information at different istants of the simulatiorPart0000.bi2, Part0001.bi2,
Part 0002. bi 2 wih exclRded pafales anBun.utwith a brief
description of thexecution

Different execution parameters can be changed in the XML file: time stepping
algorithm specifing Symplectic or Verlet, choice of kernel function which can
be Cubic or Wendland, the value for artificial viscosity or laminar+SPS viscosity
treatment, activation of the Shepard density filter and how often it is applied,
activation of the delt&PH corection, the maximum time of simulation and time
intervals to save the output dafa run the code, it is also necessary to specify
whether the simulation is going to run in CPU or GPU mode, the format of the
output files, files that summarise the exesntprocess with the computational
time of each individual process. For CPU executions, a -{oofg
implementation using OpenMP enables executions in parallel using the different
cores of the machine. It takes the maximum number of cores of the device by
default or users can specify the number used. In addition, the parallel execution
with OpenMP can use dynamic or static load balancing.

To run the program, type the commandudlSPHysics linux64 Case
[options],whereCaseis the name of the input file€ése.xmbndCase.bid. The
configuration of the execution is mostly defined in the XML file, but it can be
also defined or changed using execution parameters. Furthermore, new options
and possibilities for the execution can be imposed using [options¢eas I8

Table A6. For example:

$dualsphysics $dirout/$name $diresitresi cpu
enables the simulation on the cpu, where $dirout is the directory with the file
$namehi2

112

Appendix A.DualSPHysics Domumentation

$dualsphysics $dirout/$name $direstresi gpu
enables the same simulation on the gpu.

$dualsphysics $dirout/$name $direstresi gpui partbegin:69 $dirdata
restarts the simulation from the time corresponding to files output Part0069.bi2

in $dirdat directory.

Table A6. List of execution parameters of DualSPHysics.

PARAMETER DESCRIPTION
-h Shows information about parameters
-opt <file> Loads configuration from a file
-cpu Execution on Cpu (optioby default)
-gpul:id] Execution on Gpu and id of the device
-stable Ensures the same results when repeated a simulation since ope|
are always carried out in the same order
-ompthreads:<int> Only for Cpu. Indicates the number of threads Host for parallel
execution, it takes the number of cores of the device by default (or
zero value)
-ompdynamic Only for Cpu. Parallel execution with symmetry in interaction
dynamic load balancing. Not compatible witstable
-ompstatic Only for Cpu. Parallel execution with symmetry in interaction and s
load balancing
-cellorder:<axis> Indicates the order of the axis. (xyz/xzylyxz/yzx/zxy/zyx)
-cellmode:<mode> Specifies the cell division mode, by default, the fastest mode is cho
h fastest and the most expensive in memory
2h lowest and the least expensive in memory
-symplectic Symplectic algorithm as time step algorithm
-verlet[:steps] Verlet algorithm as time step algorithm and number of time stef
switch equations
-cubic Cubic spline kernel
-wendland Wendland kernel
-viscoart:<float> Artifitical viscosity [0-1]
-viscolamsps:<float> Laminar+SPS viscositiprder of 1E6]
-shepard:steps Shepard filter and number of steps to be applied
-deltasph:<float> Constant for DeltaSPH. By default 0.1 and 0 to disable
-sv:[formats,...] Specifies the output formats:
none No files with particle datare generated
binx Bynary files (option by default)
vtk VTK files
ascii ASCII files (PART_xxxx of SPHysics)
csv CSV files
-svres:<0/1> Generates file that summarizes the execution process
-svtimers:<0/1> Obtains timing for each individual process
-svdomainvtk:<0/1> Generates VTK file with domain limits
-name <string> Specifies path and name of the case
-runname <string> Specifies name for case execution
-dirout <dir> Specifies the outpwudirectory

113

Appendix A. DualSPHysics Domumentation

-partbegin:beginl[:first] dir RESTART option. Specifies the beginning of the simulation staf
from a given PART (begin) and located in the directory (dir), (fi
indicates the number of the first PART to be generated

-incz:<float> Allowable increase in Z+ direction. Case domain is fixed as functig
the initial particles, however the maximum Z position can be incre
with this option in case particles reach higher positions

-rhopout:min:max Excludes fluid particles out of theslensity limits

-ftpause:<float> Time to start floating bodies movement. By default 0

-tmax:<float> Maximum time of simulation

-tout:<float> Time between output files

-ptxasfile <file> Indicates the file with information about the compilatikernels in

CUDA to adjust the size of the blocks depending on the needed reg
for each kernel (only for gpu). By default, it takes the path and the
of the executable + ptxasinfo

114

Appendix B. Preprocessing Tools

B. PRE-PROCESSING TOOLS

The process of generating the geometry of an experiment based on particles is
not trivial and can give rise to a significant computational cost. Generating the
initial configuration of paicles for a SPH simulation requires filling volumes of
irregular shapes using particles that must be spaced equidistant. Depending on
the treatment of the boundary conditions, computation of the normal vectors of
the boundary points might be required.

To perform this task, a code named GenCase was developed. GenCase is a tool
implemented in C++ that works independently without the need for other design
software. This code combines the simplicity of defining the case using basic
geometrical shapes with tleapacity of including 3D models. Thus, starting from

the case description and the 3D external objects, the code is able to generate very
complex geometries using millions of particles not only in an easy way but also
almost instantaneously.

At its core,GenCase is a drawing application that creates points that will be
converted into particles which carry physical quantities (position, velocity,
density...). It creates the configuration that will be loaded by the SPH solver as
initial condition for the siralation. The central feature of the code is its
capability to convert a wide variety of geometrical shapes into their respective
particle representation. In fact it is possible to convert any shape that consists of a
mesh with edges and faces. The procedsr based on a simple algorithm.
GenCase employs a 3D mesh to locate points which represent possible particle
positions. The main idea is to build an object by placing particles only at those
points which are required to generate the desired geometry.

The input file of GenCase is a XML file. The XML (eXtensible Markup
Language) format consists of an extensible mpetgramming language that
allows a structured representation of data. In order to represent all the

115

Appendix B. Preprocessing Tools

information required to define a case, thest and clearest option is using this
format due to its simplicity, generality and usability. The output file is a new
XML file and a binary file containing the data of all the particles of the domain.
In addition, VTK files with particles or VTK files ith the planes of the
geometry can be used for visisalion.

B.1 PARTICLE GENERATION

A 3D mesh is used to construct the points that will be used to define the particle
positions. The mesh is implemented as a matrix where each element represents a
possible pint. A label that identifies the point is stored on the elements or
positions of matrix. The location of the points is implicit in the given structure of

the matrix. These labels allow marking out the different types of points; fluids
(fluid), boundarief bound) or empty points (void).
state of all points of the mesh.

The use of the mesh has several advantages. On one hand, all points will be
placed maintaining an equidistant distribution independently of how complicated
the case geometry is. On the other hand, the performance ociur#adtasks is
improved. This accelerates the algorithms of creating points but restricts the size
of the case, though the maximum number of points that can be createdfis 2-10

In order to repesent 3D objects in a mesh, only the points that compose the
shape of the object will be marked. Thus, when a 3D object is drawn, a set of
points with a specific label are marked in the mesh. Generally, 3D models are
composed of polygons that can be deposed into triangles. ThuEjgure B1
illustrates how this algorithm is employed to create a triangle in 2D. Firstly, the
points of a mesh are defined covering the desired triangle, then the three lines
with the three vertices of the triangle are defined and finally, particles in the
availabk points under the three lines are created. A similar procedure is applied
for other shapes such as spheres, ellipsoids, cylinders...

