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Resumo O Douro é um dos maiores rios da Península Ibérica, constituindo a maior descarga de água
doce para o Oceano Atlântico na costa noroeste portuguesa. A sua pluma estuarina tem
particular relevância na dinâmica costeira e na modulação de fenómenos biogeoquímicos. São
objetivos desta dissertação contribuir para a compreensão dos processos físicos associados
à geração e propagação da pluma estuarina do Rio Douro no oceano, assim como para o
conhecimento dos seus padrões de dispersão e da forma como estes alteram a hidrologia
e a circulação costeira, considerando os agentes forçadores típicos deste fenómeno (caudal
fluvial, vento e maré) e índices climáticos relevantes. Para concretização destes objetivos
foram desenvolvidas e aplicadas metodologias inovadoras de processamento de dados de
deteção remota, assim como novas implementações estuarinas e costeiras de modelos
numéricos. Através de imagens MODIS, otimizadas para o estudo de fenómenos costeiros,
efetuou-se uma deteção rigorosa da pluma. Identificou-se uma relação entre o sinal túrbido
nLw555 e o caudal, demonstrando-se este produto como um bom proxy para a observação
da pluma no oceano. As escalas temporais e espaciais da pluma foram caraterizadas através
destas imagens, combinadas com dados de caudal fluvial, maré, vento e precipitação, e
também com índices climáticos relevantes. Para compreender a propagação da pluma e
caracterizar a sua dinâmica e impacto na circulação costeira, foi desenvolvida uma aplicação
3D de modelos estuarinos e costeiros com malhas aninhadas de resolução variável. Definiram-
se e analisaram-se diferentes cenários de vento e descarga fluvial. A interação da pluma do
Rio Douro e do Minho foi ainda analisada através dos resultados de simulações baseadas num
evento de inverno. Os compósitos túrbidos mostraram que a pluma é facilmente detetada
quando o caudal é maior que ∼500 m3 s−1. A descarga fluvial e o vento são os principais
forçadores da sua propagação, enquanto a maré é apenas importante na região próxima à
embocadura do estuário. Observaram-se relações a uma escala interanual entre a turbidez da
pluma e os índices climáticos East Atlantic e NAO, com uma correlação máxima identificada
com 1 e 3 meses de desfasamento, respetivamente. Com base nos resultados das simulações
efetuadas, a pluma é classificada como de larga escala e de adveção superficial, apresentando
características de uma pluma prototípica. Em condições de caudal moderado a elevado, a
descarga estuarina é suficiente para gerar uma corrente costeira para norte sem ação do
vento. Em eventos de ventos leste, a propagação da pluma é similar ao caso sem vento,
com um aumento da velocidade da corrente. Uma corrente costeira para sul é unicamente
identificada sob condições de forte vento de oeste. Ventos de norte tendem a estender
a pluma para o largo, com uma inclinação na direção sudoeste, enquanto ventos de sul
intensificam a corrente para norte, sendo a mistura das plumas do Douro e do Minho uma
consequência possível. A análise desta interação apontou a contribuição do Douro como
importante na estabilização da WIBP e nas trocas de água entre o oceano e as Rias Baixas.
A interação da pluma do Douro com estuários localizados a sul da sua foz e a confirmação in
situ da recirculação observada nos resultados numéricos afiguram-se como temas relevantes
para investigações futuras. iii
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Abstract The Douro is one of the largest rivers of the Iberian Peninsula, representing the most
important freshwater input into the Atlantic Ocean (on the northwestern Portuguese coast).
Its estuarine plume has particular relevance on coastal dynamics and biogeochemistry. The
main goal of this dissertation is to contribute to increase knowledge on physical processes
associated with the generation and propagation of the Douro estuarine plume. The general
patterns of dispersion in the ocean and how the plume change hydrography and coastal
circulation were also evaluated, considering the typical drivers involved (river discharge, wind
and tide) and relevant climate indices. Innovative methodologies to process remote sensing
data, as well as new implementations of high-resolution estuarine and coastal numerical
models have been developed and applied. The plume was detected through MODIS images,
optimized for coastal studies. The relation between the turbid nLw555 signal and river
discharge was identified, demonstrating that this product is a good proxy for the observation
of the Douro estuarine plume in the coastal ocean. An interconnected approach, combining
these images, river discharge, tide, wind and precipitation data, as well as relevant climate
indices, was used to study the temporal and spatial scales of the plume. The implementation
of estuarine and coastal models with nested domains of variable resolution was developed
to understand the plume propagation and characterize its dynamics and impact on coastal
circulation. Using these applications, different scenarios of wind and river discharge were
defined and analysed. The interaction of the Douro and the Minho estuarine plumes was
further evaluated through simulations based on a winter event. Turbid composites showed
that the plume is easily detected when river discharge is greater than ∼500 m3 s−1. River
discharge and wind are the main driver acting on the plume propagation, whilst tidal effect is
only important near the estuary mouth. A relation between turbid plume and climate indices
East Atlantic (EA) and North Atlantic Oscillation (NAO) was observed at inter-annual scale,
with a maximum correlation identified at 1 and 3-month lags, respectively. The Douro
estuarine plume is classified as large-scale and surface-advected, presenting characteristics
of a prototypical plume, based on the results of the numerical simulations. The estuarine
outflow is sufficient to generate a northward coastal current without wind action under
moderate-to-high river discharge conditions. Under easterly winds, the propagation pattern
is similar to the case without wind forcing, with a slight increase in the northward current.
A southward coastal current is only generated by strong westerly winds. Under upwelling-
favourable winds, the plume extends offshore with tilting towards southwest. Southerly
winds increase the velocity of the northward current, being the merging of the Douro and
Minho estuarine plumes a likely consequence. The analysis of this interaction pointed out
the Douro as an important contributor to the WIBP stabilization and in the water exchange
between ocean and Rias Baixas. The interaction of the Douro estuarine plume with estuaries
located south of its inlet and the in situ confirmation of the re-circulation bulge observed in
numerical results seem as relevant for future research topics.
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Chapter 1

Introduction

1.1 Motivation

Estuarine discharges originate coastal water masses of lower density carrying several

dissolved and suspended riverine materials, and consequently with distinct properties from

surrounding ocean waters. This outflow to the coast can be commonly observed near the

estuaries mouth by the different colour between riverine and ocean waters. The area of

propagation of these water masses in ambient coastal ocean, identified by riverine/estuarine

properties (salinity, temperature, density, colour, etc.), is defined as the river or estuarine

plume.

River plumes are the major gateways of materials transfer from land to coastal ocean,

e.g. nutrients, biological species, sediments and contaminants (Morris et al., 1995; Demaster

and Pope, 1996; Smith and Demaster, 1996; Le Pape et al., 2003; Bruland et al., 2008).

The impact and dispersion of riverine material along coast strongly depends on physical

processes, which determine the plume fate over shelf (Horner-Devine et al., 2015). Thus,

the evaluation of river plume’s dispersion and dynamics has particular relevance since, for

example, transported dissolved materials can largely affect the primary production and,

consequently, the economy of local communities. With the growth of the world’s coastal

population combined with future expected climate change impacts in these regions, an

1
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extra pressure will be placed on coastal areas. Consequently, a good understanding of the

river plumes dynamics and processes, necessary to predict their propagation in the ocean,

is essential in terms of both scientific research and socio-economic purposes.

The characteristics and processes related with generation and propagation of estuarine

plumes are rather difficult to generalize, since each coastal system presents particular

features. Additionally, in situ monitoring of these coastal features is often very difficult due

to great spatial and temporal variability of its dominant drivers. Thus, coastal circulation

models and remote sensing imagery have started to be used recently to fill the gaps on the

understanding of plume’s dynamics and to predict and study in detail their patterns and

physical processes (Chao and Boicourt, 1986; Fong and Geyer, 2002; García Berdeal et al.,

2002; Robinson, 2004; Choi and Wilkin, 2007; Guo and Valle-Levinson, 2007; Otero et al.,

2008; Palacios et al., 2009; Horner-Devine et al., 2009; Valente and da Silva, 2009; Jurisa

and Chant, 2012; Saldías et al., 2012). These tools are particularly relevant to examine

and compare how different buoyant plumes propagate under different forcing drivers and

regional settings (e.g. river discharge, tide, wind magnitude and direction, ocean currents,

coastal bathymetry and morphology, etc.).

Regarding the northern Portuguese and Galician shelf, some studies highlighted

the importance of the river runoff, and consequently of estuarine plumes, in the coastal

circulation (Peliz et al., 2002; Santos et al., 2004; Relvas et al., 2007; Torres and Barton,

2007). In this region, buoyancy discharge from the Douro River among others, combined

with a warmer and saltier poleward current, determines the circulation during the autumn.

Studies by Peliz et al. (2002) and Otero et al. (2008, 2009, 2013) revealed the role of the

alongshore winds in the confinement (downwelling-favourable conditions) or exportation

(upwelling-favourable conditions) of the buoyant outflow. In these studies they found the

accumulation of a less dense water mass originated from all river outflowing along northern

Portuguese coast as one large buoyant plume: the Western Iberian Buoyant Plume (WIBP).

The dynamics of one of the main WIBP contributors (the Minho River) was

previously assessed in detail by Sousa (2013), revealing a rapid response of the plume

to wind variations. Here, the Minho plume flows northwards under downwelling-favourable
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conditions, propagating into Rias Baixas where may reverses the local circulation patterns

and affects biological productivity (deCastro et al., 2004; Álvarez et al., 2008; Sousa et al.,

2014c,b).

Despite the numerous studies, addressing coastal upwelling and WIBP dynamics

under several scenarios (Peliz et al., 2002; Otero et al., 2008, 2009, 2013), reduced attention

has been given to the individual study of the freshwater output from the Douro Estuary, a

system that can be considered the most important freshwater contributor and sediment

and nutrient supplier to the Atlantic Ocean in the Northwestern Iberian coast. Thus, the

study of the Douro estuarine plume dynamics is crucial for a deeper understanding of the

inner-shelf physical processes in the region.

1.2 Objectives

This dissertation aims to understand the physical processes associated with the

generation and propagation of the Douro estuarine plume in the adjacent coastal ocean

taking into account the effects of typical drivers of this phenomenon (river discharge, wind

and tide) as well as of relevant climate indexes. Particularly, it intends to know in detail the

Douro estuarine plume dynamics and how its physical properties change the adjacent coastal

hydrography and circulation. Innovative remote sensing data processing methodologies and

new coastal and estuarine numerical models implementations were used to achieve these

objectives, in combination with prior available in situ observations. This work has the

following specific goals:

• develop a methodology to detect and characterize the mean-state of the Douro

estuarine plume under different conditions using remote sensing imagery;

• study the inter-annual and seasonal variability of the Douro estuarine plume using

long-term remote sensing imagery;

• characterize the Douro river discharge and the estuary hydrography;
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• implement a 2D numerical model for the Douro Estuary;

• develop a 3D nested model application to study the propagation of the Douro estuarine

plume and its impact on the adjacent coastal hydrography and circulation;

• characterize the Douro estuarine plume dynamics under different conditions of river

discharge and wind forcing;

• study the interaction between the Douro and Minho estuarine plumes and its effect

on the WIBP dynamics.