The geometry of the case is defined following absolute measures independently
on the intetparticle distance. This allowsarying the number of particles by just
defining a different distance among particles. The complexity of the object will
be better represented if the number of particles is highgure B2 shows how

the detail and the accuracy of the object changes when theartale distance

116

Appendix B. Preprocessing Tools

is modified. For a better visuadition of the figure, particles are represented by
cubes.

0000000000000 QC0Q00000 00
0000000000 QO0Q00QO00 Q0
CO0000000YOROCCO0000 o0
000000000 H0ODRQOO0000 00
00000000¢00000O™QO000 00
0000000000000 00ONQOD0 00
00000Q0HFOOO00Q00OLMO 00
0000000000000 0C0Q&F000 00
000000p000000C00000 00
00000x000000M000000 00
Q0000L00COLVO00000D0 00
0000¢g000gR0000000000 00
000G 00000000 00
ooogog 00000000 00

0000 o0

0000 00

0000 00

0000 00

Q0000000000000 000000
0000000000000 0O0O0O000
0000000000800 000000
[sjehelaleielielolol X X J X JokeloReRole]
Q00C0C0OQ00e ®00000
[eRojelolojoRoloX § *e®000
c000C0O00e L X JeXel
Q00000 Cee 99000
[ejshsieleiey § X J L X X Jelejehole)]
Q00CQ0 ®®@C0OQCO0O00
[sishelolel X § X X N ¥ JoNoXokejeReRole]
00000 eee@®@®0000000C0O0O0
Q00Ceee@®O00000O0O0O0CQ0O0O0
000@e®e®C0000000C0O00000
000@e0Q0000000000000
000000000000 0O0O0O0O00
0000000000000 00O0C0O00
0000000000000 0O0CO000
Figure B1. Generation of a 2D triangle.

Triangles dp=0.03 (836 particles) dp=0.02 (1,836 particles)

dp=0.015 (3,183 particles) dp=0.01 (6,934 particles) dp=0.005 (27,474 particles)

Figure B2. Discretization accuracy for different number of particles.The absolute
measures of the object are 0.39 x 0.46 x 0.42.

As mentioned above, some points are marked in the mesh to drBvobjet.
These points are stored with a label that indicates what type of particles will be
created, i.e. fluid particles or boundary particles.

117

Appendix B. Preprocessing Tools

B.1.1Predefined objects

A wide variety of predefined shapes can be added to the simulation just by
setting up some configuration parameters. For instance, a corner and the size are
required to create a box, the centre and radius are needed to plot the sphere, two
points and radisifor the cylinder..Figure B3 shows some examples.

FigureB3. Some predefined objects: box, spl

Particles can be built i n di fcfedr emotd eway
creates particles along the boundari es
internal points and the Afull 0 mode cr e:
of both Afaced and Asoli do. Further more

to be hiddenFigure B4 represents a solid ellipsoid, a box without top and front
face and a cylinder without covers.

Figure B4.Basicshpes fisol i do and Afaceo.

B.1.2External objects

Design software such as AutoCAD, Blender or 3D Studio Max is suggested to be
used to generate complex 3D models in an easier way. The model can be then

118

Appendix B. Preprocessing Tools

exported to the formats: STL, PLY or VTK. These formats ban e loaded by
GenCase and the geometry is then converted to points and particles. This option
allows the use of prexisting 3D models, available for example on Internet. One
such example is the mixer from the Google SketchUp Gallery showigime

B-5.

Figure B5. Mixer: 3D model (left) and point distribution (right).

B.1.3Filling algorithm

Since SPH is used to study freerface flow aplications, the treatment of
boundary conditions is intrinsic to the problem. In case of complex boundaries, a
tool to fill areas with fluid particles is required. GenCase is able to perform this
task independently of how irregular the shape is. The ®dso efficient since

it can create configurations that require several million of particles within a few
seconds.

GenCase presents several options for the filling of areas and can be adapted to
any problem. First, a seed point must be defined, thist p@imarked with the

label or the type of point chosen for the filling (fluid, bound, void). Starting from
this seed point the procedure is extended to the surrounding points according to
their labels. The algorithm is configured to fill when the surroogdarticles

fulfil different criteria; when they have the required label or type of point (filling
with fluid while points are void) or when they do not have the required label or
type (filling with fluid while points are not bound). Finally the area ¢ofiled

can be limited defining different shapes (box, prism...).

The procedure of the filling algorithm consists of; (i) identifying the point of the
mesh that is closest to the seed point; (ii) if the criteria to mark a new point are
fulfilled, the filling algorithm marks the first point at this location, then (iii)

119

Appendix B. Preprocessing Tools

neighbouring points (6 adjacent points) are analysed to check if they fulfil the
criteria, if so new points are marked, (iv) the procedure ends when no more
points fulfil the criteria or whe the positions of the points reach the limits that
can be defined jointly with the seed point.

An example of how the filling algorithm works is depictedFigure B6. The

case consists of a 2D beach with an irregular bottom and two floating objects.
The geometry must be filled from the bottom to a given height. The colour of the
particles represents the order followed during the filling procedure (from blue to
red)starting from the seed point (the large red dot).

Figure B6. Filling an irregular beach with fluid.

B.1.40ther design tools

GenCase presents several options to transform the objects (predefined or
external) to make the design of the case easier. The basic transformation
operations are shifting, scaling and rotation over an arbitrary axis. Note that all
these transformations amumulative so when one is applied, the following
objects and operations will also be affected. A transformation matrix is used and
the procedure consists of multiplying this matrix with each vertex of the object.
Figure B7 shows an example of different transformations. Rotation and scaling
operations are applied to the vertices of the triangles of a 3D object.

120

Appendix B. Preprocessing Tools

A AT A
N S
I AT

g

r)‘:‘,‘?‘) 3
Ay e e SN
A Y A N S I
N N AP

Figure B7. Example of radtion and scaling of a 3D model.

Different operations such as constructing an object and the transformations can
be grouped in lists. This makes it easy to repeat a sequence of operations. An
example of how this can be used to create a model startingdrpnmitive
element is demonstrated kiigure BS8.

Figure B8. Creating a balustrade starting from a primitive element.

There is thepossibility to merge objects in order to create new ones. When an
object is drawn at the same location as a previous one, all the points whose
positions coincide will be replaced with the label of the new objecEigure B

9, a sphere with label void is drawn over a box with label bound.

Figure B9. Merging objects with different label.

121

Appendix B. Preprocessing Tools

B.2 FLOATING OBJECTS

Including floating bodies in SPHimulations can be important for certain
applications. GenCase also offers the possibility of using an external 3D model
and | abel the points that formed the ob
rigid motion of a floating body, the centre of gitgs GC), the moment of inertia

() and the mass of the body (M) must be calculated. These properties are easily
computed when basic shapes are considered (boxes, spheres ...). However, this
task becomes more difficult in case of complex geometries. Hrerdifferent
algorithms to compute these three variables starting from any polyhedron.
However, these algorithms cannot be applied when the object consists of an open
mesh. Another issue is that a 3D object does not always have homogeneous
density and som parts can have higher density than the rest. For example, the
front part of a car with the engine is heavier than the part containing the
passengers.

GenCase allows setting up the properties for each floating object, but it is also
able to obtain the nmtioned variables (GC, I, M) based on a point cloud. Thus,
the method can compute these magnitudes of any 3D object using its point
representation. Defining parts of the object with higher density can be achieved
by placing more particles at the desiredaton. Figure B10 shows how GC
changes due to the distribution of particles.

Figure B10. Gravity center and inertia (lower pannel) computed starting from
different particle distbutions (upper pannel).

122

Appendix B. Preprocessing Tools

B.3 INITIAL CONDITIONS

Once particles are created based on the marked points of the mesh, the values of
different variables and physical quantities must be assigned to each patticle:
position velocity and density. Different options of GenCase can be used to
compute the values of these quantities.

Thepositionof each patrticle is calculated by multiplying the position in the mesh

with the distance among particles and adding the coordinates of the based point
ofthemesh. A variable fAlatticed can be def
two particles will be generated for each point. Thus, starting from the position, a
guarter of the inteparticle distance is subtracted to determine the final position

of the first particle and a quarter is added to calculate the position of the second

one. Different initial configurations are representeéigure B11 with different

valuesé Al atticeo to create fluid and boun

lattice (bound-fluid): 2-1 lattice (bound-fluid): 2-2

Figure B11. Different initial configurations depending on the value of lattice for
fluid (blue points) and boundary (black points) particles.

The initial values ofvelocity for all particles are zero. However in the case of
fluid particles, a different initial velocity can be defined for a subset of particles
with the same label. The value of this initial velocity can be the same for all the
particles or the velocity pro#l of solitary wave.

The densityis computed automatically in the code depending on the depth of
each patrticle in relation with the rest of fluid particles. An example of the density
distribution according to the depth can be sedfigare B12.

123

Appendix B. Preprocessing Tools

Figure B12. Initial density distribution.

The value ofid allows the identification of each particle using a unique number.
This value is set for each patécaccording to the order of its creation. Particles
are created following the order of the labels. For each label, the subset of
particles is created sweeping the mesh in the direcfipth&n Y and finally X'
However this order can be changed andr#efias desired. This feature is very
useful for visuakation and for tracking of the SPH particles during the
simulation. The mixing between two different volumes of fluid can be observed
in theFigure B13.

Time: 0.00 s Id Time: 0.10 s

Time: 0.30s Time: 0.45s

Time: 0.95s Time: 1.50s

Figure B13. Mixing of two fluids.

124

Appendix B. Preprocessing Tools

B.4 MOVEMENT DEFINITION

At this point we have the ability of representing any complex geometry by
particles. Describing any kind of movement that maritee behaviour of the real
problem is imperative when engineering or industrial situations are going to be
analysed.

Different kinds of movements can be imposed to a set of particles; rectilinear
motion, rotational motion, circular motion and sinusoicdtion. Additionally,
predefined motion can be imposed with data from an external file. Different
instants of the movement of a pendulum are depictédgare B14. The green
piece follows a sinusoidal rotational motion, the yellow one follows a sinusoidal
circular motion and the red one represents a sinusoidal rectilinear movement.

LA
4L
<4

Figure B14. Different instants of a pendulum movemémittational, circular and
rectilinear sinusoidal).

All movements are associated with a given duration and they are identified with a
specific code. This code allows the linking of several movements in order to be
executed one after another. The speciacameters for each kind of movement
must be given. For example, the initial velocity and the acceleration values are
required to define the accelerated rectilinear motion while frequency, amplitude,
phase and an axis are required to define sinusoidalomt&n the other hand, a

125

Appendix B. Preprocessing Tools

movement can be applied to an object (a set of particles with the same label) or a
set of objects. Thus, a hierarchy of movements is created when an object has its
own movement and a movement associated with its set at the saemeAm
example of hierarchy of movements is shownFigure B15 where the two
mobile pieces of the mixer share a rotational movement while the red piece
additionallyhas its own rotation.

Figure B15. Mixer as an example of hierarchy of movements.

B.5 NORMAL VECTORS

Boundary conditions such as the repulsive forces need to compute the normal
vectors at the position of each boundary partidleing GenCase, normals are
calculated for a triangle according to the order of the three vertices of each one as
shown in Figure B16. The right panel of the figurshows the result of
computing normals for the given triangle. In this way, all particles that belong to
this triangle have the same normal vector. When a patrticle belongs to different
triangles, its normal vector is the result of averaging the differexibrse

S|

Figure B16. Normal vector (n) computation for a triangle.

126

Appendix B. Preprocessing Tools

Therefore, normal vectors can be computed for any complex object since it
consists of triangles as shownFigure B17.

Figure B17. Normal vector computation for a 3D object.

Figure B17 shows a 3D object (left frame) that is formed by triangles (centre
frame) so normal vectors of each triangle (right frame) can be calculated
following the mentioned procedure.

B.6 EXAMPLES AND PERFORMA NCE

Four testcases are described in this section to prowecdpability and the
performance of the GenCase code. A brief description of the case and
computational times are presented for each case. Execution runtime is divided in
three parts; representing the initial setup with poibtsa@Point9, creating the
paticles starting from the pointg ¢Particleg and saving data in the output files
(SaveData

Table B1 shows all the achieved results. These computational timedbti@ed
with the same execution device: an Intel Core i7 at 2.93GHz, 6GB of RAM
DDR3 at 1333 MHz and using Ubuntu 10.10 (64 bits).

Table B1. Features of the cases.

Results with GenCase
Particles | Fluid(%) | Time | Data Size

0.006 |54,665,246 81.8%| 91.9s| 1460 Mb
Sink 0.007 | 35,366,936 79.2%| 33.7s| 944 Mb
11,664 0.01 |13,102,483 72.6%| 9.8s| 350 Mb
polygons | 0-015 | 4,399,652 64.0%| 2.45s| 117 Mb
0.02 | 2,060,729 56.4%| 0.7s| 55Mb

Case Dp

127

Appendix B. Preprocessing Tools

0.0016 | 76,111,196 90.1%| 193.1s 2032 Mb
0.0018 | 54,010,704 89.0%| 88.5s| 1442 Mb
Mixer 0.002 |39,814,5471 87.9%| 38.8's| 1063 Mb
,gg79 | 0:0025|20948274 85.3%| 17.3s| 559 Mb
polygons | 0.003 12,461,843 82.8%| 9.0s| 333 Mb
0.004 | 5,488,221 78.1%| 3.1s| 147 Mb
0.005 | 2,967,689 74.3%| 1.2s| 79 Mb
0.00085| 81,006,785 93.0%| 171.3 5 2163 Mb
Pump | 0.001 | 50,269,756 91.9%| 59.2s| 1342 Mb
57979 | 0-0015|15348958 88.2%| 1195/ 410 Mb
polygons | 0.002 | 6,693,996 84.9%| 5.0s| 179 Mb
0.0025| 3,523,610 81.6%| 19s| 94Mb
0.00135| 17,427,774 0.0%| 39.8s| 465 Mb
MiniCooper| 0.00145| 15,047,524 0.0%| 31.0s| 402 Mb
3 848 38 | 0:0016 12,312,024 0.0%| 232s| 329 Mb
polygons | 0-002 | 7,777,73§ 0.0%| 13.0s| 208 Mb
0.003 | 3,376,230 0.0%| 45s| 90 Mb

B.6.1Testcase Sink

The first example consists of a sink with water and with a floating duck. The
geometry of the sink and the model of duck are created starting from external
VTK files. The duck is a floating object, where the centre of gravity, inertia and
mass are computedThe water is placed inside the sink using the filling
algorithm. A representation of the case using polygons and particles is depicted
in Figure B18. The time takerby the three different parts mentioned above is
shown inFigure B19 for different number of particles. It can be observed that
the highest cost in terms of computational time is the procedure to create
particles from points and how the time dedicated to save data becomes the most
expensive part for very large number oftpzdes.

Figure B18. Sink with floating object (polygons and particles).

128

Appendix B. Preprocessing Tools

g 54.7

0

E 354 .

= 131 B DrawPoints

ot .

2 44 N ToParticles

= n

s 5 SaveData
0 20 40 60 80 100

time (s)
Figure B19. Execution runtimes for the Sink.