1.3 Background

1.3.1 Douro River and coastal region

In the northern Portuguese coast, one of the most important buoyancy sources is the

Douro River estuary. The Douro River is located in a granitic drowned valley flowing to

the Northwestern coast of Portugal (Figure 1.1).

The Douro is an international watershed, shared between Spain (80%) and Portugal

(20%). It is the the largest drainage basin in the Iberian Peninsula, with an area of 97

682 km2 (Figure 1.1a). The Douro River has its source at Los Picos de Urbion (La Rioja,

Spain) at an altitude of 1700 m, flowing to the coast across a total distance of 927 km. The

Douro basin is heavily dammed, mostly for hydroelectric generation (Ferreira et al., 2003),

with 51 large dams regulating the flow within the watershed. The large dams retain more

than 1100 hm3 (13%) of water in Portuguese reservoirs and 7500 hm3 (87%) on the Spanish

side of the watershed (Bordalo et al., 2006).

The estuary itself is located near the second largest city of Portugal, Porto, with an

estimated population of 1.8 million people in the Porto Metropolitan Area.

The Douro Estuary plays an important role in the regional and Portuguese national

economy, being a navigable channel for many commercial, fishing and tourism ships. It is

upstream limited by a dam (Crestuma-Lever dam), built in 1985 at a distance of 21.6 km
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Figure 1.1: Douro River and its drainage basin (a). Northwestern Iberian coast and location
of the Ria de Aveiro Lagoon, Douro and Minho estuaries, and Rias Baixas (b).

from the mouth, for electric power generation purposes. The total estuarine area and water

volume are about 9.8 × 106 m2 and 58.8 × 106 m3, respectively (Ferreira et al., 2003). From

literature, the annual mean river flow ranges from 455 m3 s−1 to 708 m3 s−1 (Ferreira et al.

(2003), Bordalo et al. (2006), Azevedo et al. (2010) and from http://www.ospar.org). The

river discharge is characterized by high short-term variability, ranging between zero flow

and >1000 m3 s−1, in a temporal scale of hours (Azevedo et al., 2008). Tide is majority

represented by semi-diurnal components with an average tidal range of 2.8 m at the mouth

and 2.6 m at the head of the estuary (Vieira and Bordalo, 2000). The maximum tidal range,

during spring tides, is 3.8 m (Ferreira et al., 2003) and the average tidal prism is about 20.9

× 106 m3 (Ferreira et al., 2003). The residence time of the estuary ranges from 8 hours,

during winter, to more than two weeks, during summer (Vieira and Bordalo, 2000; Ferreira

et al., 2003). The estuary is highly dependent on river discharge with strong vertical salinity

stratification under conditions of low runoff, whereas during high river flows the whole

estuary became a river (Vieira and Bordalo, 2000). The Local Natural Reserve of Douro

Estuary, located on the left margin of the estuary mouth, is composed by several important

biotopes, being one of the main areas in Portugal that offers good condition of shelter and

http://www.ospar.org
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feeding for migratory wintering shorebirds (Carvalho et al., 2013).

Rainfall episodes enhance river plume outflow, promoting a significant supply of

suspended and dissolved matter to the continental shelf (e.g. sediments and nutrients)

(Saraiva et al., 2007; Reis et al., 2012). The Douro River delivers about 87% of the fluvial

sediments discharged into the Northwestern Iberian coast (Dias, 1987) and the actual deficit

of sediments discharged by its estuary is commonly referred as the primary reason for severe

erosion along southward beaches (Oliveira et al., 1982; Dias, 1990; Veloso-Gomes et al.,

2004).

The Douro estuarine plume, combined with the WIBP itself, also poses a particular

relevance on the coastal biogeochemistry features under winter conditions, in particular

during upwelling events (Santos et al., 2004; Ribeiro et al., 2005; Prego et al., 2007; Picado

et al., 2014). Vertical stratification, enhanced by the plume, plays a key role in larvae

retention (Santos et al., 2004). In these events, buoyant water rich in nutrients stimulates

phytoplankton growth (Chícharo et al., 2003; Santos et al., 2004; Prego et al., 2007),

contributing to an increase of primary production

The Douro River is the main freshwater contributor to the WIBP (Peliz et al., 2002),

which is a low-salinity water lens (<35.7) expanding over the shelf with 30-40 km wide

and about 20 m depth. Mesoscale studies showed that current velocities at the WIBP,

during extremely high discharges, could reach more than 1 m s−1 under strong downwelling-

favourable winds (Marta-Almeida et al., 2002; Ruiz Villarreal et al., 2005). Otero et al.

(2008, 2013) have identified three characteristic situations of the WIBP response to wind

events: a) a plume confinement to the coast during downwelling-southerly-winds, b) a

plume expansion during the declining phase of the downwelling event by relaxation of wind

and c) a plume expansion by upwelling-northerly-winds.

There are other freshwater sources along the Northwestern Iberian Peninsula coast,

which can influence the Douro estuarine plume dynamics or be influenced by its buoyancy

and properties (Figure 1.1). The Minho River is the second most important freshwater

source flowing to the Atlantic Ocean in the region. There are other small freshwater sources

(the Ave, Cávado and Lima rivers, Figure 1.1), but have insignificant discharges when
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compared to the two rivers referred. Two other far estuarine systems are potentially located

in the area of the Douro estuarine plume influence: the Rias Baixas, four flooded tectonic

valleys (Ria de Vigo, Ria de Pontevedra, Ria de Arousa, and Ria de Muros) located 110

km north of the Douro River (Figure 1.1); and the Ria de Aveiro coastal lagoon, mainly a

tidal driven system and highly dynamic in terms of physical and biogeochemical processes,

located 60 km south of the Douro Estuary (Figure 1.1).

1.3.2 Estuarine plumes

The first studies concerning estuarine/river plumes and its dynamic were present

by Takano in the fifties years (Takano, 1954, 1955). These studies describe the steady

state theory of a river plume entering the sea off a straight coast. From sixties to eighties,

extensive field observational studies of the plume dynamics had been undertaken around

the world. There were studies in the Columbia River estuary (Stefánsson and Richards,

1963; Park, 1966) and Connecticut Estuary (Garvine, 1974) in the U.S.A.; in the Fraser

River (Royer and Emery, 1982) in Canada; in the Rhine River estuary (van Alphen et al.,

1988) in the Netherlands; and in the Rhone River estuary (Szekielda and Kupferman, 1973)

in France.

Typical features characterize most of river plume systems: near the mouth of an

estuary, the freshwater outflow frequently forms an anticyclonic bulge, and a buoyancy-

driven coastal-attached current transports a large portion of the freshwater along the

coast. This is the classical view in the absence of wind, tidal and wave forcing (Figure 1.2)

described in Yankovsky and Chapman (1997), Yankovsky (2000), Fong and Geyer (2002)

and Hetland (2005), among others.

Several authors divided the plume morphology in many forms. Garvine (1982) has

proposed a scheme that divides the buoyant surface plumes into three contiguous spatial

fields: source, near and far-field regions. The source field is the region comprising the

river/estuary mouth. The near-field is where the initial expansion of the plume occurs and

the contrast between plume and ambient waters is still large. Usually its outer boundary is
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Figure 1.2: Plume circulation scheme (bulge and coastal current). The flow along the
seaward side of the bulge transports water that supplies both the coastal current and the
continually growing recirculation within the bulge (adapted from Fong and Geyer (2002)).

marked by a sharp frontal region. The far-field region is where the final merge of source

water with the ambient water occurs.

Later, Hetland (2005) decomposed the system estuary-river plume into three

interacting components: the estuary, the near and far-field plumes. The estuary and

the near-field plumes are characterized by intense mixing of fresh and salt water. The

far-field region refers to the area outside the influence of the river mouth. Essentially, the

river-runoff control is more effective in the near-field region. Once the inertia momentum

from the river discharge ends or weakens, the wind forcing becomes one of the key factors

controlling the plume structure and buoyant plume dispersion (Warrick, 2004; Hetland,

2005). Moreover, Horner-Devine et al. (2009) proposed a modification in the Garvine

classification, decomposing the near-field plume into the pulsed tidal plume and the residual

recirculating plume for studies in estuaries or rivers with with large tidal influence, such as

the Columbia River in the USA.

Recently in a review regarding river plumes (Horner-Devine et al., 2015), all these

schemes were combined and summarized. The most important processes in a river/estuarine

plume are determined by the scale, geometry and different forcings of the plume. Thus,
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several different plume shapes are observed in the field based on the geometry of the coast,

on the magnitude of the discharge and on other external forcing such as wind. Based

on that, Horner-Devine et al. (2015) presents the six plume morphologies most observed

around the world (Figure 1.3): the prototypal; the nonrotational; the wide estuary; the

angled inflow; the delta; and the Region Of Freshwater Influence (ROFI).

The anatomy of a prototypal plume (Figure 1.3a) is composed by four dynamical

regions: 1- the source region, where the buoyancy and inertial momentum determined by

estuarine processes are responsible for the initial transformation of river discharge; 2- the

near-field region, where the river momentum exceeds the buoyancy of the plume layer. In

coasts where tides are important, this region is strongly time dependent, specially because

of the ebb-flood cycle, and is common referred as the tidal plume (Horner-Devine et al.,

2009; Nash et al., 2009; Kilcher and Nash, 2010; Kilcher et al., 2012); 3- the mid-field region,

where the inflow tends to decrease its influence in the plume fate. It marks the transition

from the inertial near-field jet to the geostrophic and/or wind-dominated far-field plume; 4-

the far-field region, where the river discharge has no influence in the plume and its dynamic

Figure 1.3: River plume morphologies: prototypical (a), nonrotational (b), wide estuary
(c), angled inflow (d), delta plume (e), and ROFI (f) (adapted from Horner-Devine et al.
(2015)).
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is determined by Coriolis, buoyancy, wind, and, in some occasions, bottom stress. If wind

magnitude and direction do not favour the offshore plume transport, a coastal current

is created along shelf. The Columbia (Hickey et al., 1998; Horner-Devine, 2009; Hickey

et al., 2010), Merrimack (MacDonald et al., 2007; Hetland and MacDonald, 2008), the

Niagara (Masse and Murthy, 1992; Horner-Devine et al., 2008), and the Hudson rivers

plumes (Kohut et al., 2005; Chant et al., 2008a; Jurisa and Chant, 2012) are recognized

examples of prototypal plumes.

The nonrotational plumes (Figure 1.3b) are only slightly affected the Earth’s rotation,

because the rivers mouths are located close to the equator or the discharge is very small.

The Teign and the Amazon rivers plumes are examples of this type of plumes (Geyer et al.,

1991; Lentz and Limeburner, 1995; Pritchard and Huntley, 2006; Molleri et al., 2010).

Wide estuary plumes (Figure 1.3c) do not have either near field region and re-

circulating bulge. The rivers mouth are sufficiently wide to separate freshwater to one side

of the estuary due to Earth’s rotation. These type of plume just present the coastal current

(far-field region). Examples include the Chesapeake and Delaware Bay plumes (Marmorino

et al., 2000; Houghton et al., 2004; Dzwonkowski and Yan, 2005; Whitney and Garvine,

2005).