B.6.2 Testcase Mixer

The second example is a mixer created from an external fl&ékand fluid
particles are introduced using the filling algorithm. The different types of
rotational movements allow reproducing the motion of the pieces of the mixer.
The geometry of the case is depictedrigure B20 and the execution runtimes
are shown irFigure B21.

Figure B20. Mixer (polygons and particles).

76.1
7]
2 54.0
Q
g 39.8
s 20.9 B DrawPoints
g 12.5 B ToParticles
E 55 W SaveData

3.0 |

0 50 100 150 200
time (s)

Figure B21. Execution runtimes for the Mixer.

129

Appendix B. Preprocessing Tools

B.6.3Testcase Pump

The third example consists of a water pump. The geometry is also loaded from an
external VTK file which originally comes from a CAD geometrynd®@ again,

the fluid is easily introduced using the filling algorithFigure B22 shows the

initial configuration of the case and the execution runtimes for different number
of particles are representedrigure B23.

Figure B22. Pump (polygons and patrticles).

3 81.0

0

g 50.3 _

= 153 i B DrawPoints

s .

2 67 N ToParticles

= n

S 35 SaveData
0 50 100 150 200

time (s)

Figure B23. Execution runtimes for the Pump.

B.6.4Testcase Mini Cooper

There is no fluid in this case, only a Mi@boper is represented using boundary
particles. The geometry of the car is generated using an STL file with a lot of
detail (3.8million triangles).Figure B24 showsthe 3D model using polygons

and using the wire mode the details of the model can be appreciated. The
different execution times to generate the boundary particles are presented in
Figure B25.

130

Appendix B. Preprocessing Tools

Figure B24. Mini Cooper (polygons and wire).

8 174
0
£ 150
g 123 B DrawPoints
g 78 B ToParticles
= n
S 34 SaveData
0 10 20 30 40
time (s)
Figure B25. Execution runtimes for the Mini Cooper.
B.7 REMARKS

A powerful tool named GenCase has been developed to gerbeaieitial
configuration of the system using particles for an SPH simulation. The use of
external geometries, the filling of irregular shapes, the definition of different
movements, the characterization of the floating objects and the normal vectors
computation are the main features of this code. All these capabilities can be
easily defined using an XML file.

The use of a 3D mesh does not only increase the performance of the code, but
also simplifies the algorithms. This allows implementing new funclites in
an easy way.

GenCase has been proven to be efficient. It is fast enough to generate complex
cases such as the Pump case with 80 million particles in less than 200 seconds.
Furthermore, most of the time is consumed by saving data as it neeal&eto s
more than 2GB of data. In the case of the Mini Cooper, the conversion of 3.8
million triangles to particles takes less than 40 seconds.

131

Appendix C. Posprocessing Tools

C. POST-PROCESSING TOOLS

As we mentioned above, DualSPHysics is a powerful model that allows the
analysis of complex flows, which make it ideal for engineering purposes. The
final goal of the technique is to provide results to help designers and decision
makers. As a consequence, itnmndatory to develop a full set of tools to
analyse the obtained results. The main tools are described in this appendix.

C.1 PARTVTK

This code is used to convert the output binary files of DualSPHysics into
different formats that can besualised and /or arlgsed. Mainly the VTK format

is used to show information about particles using the softviRaeaview

Paraview is an opesource and muHplatform program to visuae and to

analyse scientific data. This package also supports other output formasShke
(commaseparated values) or ASCIl (American Standard Code for Information
Interchange).PartVTK can get data of particles (position, velocity, density,

mas s) or calcul at e ot her val ues (press
particles of simulatioror only a selected part of them. Thgure G1 illustrates

how output of PartVTK is employed to visusidensity of particles.

Density

1010.0

1000.0

Figure G1. Visualisation of density from a fluid block of particles.

133

Appendix C. Posprocessing Tools

C.2 MEASURET OOL

A tool is needed to analyse these numerical measurements to be compared with
experiments. We must note that information in DualSPHysics is generated at the
particles, whose posith varies in time. Thus, information should be spatially
averaged when the time evolution of a property is calculated. The MeasureTool
code allows computing different physical quantities at a set of given points.
MeasureTool calculates multiple physicalagtities at any position. The binary
files (.bi2) generated by DualSPHysics are the input files of the MeasureTool
code and the output files can be \bihary or CSV or ASCIIl. The numerical
values at a given position are computed by means of a SPH iatopolThis
information depends on the values of the neighbouring particles averaged in
terms of a kernel. An example of output MeasureTool is showigure G2 and

Figure G3.

Elevation (m)

0 50 100 150 200 250 300
Physical time (s)

Figure G2. Example of gaphwith wave elevation at a specific position.

Height
0.25 05 0.75 1

0 1.2

Time: 0's Time: 1.5 s

Time: 3 s Time: 4.5 s

Time: 6 s Time: 7.5 s

Figure G3. Visualises the wave elevation for a slice of fluid.

134

Appendix C. Posprocessing Tools

C.3 | SOSURFACE

IsoSurface tool generates the isosurface of fluid to improve the e
when the number of particles is very high. In that case, the \satiah can be
improved by representing surfaces iast@f particles. To create the surfaces, the
marching cubes algorithm is useldofensen and Cline, 1987This computer
graphics technique extracts a paipgl mesh (set of triangles) of an isosurface
from a 3D scalar field.

Figure G4, represents a 3D dabreak simulation using 300,000 particles. The

first snapshotsows the particle representation. Values of mass are interpolated

at the nodes of aB Cartesian mesh that covers the entire domain using an SPH
interpolation. Thus a-B mesh vertex that belongs to the free surface can be
identified. The triangles of thisurface (generated by means of the marching
cubes algorithm) are represented in the second frame of the figure. The last
snapshots correspond to the surface representation, where the colour corresponds
to the interpolated velocity at the position of thangles.

Figure G4. Conversion of points to surfaces, from particles to isosurface.

135

Appendix C. Posprocessing Tools

C.4 DECIMAT E

The use otheisosurface is a good option to represent the fluid when the number
of particles is too higlimore than 5 million particlegd visualisethe particlesn

a standardpersonalcomputer However the isosurface castill be too heavy in
some applications whetbe domain is huge and the resolution is very high (for
example, the appliaction shown Kigure 6-19). Thus a method isneededto
simplify the geometry othe isosurface and to reduce the number of triangles.
The algorithm Decim&in based a [Schroeder et al. 1998chroeder, 1997s
appliedto reduce the number of triangles in a mesh but preserving the original
topology of the meshandalso considering the data associated with the vertices
like velocity or densityDecimation technique wasecessaryn the caseof the
interaction of a large waweith an oil rig using morehanone billion particles
(described at Sectiof.3). In that application the number of triangles tfe
isosurfacaeaches180 million andDecimation was used to reduce this number to
10% Another example can balso seen inFigure G5 where the original
isosurface contains 540,668 triangles and only 54,056 when applying
Decimataion.

Figure G5. Original isosurfaceof fluid (left) and simplified isosurfaceby
Decimate program with a reduction to 10%

136

Appendix C. Posprocessing Tools

C.5 BOUNDARYVTK

In order to visualise the boundary shapformed by the boundary particles,
different geometry files can be generated using the BoundaryVTK code. The
code creates triangles or planes to represent the boundaries. This tool extracts the
motion from boundary particles (moving or floating) to ceea better
visualisation of the moving objects using shapes instead of particles. This tool is
also very useful for display purposes and to check the predefined movement of
the boundary before starting the simulatibigure G6 shows the floating body
movement using a box to clarify the visgation.