In the angled inflow plumes (Figure 1.3d) the inflow occurs with a small exit angle to

the coast, affecting significantly the direction of the plume propagation. Thus, these plumes

typically have no bulge. The Eel River plume is a classic example (Geyer et al., 2000).

The delta plumes (Figure 1.3e) are common formations from many of the world’s

largest river systems, such as Mississippi (Walker, 1996; Schiller et al., 2011), Changjiang

(Lu and Shi, 2007; Wu et al., 2014), Nile and Mekong deltas. The freshwater enters the

ocean by several river channels, creating many outflows, which interact with each other in

the coastal sea.

In ROFI’s, the plumes have a strong interaction with the bottom and the bottom

friction controls its offshore length scale (Figure 1.3f). This type of plume is characteristic

from shallow marginal seas like the coast of United Kingdom, Belgium and Netherlands.

The Rhine (de Kok, 1996; de Ruijter et al., 1997; Hessner et al., 2001) and Liverpool bay
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(Verspecht et al., 2009; Palmer and Polton, 2011) are typical examples.

A large number of dynamical classifications for the plumes had been proposed and

applied along the time.

Chao (1988a) suggested a classification scheme based upon an internal Froude number

and a dissipation parameter. The coastal current evolution was divided in four dynamical

groups: subcritical, supercritical, diffusive-subcritical and diffusive-supercritical.

Garvine (1995) proposed a classification where Kelvin number evaluates the relative

importance of inertia and rotation. The two limiting cases are the small and large-scale

discharges.

Yankovsky and Chapman (1997) developed a simple theory that predicts the vertical

structure and offshore spreading of a localized buoyant inflow onto a continental shelf. From

a formulation based on the barotropic Rossby radius and on the Burger number, they identify

three different types of plumes in terms of their vertical structures: a bottom-advected

plume; a surface-advected plume and an intermediate plume.

More classifications in terms of external plume forcings, e.g. wind, can be found

in literature. For example, the wind index purposed by Whitney and Garvine (2005)

assesses the relative importance between the river discharge and wind intensity in the plume

propagation.

The structure of the plume can be quite different from the simplistic view of a

prototypal plume. The spatial and temporal variability of plume events will be affected by

a number of factors, including storms and rainfall seasonal cycles, magnitude and direction

of wind stress, bathymetry, discharge strength and exit angle (Lihan et al., 2008). Since

plumes are very dynamic systems (changing in a time-scale of the order of hours), it is very

difficult to monitor events using traditional methods, such as mooring arrays and shipboard

surveys (Otero and Siegel, 2004). Thus, the implementation of numerical models and the

use of remote sensing observations are essential to fully assess and understand the estuarine

plume dynamics (Chao and Boicourt, 1986; Chao, 1988b; Ruddick et al., 1994; Kourafalou

et al., 1996; Xing and Davies, 1999; Fong and Geyer, 2001; García Berdeal et al., 2002;

Otero et al., 2008; MacCready et al., 2009; Hetland, 2010).
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1.3.3 Remote sensing

With the fast growing and development of the satellite technology, remote sensing

has become one of the most popular methods to detect river plumes in recent years.

Remote sensors can distinguish most river plumes from oceanic water because they differ in

colour, turbidity, salinity and/or temperature. Salinity is traditionally the natural tracer

of freshwater plumes. Although remotely sensed surface salinity both by Soil Moisture

and Ocean Salinity (SMOS) (Font et al., 2010) and Aquarius satellite missions (Le Vine

et al., 2007) from European Space Agency (ESA) and National Aeronautics and Space

Administration (NASA) respectively, was already used to study river plumes (i.e. Amazon

River plume, Korosov et al. (2015)), the spatial and temporal resolution are not enough

for mapping smaller plumes, which can present fine-scale spatial structure that changes

rapidly, like the Douro.

Due to these limitations, ocean-colour satellite images have been historically used

with considerable success to track the behaviour and main scales of riverine plumes because

of the optical differences and significant correlation between turbidity and surface salinity

(Robinson, 2004; Dzwonkowski and Yan, 2005; Thomas and Weatherbee, 2006; Palacios

et al., 2009; Shi and Wang, 2009b; Valente and da Silva, 2009; Saldías et al., 2012). The

turbidity concept is associated with the measurement of water cloudiness (Davies-Colley

and Smith, 2001). It is usually linked to the presence of suspended and dissolved matter,

such as clay, silt, finely divided organic matter, plankton and other microscopic organisms,

organic acids and dyes, which decreases the water transparency (ASTM-International, 2003;

Petus et al., 2010; Güttler et al., 2013). River plumes often present strong suspended

sediment signals, affecting that water cloudiness, especially in the green and red light

wavebands in the visible region of electromagnetic spectrum (Loisel et al., 2013).

The most widely used colour sensors in ocean studies are the Sea-Viewing Wide

Field-of-View Sensor (SeaWiFS) onboard of the SEASTAR (or OrbView2), the MEdium

Resolution Imaging Spectrometer (MERIS) aboard of the Envisat satellite or the MODerate

resolution Imaging Spectroradiometer (MODIS) sensors onboard both Terra and Aqua
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satellites. The spatial resolution of these sensors is higher than 1 km (can be 250 m),

depending on the bands used (Nezlin et al., 2005; Nezlin and DiGiacomo, 2005). Nowadays,

only the MODIS-Terra and MODIS-Aqua are fully operational with free access to all images

collected since February 2000 (MODIS-Terra).

MODIS instruments (Figure 1.4a) are designed to take measurements in spectral

regions that have been used by previous satellite sensors, i.e. SeaWiFS and Coastal Zone

Color Scanner (CZCS). MODIS extended that environmental data sets and promoted the

continuity of data collection essential for understanding both long and short-term change

in the global environment. Instruments capture data in 36 spectral bands with wavelengths

ranging from 0.4 µm to 14.4 µm and at different spatial resolutions. Two bands are imaged

at a nominal resolution of 250 m at nadir, with five bands at 500 m, and the remaining at 1

km (Table 1.1). Both satellites with MODIS sensor are set at a sun-synchronous orbit at

705 km of altitude with a 10:30 a.m. descending node (Terra) and 1:30 p.m. ascending

node (Aqua)(Figure 1.4b), achieving a 2330 km swath and providing a global coverage

every one to two days. MODIS sensors aboard Aqua and Terra satellites were designed to

provide measurements in large-scale global dynamics, including changes in Earth’s cloud

cover, radiation budget and processes occurring in the oceans.

MODIS imagery can be found in the NASA OceanColor website (http://oceancolor.

Figure 1.4: The MODIS instrument (http://mcst.gsfc.nasa.gov/)(a) and Aqua satellite
(http://aqua.nasa.gov)(b)

http://oceancolor.gsfc.nasa.gov
http://mcst.gsfc.nasa.gov/
http://aqua.nasa.gov
http://oceancolor.gsfc.nasa.gov
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Table 1.1: The 36 spectral band captured by the MODIS instrument (adapted from
http://modis.gsfc.nasa.gov/).

Primary Use Band Bandwidth (nm) Resolution (m) Primary Use Band Bandwidth (µm) Resolution (m)

Land

Cloud / Aerosols

1 620–670 250

Surface and cloud

temperatures

20 3.660–3.840 1000

2 841–876 250 21 3.929–3.989 1000

Land

Cloud

Aerosols properties

3 459–479 500 22 3.929–3.989 1000

4 545–565 500 23 4.020–4.080 1000

5 1230–1250 500 Atmospheric

pressure

24 4.433–4.498 1000

6 1628–1652 500 25 4.482–4.549 1000

7 2105–2155 500
Cirrus clouds

water vapour

26 1.360–1.390 1000

Ocean-colour

Phytoplankton

Biogeochemistry

8 405–420 1000 27 6.535–6.895 1000

9 438–448 1000 28 7.175–7.475 1000

10 483–493 1000 Cloud properties 29 8.400–8.700 1000

11 526–536 1000 Ozone 30 9.580–9.880 1000

12 546–556 1000 Surface and cloud

temperatures

31 10.780–11.280 1000

13 662–672 1000 32 11.770–12.270 1000

14 673–683 1000

Cloud top

altitude

33 13.185–13.485 1000

15 743–753 1000 34 13.485–13.785 1000

16 862–877 1000 35 13.785–14.085 1000

17 890–920 1000 36 14.085–14.385 1000

Atmospheric

Water Vapour

18 931–941 1000

19 915–965 1000

gsfc.nasa.gov), which is supported by the Ocean Biology Processing Group (OBPG) at

NASA’s Goddard Space Flight Center at different levels of information: Level 0 (L0) -

data that are unprocessed at full resolution; Level 1A (L1A) - data that are reconstructed,

unprocessed at full resolution, time-referenced and annotated with ancillary information

including radiometric and geometric calibration coefficients and georeferencing parameters

computed and appended but not applied to the Level 0 data; Level 1B (L1B) - L1A data that

have instrument/radiometric calibrations applied; Level 2 (L2) - data of derived geophysical

variables at the same resolution as the source L1 data; Level 3 (L3) - data derived from

geophysical variables that have been aggregated/projected onto a defined spatial grid over a

defined time period; and Level 4 (L4) - data that are model outputs or results from analyses

of lower level data.

Ocean-colour images from MODIS has been successfully used to track the behaviour

http://oceancolor.gsfc.nasa.gov
http://modis.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov
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and principal scales of variability of river plumes in coastal areas around the globe. As

examples: the Danube delta, Romania (Güttler et al., 2013), several rivers in Mediterranean

Sea (Arnau et al., 2004; Fernández-Nóvoa et al., 2015), the Tagus Estuary, Portugal (Valente

and da Silva, 2009), rivers in the Bay of Biscay, France (Doxaran et al., 2009; Petus et al.,

2010, 2014; Costoya et al., 2015), the Mississippi River (Miller and McKee, 2004; Shi and

Wang, 2009b), the Columbia River (Palacios et al., 2009; Horner-Devine et al., 2009), the

Chesapeak Bay (Dzwonkowski and Yan, 2005), the coastal region southern California coast

(Nezlin et al., 2007; Warrick et al., 2007; Nezlin et al., 2008; Lahet and Stramski, 2010),

the Delaware Bay (Jiang et al., 2009) and the Hudson River (Chant et al., 2008a) in USA,

the Amazon River, Brazil (Kilham and Roberts, 2011; Aurin et al., 2013), the La Plata

River, Argentina/Uruguay (Dogliotti et al., 2011), small rivers off central Chilean coast,

Chile (Saldías et al., 2012), the Congo River, Republic Democratic of the Congo/Angola

(Hopkins et al., 2013), the Tokachi River, Japan (Lihan et al., 2008), the Yellow River (Qiao

et al., 2008) among other rivers that flow into East China Sea in China (Ahn et al., 2008)

and the Brisbane River (Yu et al., 2011) and the rivers in Mackay–Whitsunday region of

Queensland (Brodie et al., 2010) in Australia.

Ocean-colour radiometry is the measurement of spectral distribution of radiance (or

reflectance) upwelling from the ocean in the visible regime of the electromagnetic spectrum

(Figure 1.5). It is a passive remote sensing method where the sensor simply observes the

light (in this case irradiated from the Sun) that is emitted or reflected by the water mass.

Reflectances are the most commonly used apparent optical properties in scientific works

about the ocean behaviour. In the early days of ocean-colour remote sensing, algorithms

to relate the irradiance reflectance, Rr, with quantities such as chlorophyll concentrations

were developed (Gordon and Morel, 1983; Loisel and Morel, 1998). Recently, Rrs (remote

sensing reflectance) and nLw (normalized waterleaving radiance) became the apparent

optical properties of choice for remote sensing of ocean properties and the basis for many

other algorithms (O’Reilly et al., 1998; Gordon and Voss, 1999; O’Reilly et al., 2000).

Rrs is defined as the light incident onto the water surface that is eventually scattered

back to the sensor through the surface (IOCCG (2011) and http://www.oceanopticsbook.

http://www.oceanopticsbook.info
http://www.oceanopticsbook.info
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Figure 1.5: Electromagnetic spectrum from www.ces.fau.edu/nasa.

info). The total downward irradiance at sea level, Ed, with the upwelling irradiance light,

Eu, represents the total irradiance, E, of a horizontal surface (Figure 1.6, IOCCG (2011)).

The irradiance, E, in a wavelength, λ, at a given depth, z, can be defined as the radiant

flux, Φ, per unit area of surface, SA (Kirk, 1994):

E(z, λ) =
dΦ

dSA
(1.1)

Rrs is then defined as:

Rrs =
Lw
Ed

(1.2)

where water leaving radiance, Lw, is the radiance leaving the sea at nadir and quantified just

Figure 1.6: Light rays contributing to the irradiance reflectance, Rr, from http://www.
oceanopticsbook.info.

http://www.oceanopticsbook.info
www.ces.fau.edu/nasa
http://www.oceanopticsbook.info
http://www.oceanopticsbook.info
http://www.oceanopticsbook.info
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above surface, taking into account refraction and reflection at the interface. Lw is a part of

the total upwelling radiance, Lu (Figure 1.7, Equation 1.3) detected by the sensor. Lu is the

linear sum of Lw, which is not directly measured, with contributions by molecular Rayleigh

scattering, Lr (can be accurately computed), by aerosol and Rayleigh-aerosol scattering, La

and Lra, respectively (estimated in Near InfraRed (NIR) bands from measured radiances

and extrapolated to visible using aerosol models), by the white-capping phenomena, Lwc

(estimated from statistical relationships with wind speed) and by the direct solar radiation

specularly reflected from the ocean surface (sun glint), Lg (Gordon and Wang, 1992). Ti is

the diffuse transmittance of the atmosphere, which depends mainly on Rayleigh scattering

and gaseous absorption. This parameter can be well computed (Gordon and Morel, 1983).

Lu = Lr + (La + Lra) + Ti.Lwc + Lg + Ti.Lw (1.3)

The process of retrieving Lw is typically referred as atmospheric correction (Equation

1.3).

Figure 1.7: Simplified scheme of light rays path contributing to Lu measured by the satellite.
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Classic methods for atmospheric correction exploit the high absorption by seawater in

the red and NIR spectral regions. In the open ocean, water can be considered to absorb all

the light in the NIR. Thus, the captured signal is assumed to be due to the atmospheric path

radiance and sea surface reflectance. This is not always the case when considering turbid

waters, e.g. coastal regions (Loisel et al., 2013), and frequently other atmospheric corrections

approaches and methods, e.g. using information from ShortWave InfraRed (SWIR) bands,

had been performed to generate more accurate images in moderate and high turbid regions

(Ruddick et al., 2000; Wang and Shi, 2007; Shi and Wang, 2009a; Wang et al., 2009; Aurin

et al., 2013).

After successfully atmospheric correction, Lw is the estimate result given by the

ocean-colour measurements coming from an angle and azimuth defined by the viewing angle

and position of the satellite sensor and not nadir. The Lw normalization process reduces

the dependence on the Sun’s elevation and the viewing incidence angle (Robinson, 2010;

IOCCG, 2011):

nLw = Lw
F0

Ed
(1.4)

where F0 is the extra-terrestrial solar flux. Since F0 is a constant, nLw, at any wavelength,

is always function of Rrs (see Equation 1.2).

nLw represents what a sensor would measure if looking straight down from an orbit

just above the sea surface at the bottom of the atmosphere. This is what our eyes would

detect as the colour and brightness of the sea, ignoring any light reflected from the surface

(Robinson, 2010)

This is one of the standard products of the ocean-colour sensors and will be used

throughout this thesis.

1.3.4 Numerical modelling

Numerical modelling studies performed in various regions around the world have

proven to be useful tools for analysing plume dynamics in coastal zones affected by river
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outflows (Fong and Geyer, 2001; García Berdeal et al., 2002; Choi and Wilkin, 2007; Guo

and Valle-Levinson, 2007; Otero et al., 2008; Horner-Devine et al., 2009; Jurisa and Chant,

2012).

Chao and Boicourt (1986) were the first to model estuarine plumes with a 3D numerical

model, in contrast to previous analytic plume studies (Kao, 1981). The effect of the wind

in river plumes was studied a few years later by Chao (1988b), for a wide theoretical

estuary. In the mid-1990s and at the beginning of the 21th century, realistic modelling

studies have gained great popularity in the scientific community. For example, Ruddick

et al. (1995) reported on a 3D modelling study of Rhine River estuarine plume and de Kok

(1996, 1997) developed a two-layer model for the same river plume in the Netherlands. The

investigation of this topic was progressively extended onto the shelf (Kourafalou et al.,

1996; Xing and Davies, 1999; Fong and Geyer, 2001; García Berdeal et al., 2002). Since the

beginning of the 21th century, several ocean models have been developed and used to study

the plume dynamics in tidal estuaries and coastal waters (de Kok et al., 2001; Liu et al.,

2002; Arnoux-Chiavassa et al., 2003; Otero et al., 2008; Jurisa and Chant, 2012; Otero

et al., 2013).

Regarding wind influence, all studies confirm the primary conclusion of Chao (1988b):

the plume response to wind can be described by the Ekman drift, even when the propagation

area is shallow and frictional. During upwelling-favourable alongshore winds, the plume is

advected offshore and becomes thinner. In contrast, during downwelling-favourable winds,

the coastal jet is strengthened, leading to an alongshore acceleration of the plume.

Tidal forcing is also an important constraint factor of the plume dynamics, depending

on the different tidal prism and river discharge conditions in the estuary (Vaz et al.,

2009a). For example, numerical modelling simulations show that the spring-neap cycle can

contribute to a partially-detached anticyclonic bulge formation near the mouth (Yankovsky

et al., 2001), a propagation of isolated low salinity patches over ocean (Rong and Li, 2012),

and a stabilization of the plume bulge growth (Isobe, 2005).

In the northern Portuguese coast, apart from the full description of shelf circulation

and WIBP behaviour, presented by Otero et al. (2013), no other studies of the Douro
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adjacent coastal circulation were found. In the Otero et al. (2013) study, the coarse

resolution (∼1.3 km) of the model used did not allow an adequate analysis of the inner-shelf

circulation, as were note captured pulses from river plumes associated with the tidal phase

of estuary mouths.

In this work the numerical model Water Modelling System (MOHID) was the choice

to simulate estuarine and coastal dynamics of Douro. MOHID (www.mohid.com) is a 3D

baroclinic finite volume marine model, designed for coastal and estuarine shallow water

applications. It has been applied to different coastal and estuarine areas, showing its

ability to simulate complex flows features. In Portugal, several estuarine systems have

been studied: Douro (Silva, 1996) and Mondego rivers (Saraiva et al., 2007); Ria de Aveiro

(Trancoso et al., 2005; Vaz et al., 2005, 2007, 2009b; Mendes, 2010), Óbidos (Malhadas

et al., 2009) and Ria Formosa (Silva et al., 2002) coastal lagoons; and Tagus (Braunschweig

et al., 2003; Vaz et al., 2011), Sado (Martins et al., 2001), and Guadiana estuaries (Saraiva

et al., 2007). Furthermore, MOHID has been implemented in other parts of the Iberian

Peninsula: for example in the Galician Rias (Minho-Rias Baixas region (Sousa, 2013),

Ria de Pontevedra (Ruiz-Villarreal et al., 2002), and Ria de Vigo (Taboada et al., 1998;

Montero and Pérez-Villar, 1999). Other works in open and coastal ocean regions were

performed, as an operational model implementation for the Iberian coast (Portuguese Coast

Operational Modelling System (PCOMS), Mateus et al. (2012)), studies about portuguese

coastal circulation (Coelho et al., 2002), the Algarve region (Leitão et al., 2005), and the

North Sea (Bernardes, 2007).

All this extensive number of studies in several coastal environments, with different

resolutions, allows showing that MOHID has total capabilities to simulate the dynamics of

the Douro estuarine plume in the Northwestern Iberian coast.

1.4 Structure

This dissertation is divided in 7 chapters. After this introductory chapter, Chapter 2

presents a method to observe and characterize the mean-state of the Douro plume using

www.mohid.com
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ocean-colour satellite data, evaluating the role of the main drivers (river discharge, wind,

and tide).

In Chapter 3, an assessment of the seasonal and inter-annual variability of the Douro

plume is carried out, using long-term MODIS images. Additionally, possible connections

between the turbid signal and the most representative regional patterns of atmospheric

variation (Eastern Atlantic (EA) and North Atlantic Oscillation (NAO)) were examined.

Chapter 4 presents a general overview of MOHID numerical model and the set-up of

coastal and estuarine models. This chapter also includes the analysis of model accuracy

in reproducing the Douro estuarine plume. The characterization of the estuarine plume

under different wind and river discharge scenarios can be found in Chapter 5. In Chapter 6,

an integrated analysis of the interaction between the Douro and Minho estuarine plume

was performed, as well as their individual influence on the WIBP behaviour under winter

conditions. Finally, in Chapter 7, the general conclusions of the dissertation are drawn and

suggestions for further work are presented.
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Chapter 2

Detection of the Douro plume using

MODIS imagery

2.1 Introduction

The aim of this Chapter is to present an ad-hoc methodology to observe and

characterize the Douro plume and its spatial and temporal variability by using long-

term ocean-colour satellite data (2003-2011) and concurrent in situ wind, tidal and river

discharge data. Additionally, the role of the main drivers (river discharge, wind and tide)

in Douro turbid plume surface features was evaluated.

Since the Douro River is the main contributor of sediments to the Northwestern

Iberian coast (Figure 2.1), its load often generates high levels of turbidity with distinctive

optical properties from the offshore ocean, which are visible in ocean-colour images such as

MODIS.

In the Northwestern Iberian coast remote sensing has only occasionally been used to

perform qualitative comparisons with model results (Otero et al., 2008, 2009, 2013). In

these studies the Sea Surface Temperature (SST) and Chlorophyll-a concentration were used

as plume tracers in coastal waters, which can induce erroneous assumptions, as mentioned

by those authors.