Time: 0 s Time: 1s

Time: 3 s

Time: 6 s Time: 9's

Figure G6. Floating body movement represented using a box.

137

Appendix C. Posprocessing Tools

C.6 MEASUREBOXES

MeasureBoxes program calculates the volume of fluid and its velocity in any
volume of the simulation. Thus, any volume can be delimited by triangles to
measure the amount of fluid inside and the mean value of different properties like
fluid. This tool is \ery useful to measure flows on complex terrakigure G7
illustrates an exampl@resented inBarreiro et al., 2014 where MeasureBoxes

is used to study the runoff on a real terrain. The rain water is collected in the dark
area (top ofFigure G7). MeasureBoxes is used to study the effect of the ditch to
avoid water arrival at the road (red area in the bottonkiglire G7). Thus
volume of fluidis measured at each time step.

Figure G7. Appliaction of MeasureBoxes to measure a flow at complex terrain.

138

Appendix C. Posprocessing Tools

C.7 TRACERVTK

To observe the movement of fluid particles can be very complicated, especially
in 3D simulations. This tool plots the trajectory of a set of selected particles to
show clearly how these particles have moved during some interval of time.
Figure G8 shows an example where this tool is useful to viseatow fluid
particles move inside the gaps among the blocks (antifers) of a coastal protection
structurepresented inAltomare et al., 2014a

t=202 s t=21.2s t=22.25
[S

\h f’

Ry, iy Py, s,
E‘§’ W o o %, 1.119’{
-f’l‘ziﬁt‘ g,

Dl Y

s

Figure G8. Waves interaction with a coastal structure consisting of antifers and
trajectories of fluid particles betweeantifers.

139

Bibliography

BIBLIOGRAPHY

[Agarwal et al., 2012P.K. Agarwal, S. Hampton, J. Poznanovic, A. Ramanthan,
S.R. Alamand P.S. Crozier(2012). Performance modeling of microsecond
scale biological molecular dynamics simulations on heterogeneous
architecturesConcurrency and Computation: Practice and ExperielDCH,;
10.1002/cpe.2943.

[Altomare et al., 2014a]C. Altomare, A.J.C. Crespo, B.D. Roges, J.M.
Dominguez, X. Gironella and M. GobémezGesteira (2014. Numerical
modelling of armour block sea breakwater with Smoothed Particle
Hydrodynamics. Computers and Structures, B3A5.

[Altomare et al., 2014] C. Altomare, T. Suzuki, J.M. Dominguez, JAC. Crespo
andM. GémezGesteirg2014).Coupling Between SWASH and SPH for Real
Coastal Problem#roceedings of the 9th SPHERIZ542509.

[Anderson et al., 2008J.A. Anderson, C.D. Lorenand A. Travesset2008).
General Purpose Molecular Dynamics Simulations Fully Implemented on
Graphics Processing Unitdournal of Computational Physics 224342
5359.

[Antuono et al., 2012JM. Antuono, A. Colagrossand S. Marrone (2012).
Numerical diffusive terms in weaklyompressible SPH schemé&3omputer
Physics Communications 183

[Barreiro et al., 2013]A. Barreirg A.J.C. Crespo, J.M. Dominguemnd M.
GomezGesteira (2013). Smoothed Particle Hydrodynamics for coastal
engineering prolems Computers and Structures 120(1%3-106.

[Barreiro et al., 2014A. Barreiro, J.M. Domingue®.J.C. CrespoH. Gonzélez
Jorge, D. Rocaand M. GoOmezGesteira (2014). Integration of UAV

141

Bibliography

photogrammetry and SPH modelling of fluids to study runoffeal terrains
PLoS ONE DOI: 10.1371/journal.pone.0111031

[Batchelor, 1974]G.K. Batchelor (1974). Introduction to fluid dynamics
Cambridge University Press.

[Belytschko et al., 1998T. Belytschko,Y. Krongauz,J. Dolbow andC. Gerlach
(1998. On the completeness of meshfree particle methbdsrnational
Journal for Numerical Methods in Engineer#ig) 785 819.

[Bisseling, 2004]R.H. Bisseling (2004). Parallel Scientific Computation: A
Structured Approach using BSP and MBIxford Universty Press, ISBN
9780-19-8529392.

[Bonet and Lok, 1999]J. Bonet and T.-S.L. Lok (1999). Variational and
momentum preservation aspects of Smoothed Particle Hydrodynamic
formulations Computer Methods in Applied Mechanics and Engineet®@
97-115.

[Brown et al., 2011W.M. Brown, P. Wang, S.J. Plimpt@ndA.N. Tharrington
(2011). Implementing molecular dynamics on hybrid high performance
computers short range forcesComputer Physics Communications 1828
911.

[Buttlar et al, 1996] D. Buttlar, J Farrell and B. Nichols (1996) PThreads
Programming: A POSIX Standard for Better Multiprocessd@ Rei | | yv Medi .
ISBN: 9781565921153

[Canelas et al., 2014K. Canelas, R.M.L. Ferreira, J.M. Dominguwem A.J.C.
Crespo (2014). Modelling of Wave Impactson Harbour Structures and
Objects with SPH and DEM, Proceedings of the 9th SPHERI&320.

[Chandraet al, 1999 R. Chandra, RMenon, L Dagum, D Kohr, D. Maydan
and J. McDonald (1996) Parallel Programing in OpenMP. Morgan
Kauffman Publishers InclSBN: 9781558606715

[Chandraet al, 2002] R. Chandra, RMenon, L Dagum, D Kohr, D. Maydan
andJ. McDonald(2002) OpenMP C and C++ Application Program Interface.
OpenMP Architecture Review Board. http://www.openmp.org/drupal/mp
documents/cspec20.pdf.

142

Bibliography

[Chen and Beraun, 200Q).K. Chen and J.E. Beraun (2000) A generalized
smoothed particle hydrodynamics nethod for nonlinear dynamic problems.
Computer Methods in Applied Mechanics and Engineet®@ 225-239.

[Clark, 1998] D. Clark (1998). OpenMP: A Rdlel Standard for the Masses.
IEEE Concurrency 6(1), 102, DOI: 10.1109/4434.656771

[Colagrossi and Landrini, 2003A. Colagrossi and M. Landrini (2003).
Numerical simulation of interfacial flows by smoothed particle
hydrodynamicsJournal of Computatial Physicsl91, 448475.

[Crespo et al., 2007A.J.C. Crespo, M. Gome@Gesteiraand R.A. Dalrymple
(2007). Boundary Conditions Generated by Dynamic Particles in SPH
Methods CMC: Computes, Materials, & Continua 5 (3),73-184.

[Crespo et al., 2008pA.J.C. Crespo, M. Gome@Gesteiraand R.A. Dalrymple
(2008).Modeling Dam Break Behavior over a Wet Bed by a SPH Technique
Journal of Waterway, Port, Coastal and Ocean Engineering 1313320.

[Crespo et al., 2009A.J.C. Crespo,J.C. Marongiu, E. Pakinson, M. GOmez
Gesteiraand J.M. Dominguez (2009)High Performance of SPH Codes: Best
approaches for efficient parallelization on GPU computing. Proc IVth Int
SPHERIC Workshop (Nantes), 6%.

[Crespo et al.,, 2010A.J.C. Crespo,J.M. Dominguez, A. Bareiro and M.
GbomezGesteira (2010)Development of a Dual CRGPU SPH model. Proc
5th Int SPHERIC Workshop (Manchester), 4017.

[Crespo et al., 2011] A.J.C. Crespo, J.M. Doguez, A.Barreiro, M. Gémez
Gesteiraand B.D. Rogers(2011). GPUs, a new tool occeleration in CFD:
Efficiency and reliability on Smoothed Particle Hydrodynamics methods
PLoS ONE 6 (6), e2068R0I: 10.1371/journal.pone.0020685.

[Crespo et al., 2014A.J.C. Crespo,J.M. Dominguez B.D. Rogers,M. Gémez
Gesteira S. Longshaw,R. CanelasR. Vacondio,A. Barreiroand O. Garcia
Feal (2014). DualSPHysics: opesource parallel CFD solver based on
Smoothed Particle Hydrodynamics (SPH). Computer Physics
CommunicationsDOI: 10.1016/j.cpc.2014.10.004

[CUDA Programing GuideNvidia Corporation (2014).CUDA Programming
Guide http://docs.nvidia.com/cuda/cudaprogrammingguide/index.html

143

Bibliography

[Dagum and Menon, 1998] L. Dagum and R. Menon (1998). OpenMP: An
IndustryStandard APl for Shareldlemory Programming. IEEE
Computational Science & Enggering 5(1), 465, DOI: 10.1109/99.660313

[Dalrymple and Rogers, 2006R.A. Dalrymple and B.D. Rogers (2006).
Numerical modeling of water waves with the SPH methd@bastal
Engineering 53141 147.

[Dickson et al., 2011] N.G. Dickson, K. Karimand F. Hanze (2011).
Importance of explicit vectorization for CPU and GPU software performance
Journal of Computational Physid3Ql: 10.1016/j.jcp.2011.03.041.

[Dilts, 1999] G. Dilts (1999). Moving-leastsquareparticle hydrodynamick
Consistency and stability. Internacional Journal for Numerical Methods in
Engineering 441115 1155.

[Dominguez et al., 20H] J.M. Doninguez, A.J.C. Crespo, M. GOm&esteira
and J.C. Marongiu (2011). Neighbair lists in Smoothed Particle
Hydrodynamics International Journal for Numerical Methods in Fluids 67
2026:2042.

[Dominguez et al., 2011b).M. Dominguez,A.J.C. Crespo,A. Barreiro, M.
GoOmezGesteiraand A. Mayrhofer (2011). Development of a new pre
processing tool for SPH models with complex geometries. Schriftenreihe
Schiffbau 6th SPHERIC. Edited by Hamburg University of Technology; 117
124

[Dominguez et al., 2013a).M. Doninguez, A.J.C. Crespand M. GOmez
Gesteirg2013).Optimization strategies faZPU and GPU implementations of
a smoothed particle hydrodynamics methodComputer Physics
Communicationd.84(3) 617-627, DOI: 10.1016/j.cpc.2012.10.015

[Dominguez et al., 2013k).M. DominguezA.J.C.Crespo,D. ValdezBalderas,
B.D. Rogers andl. GomezGesteira2013. New multtGPU implementation
for Smoothed Particle Hydrodynamics on heterogeneous clusters. Computer
Physics Communications 1), 18481860 DOI: 10.1016/j.cpc.2013.03.008

[Dominguez et al., 2014).M. Dominguez A.J.C. Crespo A. Barreiro, M.
GbomezGesteiraand B.D.Rogers(2014). Efficient implementation of double
precision in GPU computing to simulate realistic cases with high resolution,
Proceedings of the 9th SPHERI210-145

144

Bibliography

[Ferrari et al., 2009] A. Ferrari, M. Dumbser, ETFero and A. Armanini (2009)
A new 3D parallel SPH scheme for free surface flows. Computers & Fluids
38, 12031217.

[Fleissner and Eberhard, 2007 Fleissnerand P. Eberhard(2007). Load
balanced parallel simulation of partidleid DEM-SPH systems wht moving
boundariesJohn Von Neumann Institute for Computing 3%-44.

[Fourtakas et al., 2013p. Fourtakas, B.D. Rogersnd D. Laurence(2013).
Modelling sediment suspension in industrial tanks using .9RHHouille
Blanche 239-45.

[Fourtakas et al.2014] G. Fourtakas, J.M. Dominguez, R. Vacondio, A. Nasar
and B.D. Rogers (2014). Local Uniform STencil (LUST) Boundary
Conditions for 3D Irregular Boundaries in DualSPHysi¢xoceedings of the
9th SPHERIC 103110

[Geistet al, 1994]A. Geist, A Beguelin, J Dongarra, WJiang, R Manchekand
V. Sunderanm(1994). Parallel Virtual Machine A Users' Guide and Tutorial
for Networked Parallel ComputinilIT Press, ISBN978-0262571081

[Gingold and Monaghan, 1977R.A. Gingold and J.J.Monaghan (1977)
Snoothed particle hydrodynamics: theory and application to- spherical
stars.Monthly Notices of the Royal Astronomical Socid1, 375 389.

[Goldberg 1991] D Goldberg (1991) What every computer scientist should
know about oating point arithmetic. ACBlomputing Surveys 23(13-48.

[GomezGesteira and Dalrymple, 2004). GomezGesteiraand R. Dalrymple
(2004).Using a 3D SPH method for wave impact on a tall strucfimernal of
Waterway, Port, Coastal and Ocean Engineering 13@84)9.

[GomezGesteira et al., 20128). GomezGesteira, B.D. Rogers, A.J.C. Crespo,
R.A. Dalrymple, M. NarayanaswanandJ.M. DomingueZ2012).SPHysics
development of a fresurface fluid solverPart 1. Theory and Formulatians
Computers & Geosciences,Z89-299.

[GOmezGesteira et al., 2012Il. GomezGesteira, A.J.C. Crespo, B.D. Rogers,
R.A. Dalrymple, J.M. Dominguezand A. Barreiro (2012). SPHysics -
development of a fresurface fluid solverPat 2: Efficiency and test cases.
Computers & Geosciences,890-307.

145

Bibliography

[Goozee and Jacobs, 2003] R.J. Goozee and P.A. Jacobs (2003) Distributed and
shared memory parallelism with a smoothed particle hydrodynamics code.
Australian and New Zealand Industrial and Applied Mathematics Journal 44,
C202 C228.

[Gotoh et al, 2001] H. Gotoh, T. Shibiharaand M. Hayashii (2001).
Subparticlescale model for the MPS methtabrangian flow model for
hydraulic engineeringComputational Fluid Dynamics Journal339 347.

[Gotoh et al., 2004H. Gotoh,S. Shaoand T. Memita (2004) SPHLES model
for numerical investigation of wave interaction with partially immersed
breakwaterCoastal Engineering Journé(1), 39 63.

[Gropp et al, 1999]W. Gropp, E Lusk and A Skjellum (1999). Using MPI:
Portable Parallel Programming with the Message Passing Inteff#ide
Press, ISBN9780262571326

[Harada et al.,, 2007]T. Harada, S. Koshizukand Y. Kawaguchi (2007).
Smoothed particle hydrodynamics on GPOsmputer Graphics International,
631 70.

[Herault et al., 2010] A. Herault, G. Bilotta and R.A. Dalrymple (2010). SPH on
GPU with CUDA. Journal of Hydraulic Research 48, 74.

[[EEE 754 Standard]EEE 7542008 (2008) IEEE 7542008 Standard for
FloatingPoint Arithmetic.

[lhmsen et al., 201] M. Ihmsen, N. Akinci, M. Becker and M. Teschner (2011).
A parallel SPH implementation on muttore CPUs. Computer Graphics
Forum 30(1), 99112, DOI: 10.1111/j.1468659.2010.01832.x

[Khayyer and Gotoh, 2009A. Khayyer and H. Gotoh (2009. Wave impact
pressure calculations by improved SPH methods. International Journal of
Offshore and Polar Engineering 19, BB07.