23
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Figure 2.1: Location of the study area. Northwestern Portuguese coast off Douro Estuary
with the location of the main rivers outflows near the interest point (Lima, Cávado, and Ave
rivers and Ria de Aveiro Lagoon). The wind data station is marked with a circle (W). The
dam and the tide gauge at Leixões harbour are marked with a pentagon (D) and square
(T), respectively. The box near the river mouth represents the near-field area of influence of
the Douro River (white double dashed line). The bathymetry, from GEneral Bathymetric
Chart of the Oceans (GEBCO), is shown with white lines (contours in meters).

Despite the numerous studies addressing coastal upwelling and the dynamics of the

WIBP under several scenarios (Peliz et al., 2002; Otero et al., 2008, 2009, 2013), little

attention has been given to the influence of the Douro Estuary input into the coastal

adjacent areas. The exceptions are the studies presented by Teodoro et al. (2009) and

Gonçalves et al. (2012), in which a complex methodology to infer the Douro-river plume
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size based on the concentration of Total Suspended Matter (TSM) was elaborated, using

images from MERIS. Results indicate that the plume is generated only when the river

outflow exceeds about 400 m3 s−1 at the dam (see Figure 1 in Teodoro et al. (2009)).

This Chapter is organized as follows. In Section 2.2, the methodology and data used

are described. Section 2.3 presents the main results of ocean-colour satellite images in the

area of the Douro turbid plume based on the period from 2003 to 2011. In Section 2.4,

the river discharge, wind direction and tide amplitude influence on Douro turbid signal

are analysed and discussed. The paper ends in Section 2.5 where the main findings are

summarized.

2.2 Data and methods

Daily high-resolution ocean-colour data and concurrent wind, tidal and river discharge

in situ data from 2003 to 2011 were obtained and used to study the seasonal and spatial

variability of the Douro Estuary turbid plume and the relative importance of the main

drivers on its dynamic.

2.2.1 River discharge, wind and tidal data

Daily mean Douro River outflow data, at the Crestuma-Lever dam (Figure 2.1), were

obtained from the Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH)

database (www.snirh.pt). During the study period (2003-2011), the Douro River flow

presents a traditional seasonal variation for high discharges (Figure 2.2a). A strong deviation

between the lowest (about 0 m3 s−1) and the highest (over 2500 m3 s−1) daily discharges is

visible in the winter months. Values higher than 4000 m3 s−1 were occasionally registered.

The mean value is always lower than 1000 m3 s−1; and the meanly maximum was observed

in January (942 m3 s−1).

According to Peel et al. (2007), the Douro region presents Mediterranean climate

features under the Köppen climate classification. As a result, the river basin receives most

www.snirh.pt
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Figure 2.2: Douro River discharge at Crestuma dam during 2003-2011 (a). Curve:
monthly average; line inside box: median; lower and upper box limits: first and third
quartiles, respectively; lower and upper whiskers: minimum and maximum river discharges,
respectively; dots: outliers. Wind rose diagrams calculated for the same period (b), during
summer (left), winter (centre) and at annual scale (right). SSE at Leixões tidal gauge during
2007 (grey line), tidal situation at 11:30 and 13:30 Universal Time Coordinates (UTC) for
each day (red and blue thick lines marked with solid points) (c).
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of the precipitation during winter season, not receiving significant precipitation during

summer. Thus, the river inflow at Crestuma dam from June to September is very low, with

a mean flow of only about 150 m3 s−1.

Wind data were obtained from National Oceanic and Atmospheric Administration

(NOAA)’s National Operational Model Archive and Distribution System (NOMADS), which

is maintained at NOAA’s National Climatic Data Center (NCDC) (Saha et al., 2010). The

Climate Forecast System Reanalysis (CFSR) was developed by NOAA’s National Centers

for Environmental Prediction (NCEP) (http://rda.ucar.edu/pub/cfsr.html). Wind

data with a spatial resolution of 0.5-0.5° and a 6-hourly time resolution from January

1979 to December 2011, covering the atmosphere, ocean, sea ice and land were used for

the wind data, at a 10 m reference height. The wind components were processed for the

closest available site near the Douro Estuary mouth (41°N, -9.5°E, see Figure 2.1). Previous

research carried out along the Iberian Peninsula coast has proved that CFSR data are

accurate compared with buoy measurements (Álvarez et al., 2014).

In the Western Iberian ocean region, wind tends to be aligned with the coastal

orientation (Figure 2.2b) (Gómez-Gesteira et al., 2006; Álvarez et al., 2008, 2011; Sousa

et al., 2013). Note that wind is defined with the direction from which the wind is blowing

(according with the meteorological convention). The wind characterization indicates strong

upwelling-favourable conditions, especially during summer (Figure 2.2b, left). These

conditions also occur during winter (Figure 2.2b, centre) but with lower intensity and

predominance. Strong southwesterly winds during winter season (Figure 2.2b, centre)

are linked to cyclogenetic processes, which generate frequent rainfall episodes (Trigo and

DaCamara, 2000; Lorenzo et al., 2008).

Synthetic tidal data were calculated for a location near the mouth of the estuary

for the period 2003 - 2011, using the T_Tide package (Pawlowicz et al., 2002), based

on the major local tidal constituents. These were determined from hourly sea surface

elevation data measured at a tidal gauge located at Leixões harbour during 2007 (Figure

2.1). A strong semi-diurnal signature - M2 (Amplitude=1.05 m; Phase=76.5°), S2 (0.37 m;

104.8°), N2 (0.22 m; 58.4°), and K2 (0.10 m; 101.5°) - with non-negligible diurnal amplitude

http://rda.ucar.edu/pub/cfsr.html
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- K1 (0.07 m; 60.6°), and O1 (0.05 m; 318.4°) - is noticeable in the data (Figure 2.2c).

Semi-diurnal harmonic constituents represent more than 87% of total tidal wave energy.

The average tidal range is 2.8 m with a maximum of about 3.8 m during equinoctial spring

tides. Results agree with information described in the literature (Vieira and Bordalo, 2000;

Marta-Almeida and Dubert, 2006).

2.2.2 Ocean-colour data

Available full-resolution L1A files from MODIS-Aqua and MODIS-Terra covering

the Douro Estuary region (swaths inside the box 40°−43°N; 11°−7.5°W) were used. L1A

files were processed to L1B using the SeaWIFS Data Analysis System (SeaDAS) software

(version 6.4, Baith et al. (2001)), following standard procedures for processing raw data files.

However, some customize steps were performed in order to obtain improved L2 ocean-colour

images in turbid zones, as the Douro coastal area. The methodology adopted in this work

is based on the Aurin et al. (2013) approach to obtain high-resolution images from MODIS,

which provides a clearer turbid signal from Douro estuarine outflow and it assesses better

results, especially near coast, where the band saturation and stray light misassumption

are critical (Saldías et al., 2012; Aurin et al., 2013). Instead of using merged images with

SWIR and NIR band atmospheric correction based on turbidity boundary, only the SeaDAS

standard correction was applied (Bailey et al., 2010) to quantify the NIR contribution with

the iterative bio-optical optimization. Regarding local turbid levels, it was chose not to

employ SWIR bands during the atmospheric correction procedure. Moreover, the 2130 nm

SWIR band was also used to mask clouds with a threshold albedo of 0.018 and the high

light masks were disabled. The stray light masks were set to a 3 × 3 array around land

and clouds and the unrealistic Rrs values were discarded.

Several water leaving radiances (nLw) at 412 nm, 443 nm, 469 nm, 488 nm, 531

nm, 555 nm, 645 nm, 667 nm, 678 nm, and 748 nm were computed to study the spectral

signatures of the coastal zone under different river discharge conditions. The swaths were

interpolated into a regular lat-lon grid (0.005° × 0.005°) and daily averaged images were
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generated when more than one existed for the same day. The strongest turbid signal is

observed at green bands (nLw547 and nLw555), as it was previously reported for other

locations (e.g. Nezlin et al. (2005), Nezlin and DiGiacomo (2005), Thomas and Weatherbee

(2006) and Saldías et al. (2012)). In addition, a comparison among all nLw of the visible

spectrum (Terra and Aqua) and river discharge time series was performed. Firstly, only

daily images with more than 70% of valid pixels in a region near the mouth of river (Figure

2.1) were considered in this evaluation. The difference of valid days for each nLw was also

analysed. The linear Pearson correlation coefficients between the mean radiance value in

the chosen region and the Douro River discharge were calculated (Table 2.1). As expected,

the maximum coefficient correlation was observed at red bands (nLw645, nLw667, and

nLw678) and the next one at nLw555 band. But, taking into account the percentage of used

days, the confidence on the results for the red bands is considerably lower when compared

Table 2.1: Average percentage of available days (more than 70% of cloud-free pixels within
the box, Figure 2.1) (PAP ) and the coefficient of correlation between nLw time series and
daily river discharge (r) for images from MODIS Aqua and Terra.

Aqua Terra

Wave length (nm) Spatial resolution (m) PAP (%) r PAP (%) r

412 1000 24.3 0.30 30.9 0.22

443 1000 33.4 0.39 35.7 0.35

469 500 36.1 0.43 36.3 0.38

488 1000 35.0 0.47 37.8 0.43

531 1000 32.0 0.55 37.7 0.51

547 1000 32.3 0.57 37.5 0.54

555 500 38.0 0.60 38.0 0.56

645 250 28.0 0.71 33.3 0.64

667 1000 27.5 0.70 30.8 0.62

678 1000 30.1 0.69 34.0 0.59
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with nLw555. For instance, there is a difference of 10% of valid days between nLw555 and

nLw645 band for MODIS-Aqua sensor. As the objective of this study is to evaluate the

turbid plume mean state under different conditions, the number of valid images becomes

crucial to increase the robustness and accuracy of results. Concerning the resolution, Aurin

et al. (2013) in their studies of the Mississippi River, Yangtze River, Amazon River and

Chesapeake Bay pointed out that more than 90% of the optical variability is explained with

500 m resolution within plume regions. Allowing for correlation coefficient (Aqua – 0.60;

Terra – 0.56), excellent imagery coverage (38%), and sufficient native nominal resolution

(500 m), the nLw555 band offers the best compromise to study this turbid feature (Table

2.1). Additionally, the small differences between Aqua and Terra data for green channels

(Franz et al., 2007) allow the merging of both sensors nLw555 images. For the region

of interest, the signal-to-noise ratio of nLw555 images is <11% considering the relative

differences between Terra and Aqua and their daily average. After merging MODIS-Aqua

and Terra nLw555 images, the results of robustness significantly increase (48.3% of possible

days were valid) and the correlation coefficient maintains its significance (0.60) compared

when only MODIS-Aqua was used.

2.2.3 Evaluating plume signal and its drivers

The Douro estuarine plume propagation is forced and influenced by the river discharge,

tide and wind. Most of the previous studies using ocean-colour images usually focus on

particular events. Here an ad-hoc method was developed to ascertain the contribution of

individual drivers on plume propagation. This method intends to group together different

synoptic situations according to the main driving mechanism to describe the mean state

feature of the plume.

Wind intensity and direction play a key role in the plume pathway and are linked to

the river input: low-pressure conditions, which are characterized by southwesterly winds,

are connected to precipitation and therefore high river discharge. Due to this relation, it is

very difficult to isolate a single estuarine plume forcing and compare, individually, their
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time series correlations with nLw555 data. Thus, to study the wind effect, the average of

turbid fields under different wind conditions was used.