[Khronos, 2009] Khronos (2009) The OpenCL Specification,
https://www.khronos.org/opencl

[Kolb and Cuntz, 2005] A. Kolb and N. Cuntz (200Bynamic particle coupling
for GPUbased fluid simulation. Proceedings of the 18th Symposium on
Simulation Technique, 72227.

146

Bibliography

[Qiang et al.,, 2012W. Qiang, Y. Canqun, T. Taand L. Kai (2012). Fast
parallel cutoff pair interactions for molecular dynamics on heterogeneous
systemsTsinghua Science and Technology 285277.

[Lee et al., 2010] V.W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A.D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennyp&. Hammarlund, R.
Singhal, and P. Dube{2010). Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GBIGARCH Comput.
Archit. News 38451-460

[Leimkuhler et al, 1999 B.J. Leimkuhler, S. Reictand R.D. Skeel(1996)
Integration Methods for Molecular dynamic IMA Volume in Mathematics and
its application. Springer.

[Lo and Shao, 2002E.Y.M. Lo and S. Shao(2002). Simulation of neashore
solitary wave mechanics by an incompressible SPH methpplied Ocean
Researcl24, 275-286.

[Lorensen and Cline, 198AN.E. Lorensenand H.E. Cline (1987. Marching
Cubes: A High Resolution 3D Surface Construction AlgorittGGRAPH
‘87 Proceedings of the 14th annual conference on Computer graphics and
interactive techniques 163170, ISBN: 08979%227-6, DOI:
10.1145/37401.37422

[Lucy, 1977] L.B. Lucy (1977) A numerical approach to the testing of the
fission hypothesis. The Astronomical Journal82, 10131024 DOI:
10.1086/112164

[Marongiu et al., 2010].C. Marongiu, F. Leboeuf,J. Caro andE. Parkinson
(2010) Free surface flows simulations in Pelton turbines using an hybrid SPH
ALE method. Journal of Hydraulic Research 48 Extra Issug} 210

[Maruzewski et al., 2010pP. Maruzewski, D. Le Touzé, G. OgaendF. Avellan
(2010). SPH high-performance computing simulations of rigid solids
impacting the freesurface of water, Journal of Hydraulic Research 144&
134.

[McInstoshSmith et al., 2012] S. Mclnstosbmith, T. Wilson, A.A. Ibarra, J.
Crisp and R.B. Sessions (2012). BenchmagkEnergy Efficiency, Power
Costs and Carbon Emissions on Heterogeneous Systems. The Computer
Journal 55(2), 19205, DOI: 10.1093/comijnl/bxr091

147

Bibliography

[Mokos et al, 2014]A. Mokos, B.D. Rogers, P.K. StanshpdJ.M. Dominguez
(2014). A multi-phase particle shihg algorithm for SPH simulations for
violent hydrodynamics on a GPBroceedings of the 9th SPHERIES.

[Molteni and Colagrossi, 2009). MolteniandA. Colagrossi(2009).A simple
procedure to improve the pressure evaluation in hydrodynamic corsiext u
the SPH Computer Physics Communication80(6) 8611872 DOI:
10.1016/j.cpc.2008.12.004

[Monaghan, 1989JJ.J. Monaghar(1989) On the problem of penetration in
particle methods Journal of Computational Physics (82 1-15, DOI:
10.1016/00249991(89)90035.

[Monaghan, 1992]J.J. Monaghan(1992). Smoothed particle hydrodynamics
Annual Review of Astronomy and Astrophysics (BQ 543574, DOI:
10.1146/annurev.aa.30.090192.002551

[Monaghan, 1994]).J. Monaghar(1994). Simulating fee surface flows with
SPH Journal of Computational Physics 110399 406 DOI:
10.1006/jcph.1994.1034

[Monaghan, 1996).J. Monaghan(1996) Gravity currents and solitary waves.
Physica D: Nonlinear Phenome®d(2-4), 523 533.

[Monaghan, 2000] J.J. Monhgn (2000). SPH without Tensile Instability
Journal Computational Physics 129 290-311, DOI:
10.1006/jcph.2000.6439

[Monaghan, 2005] J.J. MonaghdB005) Smoothed Particle Hydrodynamics.
Reports on Progress in Physi&$(8), 17031759 DOI: 10.1088/034
4885/68/8/R0O1

[Monaghan and Kos, 1999] J.J. Monaglaad A. Kos (1999).Solitary waves on

a Cretan beachlournal of Waterway, Port, Coastal and Ocean Engineering

125(3) 145154,

[Monaghan et al., 1999] J.J. Monaghan, R.A.F. Cas, A.M.aaakM. Hallworth
(1999). Gravity currents descending a ramp in a stratified .tdokirnal of
Fluid Mechanics 3789i 70.

148

Bibliography

[Monaghan et al., 2003}.J. Monaghan, A. KoandN. Issa(2003).Fluid motion
generated by impactJournal of Waterway, Port, Coastal arfdcean
Engineering 129250-259.

[Nickolls et al, 2008]J. Nickolls, I. Buck, M. Garland, and K. Skadr(008).
Scalable parallel programming with CUDACM Queue6(2),40-53.

[Nickolls and Dally 2010] J. Nickolls and W.J. Dally(2010). The GPU
computirg era IEEE Micro 30, 561 69.

[Owens et al, 2007] J.D. Owens, D. LuebkeN. Govindaraju,M. Harris, J.
Kruger, A. Lefohn and T.J.Purcell (2007) A survey of genergburpose
computation on graphics hardware. Computer Graphics Forum, 36(1)13.

[Pacheco,1996] P. Pacheco(1996). Parallel Programming with MPMorgan
Kaufmann Publishersc., ISBN: 9781558603394

[Ren et al., 2014B. Ren,H. Wen, P. Dong and Y.Wang (2014). Numerical
simulation of wave interaction with porous structures using an improved
smoothed particle hydrodynamic method. Coastal Engineering B8083

[Rogers et al., 2010] B.D. Rogers, R.A. Dalrympled P.K. Stansby(2010).
Simulation of caisson breakwater movement using.SleHrnal of Hydraulic
Research 48135141.

[Rustico et &, 2014] E. Rustico, G. Bilotta, A. Hérault, C. Del Negro and G.
Gallo (2014). Advances in muWGPU Smoothed Particle Hydrodynamics
simulations. IEEE Transactions on Parallel and Distributed Systems 25(1), 43
52

[Satish et al., 2009N. Satish, M. Harrisand M. Garland (2009). Designing
Efficient Sorting Algorithms for Manycore GPUs$roceedings of IEEE
International Parallel & Distributed Processing Symposiut¥i0, DOI:
10.1109/IPDPS.2009.5161005

[Schroeder, 1997] W.J. Schroeder (1997). A Topology Moty Progressive
Decimation Algorithm. VIS '97 Proceedings of the 8th conference on
Visualization '97, ISBN: 5£8113011-2

[Schroeder et al. 1992] W.J. Schroeder, J.A. Zarge, W.E. Lorensen (1992).
Decimation of Triangle Meshes. ACM SIGGRAPH Computer Giegph6(2),
65-70, DOI: 10.1145/142920.134010

149

Bibliography

[Shao, 20055.D. Shao(2005. SPH simulation of solitary wave interaction with
a curtaintype breakwaterJournal of Hydraulic Research3(4), 366375
DOI: 10.1080/00221680509500132

[Snir et al, 1998]M. Snir, J Dongarra, B. Kowalik, S HussLederman, SV.
Otto and DW. Walker (1998). MPIl: The Complete Referenc®lIT Press,
ISBN: 9780262692168

[St-Germain et al.,, 2014P. StGermain, I. Nistor, R. Townsendand T.
Shibayama(2014). SmootheeParticle H/drodynamics Numerical Modeling
of Structures Impacted by Tsunami Borésurnal of Waterway, Port, Coastal,
and Ocean Engineeririgl((1), 66-81.