When the plume covers a larger area and reaches far-field locations due to extreme

freshwater inflow, the wind increases its relevance in the plume pathway (Hetland, 2005).

Hence, the impact of wind from the main directions on the Douro plume motion was studied

exclusively during high river discharges. A nLw555 daily composite will be then considered

as the average pixel calculation if the following three conditions are fulfilled: the river

discharge has to be above of the 75th percentile (570 m3 s−1) computed for the 9 years, the

average wind intensity in the preceding two days must be higher than 2 m s−1 in order to

avoid the calms and a deviation of ± 45° is allowed for each major quadrants.

The Douro estuarine plume variability was examined under high and low tide periods.

To highlight the difference in the turbid pattern, a method similar to the approach defined

for assessing the wind influence on plume has been followed: only nLw555 images with

daily river discharge above the 75th percentile (570 m3 s−1) were taking into account.

MODIS-Terra and MODIS-Aqua overpass the Douro Estuary region at approximately 11:30

and 13:30 UTC, respectively. Then, nLw555 composites for high (higher than 0.5 m) and

low (lower than -0.5 m) tides were created, considering the computed sea surface elevation

at 11:30 and 13:30 UTC for each day. These representative ocean property maps are used in

order to characterize the effect of each tidal phase in the Douro estuarine plume propagation.

The tidal aliasing effect, explained by the sun-synchronism of the Aqua and Terra satellite

orbits and the local tides, must be included in the discussion of tidal effects on turbid

coastal patterns (see e.g. Valente and da Silva (2009)). Due to this aliasing effect, all

images during low tides (below -0.5 m) were obtained after spring tide periods (between

spring and neap tides). On the other hand, the images corresponding to high tides (above

0.5 m), only cover periods before spring tides (between neap and spring tides) (Figure 2.2c).

However, the use of two imagery sources (Terra and Aqua) with different overpass times

decreases the aliasing importance, allowing a better balance among the possible scenes

during high and low tides (Table 2.2).
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Table 2.2: Available scenes (AS), average of valid pixels used for each cell calculation
(V P ), average standard error (SE, mW cm−2µm−1 sr−1), and mean river discharge for the
available scenes (MD−AS, m3 s−1). The results are presented to all composites calculated:
low and high river discharges (<25%, >75%), predominant wind directions (North, South,
East, and West), and minimum and maximum tidal times (low and high water).

River discharge Wind Tide

<25% >75% N S E W Lo Hi

AS 822 822 265 208 89 190 446 622

V P 461 301 145 38 50 44 124 171

SE 0.02 0.05 0.03 0.04 0.04 0.05 0.03 0.03

MD − AS 76 1292 972 1230 1087 1376 1276 1139

2.3 Results

2.3.1 River discharge driven plume propagation

Figure 2.3 depicts the distribution of nLw555 values over the river discharge percentile

ranges in the box area (Figure 2.1). The nLw555 mean field during low river discharge

conditions (lower than 148 m3 s−1, percentile 25%) and high river discharges (higher than

570 m3 s−1 - percentile 75%) are calculated from average pixel value over these days. Strong

relationship between the Douro River discharge and nLw555 data is noticeable.

Higher values represent coastal turbid water and lower values define ocean clear waters.

The highly coherent turbid structure and its size are recognized by nLw555 composites,

supporting the choice of this measure to ascertain the Douro turbid plume variability.

Under low discharge conditions, a negligible turbid signal is detected. In situations of river

discharges lower than the 25th percentile (148 m3 s−1), there is no plume (Figure 2.3a). The

pixel distribution is almost unimodal with most of the values below 0.8 mW cm−2µm−1

sr−1.

Under high river flow, the pixel distribution of nLw555 composite images is markedly
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Figure 2.3: nLw555 composites for low (a) and high (b) discharges calculated from daily
scenes when river input is below 25th percentile and above 75th percentile, respectively.

bimodal with a clear difference between ocean (values below 0.8 mW cm−2µm−1 sr−1) and

coastal turbid waters (Figure 2.3b). A bulge is visible near the Douro Estuary mouth with

an offshore extension of approximately 10 km. Note that definition of bulge in literature

can be quite ambiguous. Here it was considered a jet-like bulge when there is a radially

turbid coherent structure extending offshore from the estuary mouth, which is wider than

the alongshore coastal turbid band, and with high turbid values. The definition of a turbid

value to identify the plume front is usually very subjective, as it often depends on the

terrestrial characteristics and sediment loads from different rivers. Nezlin et al. (2005)

present a methodology to define this limit through the comparison of the precipitation rates

in the river basin and in the plume area. As the precipitation rate for Douro watershed

is not directly correlated with the plume area due to the dam in the river previously

referred, a comparison between the accumulated nLw555 values for both 25th and 75 th

percentile composites was performed (Figure 2.4). This analysis warrants that under low

river discharges it is very unlikely to find pixels with values higher than 1.1 mW cm−2µm−1

sr−1. More than 99% of the pixels in the low river discharge composite are lower than this
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Figure 2.4: The accumulative percentage of pixels below different turbid limit for the
nLw555 composite for low (red line) and high (blue line) river discharge. The vertical line
represents the turbid threshold (1.1 mW cm−2µm−1 sr−1).

value. On the contrary, the high river discharge composite shows that more than 70% of

pixels are higher than 1.1 mW cm−2µm−1 sr−1. From this method, it is assured that the

source of pixels with values higher than 1.1 mW cm−2µm−1 sr−1 are most likely related with

freshwater input than other turbid sources, such as phytoplankton blooms and wind-wave

resuspension. Despite the subjectivity of this threshold, hereafter this value is considered

as the most suitable to identify the Douro estuarine plume front.

The possible scenes, average of the number of valid pixels, average standard error

for each pixel and mean river discharge for the possible scenes are presented in Table 2.2

in order to discuss the results robustness. The standard error was calculated following

SE = SD/
√
NP , where SD is the standard deviation and NP is the number of valid pixels

used in the mean state calculation for each cell.

2.3.2 Wind driven plume propagation

Daily composites, which fulfil the requirements (see Chapter 2.2.3) to be selected

for average turbid plume field, under different wind regimes (North, South, East, and
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West) are depicted in Figures 2.5 and 2.6. Upwelling-favourable winds induce an offshore

expansion of the Douro estuarine outflow plume (Figure 2.5b). The plume structure has

a slight inclination southwestward. Two turbid coastal bands are detectable in opposite

directions from the Douro Estuary mouth. Up north, a coastal plume is visible. Cávado

River (see Figure 2.1) appears to have a non-negligible contribution for this coastal turbid

band. Turbid pixels greater than 1.6 mW cm−2µm−1 sr−1 are found nearby the river mouth.

The southward turbid band has stronger signal intensity with values greater than 1.6 mW

Figure 2.5: Wind rose diagrams and the corresponding nLw555 composites of Douro
estuarine plume under northerly (a, b) and southerly (c, d) wind conditions. The black line
represents the contour value of 1.1 mW cm−2µm−1 sr−1.
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Figure 2.6: Wind rose diagrams and the corresponding nLw555 composites of Douro
estuarine plume under easterly (a, b) and westerly (c, d) wind conditions. The black line
represents the contour value of 1.1 mW cm−2µm−1 sr−1.

cm−2µm−1 sr−1.

The Douro turbid plume mean-state under downwelling-favourable wind is highlighted

in Figure 2.5d. Despite the plume cannot be so clearly identified as in the counter case, there

is an alongshore plume confinement to the coast along the north direction. This coastal

buoyancy body of water has about 10 km width and the bulge formation is not perceptible.

Southward, there is an irregular and weak turbid signal (1.1 – 1.4 mW cm−2µm−1 sr−1).

This turbid band is about 2-3 km wide.
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Concerning wind direction, the pixel distribution shows a predominance of strong winds

blowing from north, north-northeast and south-southwest in upwelling and downwelling-

favourable conditions, respectively (Figures 2.5a and 2.5c). Results present a similar pattern

for both cases in terms of wind intensity and percentage of occurrence. It should be noticed

that the average wind magnitude, during 2 days before the day of image acquisition, could

reach 14 m s−1.

The impact of cross-shore winds on the shape of the plume is shown in Figure 2.6.

The average turbid plume is mapped during easterly and westerly wind events. When the

wind blows from the land (Figure 2.6b), a bulge is identified near the estuary mouth. The

bulge has a northwestern direction with a clear detachment from coast at the north side.

A short turbid coastal band is identified south of the bulge. The average turbid pattern

under westerly winds shows an expected plume confinement to the coast in both alongshore

directions (Figure 2.6d). There is a continuous coastal turbid band of about 25 km width.

The bulge delimitation is unclear; however, higher turbid values (>1.8 mW cm−2µm−1 sr−1)

are found flattened near the Douro Estuary mouth, presenting a semi-circular shape.

Concerning the pixel distribution on magnitude and wind directions, some differences

must be taken into account in the analysis of cross-shore wind influence (Figures 2.6a and

2.6c). The westerly winds predominant directions are from west-southwest (Figures 2.6c).

However, strong winds (over 12 m s−1) can be found from all directions in this quadrant.

Otherwise, all easterly winds are weaker (lower than 12 m s−1) with a major predominance

from east-northeast and east directions (Figures 2.6a).

Differences between Figures 2.5b and 2.5d and Figures 2.6b and 2.6d are depicted

in Figure 2.7a and 2.7b, respectively. The southerly winds persistence causes a coastal

negative anomaly region, which is visible in the turbid field towards the north from the

estuary mouth (Figure 2.7a). This region of influence is a very regular structure about 15

km wide. The bulge region and the southward short coastal band present the major turbid

differences (higher than 0.4 mW cm−2µm−1 sr−1). This positive anomaly, caused by the

wind blowing from the north quadrant, reaches an extension of about 60 km. A region with

low positive values of about 0.2 mW cm−2µm−1 sr−1 divides the bulge and the southward
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Figure 2.7: (a) Douro estuarine plume under northerly wind conditions (Figure 2.5c) minus
under southerly wind conditions (Figure 2.5d). (b) Douro estuarine plume under easterly
wind conditions (Figure 2.6c) minus under westerly wind conditions (Figure 2.6d).

turbid coastal area (Figure 2.7a). It is important to note that even in the northern part of

the area (>15 km from the coast), there is a remarkable influence of the northerly winds.

Differences on the turbid field caused by easterly and westerly winds show strong

negative anomalies (lower than -0.4 mW cm−2µm−1 sr−1) in regions north and south from

the estuary mouth (Figure 2.7b). These areas of influence of westerly winds present an

offshore decreasing until 20-25 km from the coast, when positive values became dominant.

Inside the negative influenced area, some differences in the intensity should be noted. For

instance, there are small areas in front of the estuary mouth where the differences are close

to 0 or even slightly positive.

Obviously, there are important differences concerning the results robustness for the

wind mean states (Table 2.2). North, south, and westerly winds have a larger number

of possible scenes (Figure 2.2b). However, the average of valid pixels in each mean state

presents some differences. Since the south and westerly are linked to precipitation in the

region, their scenes are more contaminated by clouds. This fact also explains that under

these wind regimes the mean Douro river discharge for the possible scenes is higher. The
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lower standard error (0.03 mW cm−2µm−1 sr−1) when wind blows from the north is expected

regarding the number of possible scenes and the average of valid pixels.

2.3.3 Tidal influence on the plume

Turbid mean fields during high and low tides are shown in Figures 2.8a and 2.8b,

respectively, and are described below. In general, no significant differences can be found

between composites during high and low tide periods. During low tides, turbid coastal

bands (north and southward) are visible with some pixels over 1.8 mW cm−2µm−1 sr−1.

Figure 2.8: Composites during high (a) and low tide periods (b). The black line represents
the contour value of 1.1 mW cm−2µm−1 sr−1. The corresponding zoom images are presented
below (c, d). The thicker black line represents the contour value of 1.1 mW cm−2µm−1 sr−1

and the thin lines represent the contour values of 1.5, 1.3, and 1.1 mW cm−2µm−1 sr−1.
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The offshore expansion of the turbid limit (1.1 mW cm−2µm−1 sr−1) is very regular and

about 10-15 km wide under low tide conditions. During high tide, north and south coastal

bands present an irregular pattern less than 5 km wide. However, stronger changes are

observed close to Douro and Cávado estuary mouths. During high tides a clear retraction of

the Douro bulge is detected (Figure 2.8a). On the other hand, under low tides, an offshore

expansion of the Douro bulge is noticeable, presenting a semi-circular shape (Figure 2.8b).

The distinct shapes related to the tidal phase become more evident in zoom images

(Figure 2.8c and 2.8d). During high tides, the 1.7 mW cm−2µm−1 sr−1 contour line is

confined to the Douro Estuary adjacent coast (Figure 2.8c). In the opposite case, i.e. for

low tides, higher turbid values (above 1.7 mW cm−2µm−1 sr−1) reaches a 10 km offshore

extension (Figure 2.8d). The same pattern is observed for lower turbid contour lines (1.5,

1.3, and 1.1 mW cm−2µm−1 sr−1). However, this difference fades at distances larger than

25 km offshore. At this limit, no differences are found between both tidal cases (Figure

2.8a and 2.8b).

The robustness and image balance between two tidal phases are very satisfactory.

The number of possible scenes is different because of the MODIS images match up with

sea surface elevation. There is a better representation of high tides than of lower ones.

However, the ratio between the average valid pixels and the possible cases are almost equal

(about 28%). The standard error and the mean river discharge for the possible cases are

broadly the same, which further increases the results significance.

2.4 Discussion

The present study showed a marked influence of river input on turbid patterns in the

Douro river coastal zone. There is a consistent relation between the spatial distribution of

nLw555 and the daily river discharge. The number of pixels with high turbid values, and

consequently the plume area, is enhanced with the increase of the river inflow measured

at the dam (Figure 2.3). During low river discharge it is very unlikely to find pixel values

above 1.1 mW cm−2µm−1 sr−1. Despite some subjectivity associated with the methodology
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to find the turbid plume limit, during high river discharge the 1.1 mW cm−2µm−1 sr−1

contour line is considered good representative of the plume front. Conversely, medium

turbid values between 0.5 and 1.0 mW cm−2µm−1 sr−1 were observed under low river

discharges (Figure 2.4a). These medium turbid plumes may be related to phytoplankton

blooms, typical of upwelling regions (Saldías et al., 2012), and/or wind-wave resuspension.

Rusu and Soares (2013) discuss wave contribution to higher turbid patterns in the near

shore regions. Although the river discharge threshold to plume appearance is arguable, a

circular turbid pattern is well observed off Douro River when the flow exceeds 500 m3s−1.

This result is consistent with the values discussed in previous works by Mourato (2008) and

Teodoro et al. (2009).

The role of alongshore winds on the Douro plume dynamics is crucial to define the

estuarine water fate during high river discharge conditions (higher than 570 m3 s−1). Under

upwelling-favourable winds, an offshore expansion of the bulge is observed. Northerly

winds cause, indeed, an offshore displacement of the plume. The plume extension and

its southwestward advection by surface currents agree with modelling results presented

in previous works (Otero et al., 2008, 2013), representing a common feature along the

Portuguese coast as studied by Vaz et al. (2009a) for the Tagus Estuarine plume. However,

the southward turbid band attached to the coast was not described in those studies. Due

to the Coriolis deflection, a plume movement to right of the estuary mouth is expected in

the Northern hemisphere. This could be explained as the result of southward wind-driven

surface currents. In shallow waters the surface cross-shore transport decreases and the

transport is entirely in the direction of the wind-driven circulation in regions shallower

than the surface boundary layer (Lentz and Fewings, 2012). This southward turbid band is

also observed under south, east (weak but visible) and west wind regimes. These features

were also observed in numerical models, when an ambient flow (10 cm s−1) is imposed

in the opposite direction of the Kelvin wave propagation (García Berdeal et al., 2002).

The northwest dominant wave direction, representing about 72% of the occurrences (Rusu

and Lisboa, 2007), induces a surface current in the North-South direction - littoral drift -

(Veloso-Gomes et al., 2004) that could represent this ambient flow. Based on wave energy,
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the littoral drift could play an important role in sediment transport up to 3-4 km off

the coast (12 – 16 m depth, Coelho and Veloso-Gomes (2006)) transporting sediments

southwards (Dias et al., 2002). This near coastal flux could also be related with the spatial

orientation of the estuary axis (direction of the discharge relative to the coast)(Yankovsky

et al., 2000; Garvine, 2001). The direction of the Douro Estuary inlet has an alongshore

component. The angle between coastline and inlet orientation is approximately 45°, in

the opposite direction of Coriolis deflection, which can promote a southward flux near the

estuary mouth.

Turbid patterns show a confinement of the estuarine plume in the near coastal region

(towards the north) under downwelling-favourable winds and high-river discharge. This is

due to the combined effect of the wind and the Coriolis force on the northern hemisphere,

which tends to push the plume towards coast. The dimensions of this turbid coastal feature

(10 km width) agree with the numerical modelling results of Otero et al. (2008) for the

WIBP dimensions. The southerly wind forces an onshore current, which confines the Douro

plume coastward. The formation of the bulge is not clear and increases the chance of the

freshwater from the Douro Estuary to merge with water from smaller rivers located further

north (i.e. from Ave, Cávado and Lima rivers). Thus, a continuous coastal-attached turbid

band is generated to the north. Important biogeochemical consequences would take place,

since water from these smaller rivers spreads their constituents over a much larger area,

amplified by the Douro Estuary input from the south (Warrick, 2004; Saldías et al., 2012).

The influence of cross-shelf winds on plume dynamics has been usually ignored in

previous studies. However, as pointed out by Lentz and Fewings (2012), in waters shallower

than 30 m the cross-shelf wind stress is a non-negligible term in the cross-shelf momentum

balance. Nevertheless, although the offshore winds in the Douro Estuary region are often

weak some differences in the turbid composites could be attributed to wind stress influence.

Moreover, estuarine water is flushed into the ocean generating a bulge in front of the estuary

mouth. In the case of easterly winds there is a clear plume offshore detachment from the

coast with a deflection to the right. Despite the same direction of wind stress and estuarine

flux, the offshore advection is significantly higher under upwelling-favourable winds cases.
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This can be explained in terms of wind magnitude, which is important in both cases.

However, offshore surface transport seems to reach a stationary location (25 km), then

turning to an alongshore direction, while during northerly winds offshore spreading occurs

until the plume waters are no longer distinguishable from the ocean waters. These results

are consistent with those presented by Chao (1988b), Choi and Wilkin (2007) and Jurisa

and Chant (2012). Westerly winds tend to accumulate freshwater along the coastline and

to decrease the cross-shore transport. The bulge is squeezed towards the coast generating

an alongshore turbid band both in northward and southward directions. A similar pattern

can be found in numerical simulations carried out by Chao (1988b).

Tides were found to influence the near-field turbid plume close to the coast and

estuary mouth. Between high and low tide periods, no significant differences were found

regarding the offshore maximum advection. The major discrepancies were observed in

the near-field bulge, where tidal currents are important. This area of influence seems to

be representative of a pulsed tidal plume zone. In this case, the tidal pulse is generally

energetic, strongly stratified, and typically bounded on its outer edge by sharp fronts with

a semi-circular formation (Horner-Devine et al., 2009). The region of tidal influence for the

Douro estuarine plume only extends 20 km offshore, radially from the estuary mouth.

Interpretation of the observed turbid area difference between high and low tides must

be cautious because of tidal aliasing (Valente and da Silva, 2009). As all images obtained

during low tides correspond to periods after spring tides, this could enhance turbid coastal

values and mask the real differences between low and high tides, as pointed out by Valente

and da Silva (2009) for the Tagus turbid plume. However, as no significant differences were

found regarding the offshore maximum advection between the high and low tide turbid

composites (see Figure 2.8), the fortnightly tidal cycle seems to be less important in the

case of the Douro turbid plume compared to the Tagus one. Possibly, this is due to the

water residence time inside the Douro Estuary, which is too short to enhance turbidity

during spring tides, when compared e.g. to the Tagus Estuary (Braunschweig et al., 2003).
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2.5 Conclusion

Remote sensing images were found to be useful in order to understand the Douro

plume behaviour. Merged nLw555 images from MODIS sensors aboard of Aqua and Terra

satellites showed results of significant robustness to detect turbid plume signals. An ad-

hoc method groups together different synoptic situations according to the main driving

mechanisms (river discharge, wind and tide) in order to describe the mean state feature of

this turbid plume. The main conclusions of this Chapter are the following:

• A strong relationship was found between the Douro River discharge and nLw555 data.

A circular turbid pattern is well observed when the flow exceeds 500 m3 s−1. There is

no plume evidence under low-discharge regime (lower than 148 m3 s−1);

• An offshore plume expansion is observed under upwelling-favourable winds and high

river discharges. Under southerly winds, there is a plume confinement to the coast in

the northward direction. The bulge formation is not clear and the possibility of the

plume to merge with water from smaller rivers increases;

• Under easterly winds, the turbid maps show a bulge generation with an offshore

detachment from the coast. A smaller offshore spreading is observed in comparison

with upwelling-favourable wind situations. Westerly winds tend to accumulate

freshwater near shore and consequently to decrease cross-shore advection. The

bulge is confined to the coast producing a continuous turbid band in the alongshore

directions;

• No significant offshore differences are found in turbid patterns between high and low

tide periods. Major discrepancies were observed in the near-field area. During low

tide, a representative tidal plume with a semi-circular formation is observed. The

region of high turbid values was spread about 10 km from the coast.

The seasonal and inter-annual variability of the Douro estuarine plume, showing the

impact of long-term atmospheric variation in its length scales using the MODIS composites
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here developed will be addressed in the Chapter 3.
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Chapter 3

Douro turbid river plume seasonal and

inter-annual variability: relation with

atmospheric teleconnection patterns

3.1 Introduction

In Chapter 2 were described the mean characteristics of the Douro River plume

through ocean-colour imagery, highlighting that the turbid plume is well observed when

the river flow exceeds 500 m3 s−1. In addition, an important wind influence on the offshore

transport and fate of the plume was also revealed, showing typical features described above

for along shore winds. The shape of the near-field plume was found to be strongly influenced

by the ebb-flood cycle.