[Stellingwerf and Wingate, 1994R.F. Stellingwerf and C.A.Wingate (1994).
Impact Modelling with SPH Memorie della Societa Astronomia Italiana
65(4),11171128

[Trott et al., 2010]C.R. Trott, L. Winterfeldand P.S. Crozier(2010). General
purpose molecular dynamics simulations on &sdded clusterscComputer
Physics Communications, arXiv:1009.4330 (2010).

[Liu, 2003] G.R. Liu (2003). Mesh Free methods: Moving beyond the finite
element methadCRC PressISBN: 9780849312380

[Vacondio et al., 2012R. Vacondio, B.D. Rogers, P.K. StansdrydP. Mignosa
(2012). A correction for balancing discontinuous bed slopes in-two
dimensional smoothed particle hydrodynamics shallow water modelling
International Journal for Numerical Methods in Fluids 830 872.

[Vacondio et al., 2013a] R. Vacondio, B.D. Rogers, P.K. $tgandP. Mignosa
(2013).Shallow water SPH for flooding with dynamic particle coalescing and
splitting. Advances in Water Resources 88-23.

[Vacondio et al., 201§ R. Vacondio, B.D. Rogers, P.K. Stansby, P. Mignosa
and J. Feldman(2013). Variable reslution for SPH: a dynamic particle
coalescing and splitting schem@omputer Methods in Applée Mechanics
and Engineering 25@,32-148.

[ValdezBalderas et al., 2012D. ValdezBalderas, J.M. Doinguez, A.J.C.
Crespoand B.D. Rogers(2012) Towards accefating Smoothed Particle
Hydrodynamics simulations for fremurface flows on mukhGPU clusters

150

Bibliography

Journal of Parallel and Distributed Computing, DOI:
10.1016/}.jpdc.2012.07.010.

[Verlet, 1967]L. Verlet (1967) Computer experiments on classical fluids. I.
Thermodynamical properties of Lennaldnes moleculesPhysical Review
159 98-103.

[Viccione et al.,, 2008]G. Viccione, V. Bovolin and E.P. Carratelli (2008)
Defining and optimizing algorithms for neighbouring particle identification in
SPH fluid simulationsinternational Journal for Numerical Methods in Fluids
58, 625638 DOI: 10.1002/fld.1761

[Vila, 1999] J.P. Vila (1999. On particle weighted methods canSPH.
Mathematical Models and Methods in Applied Scien8ed61i 210, DOI:
10.1142/S0218202599000117

[Violeau, 2012]D. Violeau (2012). Fluid Mechanics and the SPH Method:
Theory and Applications, Oxford University Prek3BN: 0199655529.

[Wendland, 198] H. Wendland1995).Piecewiese polynomial, positive definite
and compactly supported radial functions of minimal deghsk/ances in
Computational Mathematics 389-396.

[Whitehead and FiElorea 2011] N. Whitehead and A. {Hlorea (2011).
Precision & performance: Floating point and IEEE 754 compliance for
NVIDIA GPUs, NVIDIA Technical White Paper

151

List of Publications

LIST OF PUBLICATIONS

[Dominguez et al., 2011d.M. Dominguez A.J.C. Crespo, M. GomeZesteira
and J.C. Marongiu (2011). Neighbour lists in Smoothed Particle
Hydrodynamics International Journal for Numerical Methods in Fluids 67
20262042.

[Crespo et al., 2011] A.J.C. CrespbM. Dominguez A.Barreiro, M. Gomez
Gesteiraand B.D. Rogers(2011). GPUs,a new tool of acceleration in CFD:
Efficiency and reliability on Smoothed Particle Hydrodynamics methods
PLoS ONE 6 (6), e2068R0I: 10.1371/journal.pone.0020685.

[GomezGesteira et al., 2012a] M. Gom&esteira, B.D. Rogers, A.J.C. Crespo,
R.A. Dalrymge, M. NarayanaswamgndJ.M. Dominguez(2012).SPHysics
- development of a fresurface fluid solverPart 1: Theory and Formulations.
Computers & Geosciences,Z89-299.

[GOmezGesteira et al., 2012b] M. Gomé&esteira, A.J.C. Crespo, B.D. Rogers,
R.A. Dalrymple, J.M. Dominguez and A. Barreiro (2012). SPHysics -
development of a fresurface fluid solverPart 2: Efficiency and test cases
Computers & Geosciences,890-307.

[ValdezBalderas et al., 2012] D. Vald®alderas,J.M. Dominguez A.J.C.
Crespoand B.D. Rogers(2012). Towards accelerating Smoothed Particle
Hydrodynamics simulations for fremurface flows on muhGPU clusters
Journal of Parallel and Distributed Computing, DOI:
10.1016/}.jpdc.2012.07.010.

[Dominguez et al.,, 2013a].M. Dominguez A.J.C. Crespo andl. Gomez
Gesteirg2013).Optimization strategies for CPU and GPU implementations of

153

List of Publications

a smoothed particle hydrodynamics methodComputer Physics
Communications 184(3%17-627.DOI: 10.1016/j.cpc.2012.10.015.

[Dominguez et al., 2013} M. Dominguez A.J.C.CrespoD. ValdezBalderas
B.D. Rogers andl. GomezGesteira2013. New multtGPU implementation
for Smoothed Particle Hyddynamics on heterogeneous clusters. Computer
Physics Communications 1@}, 1848186Q DOI: 10.1016/j.cpc.2013.03.008

[Barreiro et al.,, 2013]A. Barreiro, A.J.C. Crespa).M. Dominguez and M.
GomezGesteira (2013) Smoothed Particle Hydrodynamics for das
engineering problem€omputers and Structures 120(1%5-106.

[Altomare et al.,, 2014a]C. Altomare, A.J.C. Crespo, B.D. Rogers, J.M.
Dominguez X. Gironella and M. GomezGesteira (2014. Numerical
modelling of armour block sea breakwater with SmodthBarticle
Hydrodynamics. Computers and Structures 13434

[Barreiro et al.,, 2014] A. Barreiro)J.M. Dominguez A.J.C. Crespo, H.
GonzalezJorge, D. RocandM. GOomezGesteira2014).Integration of UAV
photogrammetry and SPH modelling of fluids todstuunoff on real terrains
PLoS ONE DOI: 10.1371/journal.pone.0111031

[Crespo et al., 20144.J.C.Crespo,J.M. Dominguez B.D. Rogers, MGOmez
Gesteira S. Longshaw R. Canelas R. Vacondiqg A. Barreiroand O.Garcia
Feal (2014). DualSPHysics: opesource parallel CFD solver based on
Smoothed Particle Hydrodynamics (SPH). on@puter Physics
CommunicationsDOI: 10.1016/j.cpc.2014.10.004

[Altomare et al., 2014c]C. Altomare, A.J.C. Crespo,J.M. Dominguez M.
GomezGesteira, T. Suzuk and T. Verwaest (2014). Applicability of
Smoothed Particle Hydrodynamics for estimation of sea wave impact on
coastal structures. Coastal Engineersugymitted 2014

[Canelas et al., 201R. Canelas,J.M. Dominguez A.J.C.Crespo M. GOmez
Gesteira, RM.L. Ferreira (2014) A Smooth Particle Hydrodynamics
discretization for the modelling of free surface flows and rigid body dynamics.
International Journal for Numerical Methods in Fluisishmitted 2014

154