This Chapter aims to evaluate the seasonal and inter-annual variability of the Douro

turbid plume (Figure 3.1) through the use of long-term ocean-colour satellite data (2000-

2014), highlighting its relation with the river discharge, precipitation rates and wind

anomalies during contrasting NAO and EA phases. The NAO and EA are two of the

most representative regional patterns of atmospheric variation in the Northern Hemisphere,

influencing the local precipitation and river discharges, with higher amplitude during

47
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Figure 3.1: Study Area with location of the main rivers near the interest point. Wind and
precipitation data stations are marked with a circle and square, respectively. The pentagon
represents the location of the downstream Douro River dam. The dashed black box near
the river mouth represents the near-field area. Bathymetry, from GEBCO, is shown with
white lines (contours in meters).

winter (Zorita et al., 1992; Trigo et al., 2004; Lorenzo and Taboada, 2005; deCastro et al.,

2006, 2008). Several works have shown a significant correlation between NAO index and

precipitation in Galicia during winter (northwest of Iberian Peninsula) (Zorita et al., 1992;

Esteban-Parra et al., 1998; Lorenzo and Taboada, 2005). Trigo et al. (2004) found that

winter discharge of the main Iberian rivers are significantly correlated with the (DJF)

NAO index for the period 1973-1998 with a 1-month lag peak (-0.76 for Douro, -0.77 for

the Tagus and -0.79 for the Guadiana river). Furthermore, deCastro et al. (2006) found
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significant correlations between Minho river discharge and (DJF) NAO index for the period

1970-2005 with a 2-month lag peak, showing a decreased correlation in the last years, in

agreement with the decreased trend in spatial correlation found by Trigo et al. (2004).

Regarding EA variability, Rodriguez-Puebla et al. (1998) found correlation with the annual

precipitation for Iberian Peninsula for April EA, while deCastro et al. (2006) showed a

negative correlation between Minho River discharge and (DJF) EA with a peak at 1-month

lag.

Data and methods followed to reach the objectives of this Chapter are described

in Section 3.2. The results and discussion are presented in Section 3.3, highlighting the

dominant spatio-temporal plume patterns along the coast and their connection to wind

and climate indices at inter-annual scale. Finally, the principal conclusions of this Chapter

are shown in Section 3.4.

3.2 Data and methods

3.2.1 Ocean-colour imagery

Following the method for the characterization of the Douro turbid plume presented

in Chapter 2, daily composites of nLw555 from MODIS-Aqua and MODIS-Terra were

obtained. The processing generates high-resolution (500 m) daily images from February

2000 to December 2014. Swaths were mapped into a regular lat-lon grid (0.005°×0.005°)

and daily averaged images were generated when more than one existed for the same day.

Moreover, small differences between Aqua and Terra data for green channels (Franz

et al., 2006) allow merging the nLw555 images from both platforms in this region (Mendes

et al. (2014), Chapter 2). These minor discrepancies were also statistical stated in Section

2.2.2 of the previous Chapter. The average and standard deviation of nLw555 in the Douro

region from Aqua, Terra, and merged data from both satellites are depicted in Figure

3.2. Differences in long-term averages and standard deviation are practically unnoticeable

between platforms and the merged product. High standard deviation values are restricted
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Figure 3.2: (upper panels) Averages, (middle panels in the vertical direction) standard
deviations, and (lower panels) percentage of daily cloud-free data of nLw555 from (left
panels) MODIS-Aqua, (middle panels in the horizontal direction) MODIS-Terra, and (right
panels) the merged MODIS-Aqua-Terra composites.
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to the pixels near the Douro River mouth where the turbid plume has a major impact

(Figure 3.2d, 3.2e, 3.2f). Merged data, however, presents a considerable increase of daily

available pixels (Figure 3.2i). Using nLw555 merged data results in a maximum of 40-45%

of cloud-free data coast-wide, whereas the available data is greatly reduced to 25-35% in

the other cases (Figures 3.2g and 3.2h). Then, nLw555 merged composites were monthly

averaged to guarantee >99% of good data in the entire study area and, at the same time,

to study the inter-annual variability of the Douro turbid river plume.

3.2.2 River discharge, wind, and precipitation rate

As in Chapter 2, daily mean Douro River outflow data, at the Crestuma-Lever dam

(D in Figure 3.1), were obtained from the SNIRH database (www.snirh.pt) and wind data

were retrieved from NOAA’s NOMADS, which is maintained at NOAA’s NCDC (Saha

et al., 2010) for an ocean location close to the Douro Estuary mouth (41°N, -9.5°E, W in

Figure 3.1).

Along the western coast of the Iberian Peninsula, the practicable upwelling index

(UI) can be considered equal to −Qx, the zonal component of the Ekman transport per

unit length:

Qx =
ρaCd
ρwf

(W 2
x +W 2

y )1/2Wy (3.1)

where Wx and Wy are the zonal and meridional components of wind data, ρa = 1.22 kg

m−3 is the air density, Cd = 1.4× 10−3 is a dimensionless drag coefficient, ρw = 1025 kg

m−3 is the sea water density and f is the local Coriolis frequency (Bakun, 1973; Nykjær

and van Camp, 1994; Gómez-Gesteira et al., 2006; Álvarez et al., 2010).

Monthly precipitation data were retrieved from NOAA/Office of Oceanic and

Atmospheric Research (OAR)/Earth System Research Laboratory (ESRL) Physical Sciences

Division (PSD), Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd/). This global

dataset has been constructed on a 2.5° latitude-longitude grid from 1979 to present day

by merging hydrometric gauge observations, estimates inferred from a variety of satellite

www.snirh.pt
http://www.esrl.noaa.gov/psd/
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observations, and the NCEP-National Center of Atmospheric Research (NCAR) reanalysis.

Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset was

used with success to investigate the annual and inter-annual variability in large-scale

precipitation, showing a reasonable agreement with long-terms means (Xie and Arkin, 1997).

Data were processed and monthly averaged for the closest available site near the Douro

Estuary (R in Figure 3.1).

3.2.3 Composites for EOF analysis

Non-seasonal composites of nLw555 were computed by subtracting seasonal harmonic

cycles at each pixel in order to study the dominant patterns of inter-annual variability in

turbid river plumes. By doing this, the stationary contribution of the seasonal cycle is

removed, and consequently, changes in phase and strength of these harmonics are considered

in the non-seasonal anomalies. The seasonal harmonics were computed through the following

equation:

OCsh(t) = OC +OCacos(2πfat− φa) +OCscos(2πfst− φs) (3.2)

where OCsh(t) is the seasonal harmonic time series for the ocean-colour variable at each

pixel, OC is the mean value, OCa and OCs are the amplitudes of annual and semi-annual

harmonics, fa and fs are the annual (1/365.25 days) and semi-annual (2/365.25 days)

frequencies, φa and φs are the annual and semi-annual phases, and t is time. Then, the

non-seasonal anomalies (OCns(t)) were computed by subtracting the seasonal harmonics

from the original series (OCt):

OCns(t) = OCt −OCsh(t) (3.3)

non-seasonal composites were used in the Empirical Orthogonal Functions (EOF)

analysis for decomposing the dominant modes of variability. The EOF was computed

following the Singular Value Decomposition (SVD) approach to avoid the very large
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covariance matrix due to the high resolution of images (Thomson and Emery, 2014).

3.2.4 Climate indices

Monthly NAO and EA teleconnection indices were obtained from the CPC at the

NCEP (www.cpc.noaa.gov) over the period 2000-2014. The NAO consists of a north–south

dipole of geopotential anomalies, with one centre located over Greenland and the other

one spanning the region between 35° and 40°N in the central North Atlantic, near the

Azores archipelago. EA consists of a north–south dipole that spans the entire North

Atlantic Ocean. EA dipole is displaced southeastward the NAO with the centres near 55°N,

20-35°W and 25-35°N, 0-10°W. A detailed description of these indices can be found at

http://www.cpc.noaa.gov/data/teledoc/telecontents.shtml.

3.3 Results and discussion

3.3.1 Seasonal evaluation

The comparison between monthly averaged series of nLw555, river discharge and

precipitation rate for the period 2000-14 is depicted in Figures 3.3a and 3.3c. nLw555 data

are the average of values within a box close to river mouth (dashed line in Figure 3.1), where

the Douro estuarine outflow has more influence on turbidity patterns. A relation between

nLw555, river discharge and precipitation is noticeable (Figures 3.3a and 3.3c). Correlation

coefficient between the Douro River discharge and nLw555 is 0.81 with pv<0.01. All extreme

discharge events match nLw555 peaks, which indicates the use of high-resolution nLw555

composites as important to study this river plume variability at inter-annual scale (Mendes

et al. (2014) - Chapter 2). For example, the 2000-01 maximum is one of most extreme

events in terms of river discharge, when it was observed a maximum of the Douro River

mean daily outflow higher than 8000 m3 s−1 (Marta-Almeida et al., 2002; Ruiz Villarreal

et al., 2005). A similar correlation is observed in terms of annual climatology with very low

values during summer months and higher in winter (Figure 3.3b). The turbidity is more

www.cpc.noaa.gov
http://www.cpc.noaa.gov/data/teledoc/telecontents.shtml
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Figure 3.3: (left panels) Temporal evolution and (right panels) mean annual cycles of
monthly nLw555 data (a, b), monthly river discharge (c, d) and precipitation. (e) Time
series and (f) mean annual cycles of meridional (Wy) and zonal (Wu) wind components.

sensitive to the river discharge in early winter, possible due to higher sediments supply

after summer, which are then carried by river to the coast.

The correlation coefficient between precipitation and nLw555 time series is smaller

(r=0.58; pv<0.01) (Figure 3.3c). However the maxima correlation was found with a 1-

month lag ahead (r=0.65; pv<0.01), which confirms the visual analysis from the annual

climatological data (Figure 3.3d). The precipitation is higher during autumn than winter.

The non-coincident pattern between precipitation and river discharge can be caused by the

outflow regulation by several dams along the river’s course.

Two typical patterns are observed regarding wind condition during these 15 years

(Figure 3.3e): Northerly and positive zonal winds are persistent during summer, inducing
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strong upwelling events (Fraga, 1981; Fiúza et al., 1998; Álvarez et al., 2010, 2011)(Figures

3.3e and 3.3f); During winter, upwelling-favourable winds are no longer prevalent. Strong

southwesterly winds during winter season (Figures 3.3e and 3.3f) are linked to precipitation

episodes (Trigo and DaCamara, 2000; Lorenzo et al., 2008), which, in turn, are associated

with the highest peaks in river discharge (2000-01, 2002-03, and 2013-14 events) (Figures

3.3a and 3.3e).

3.3.2 Wind and river runoff influence on nLw555 anomalies

The long term (2000-2014) spatio-temporal variability of the Douro turbid plume

was characterized by means of longitudinal monthly anomalies of nLw555 averaged for a

latitude band coincident with the estuary mouth (41.14° - Figure 3.4a). Monthly anomalies

of river discharge and meridional and zonal wind components are also represented in Figures

3.4b, 3.4c, and 3.4d, respectively, to further clarify their relation with anomalous plume

patterns. Aqua satellite was launched in July 2002, which partially explains the blank areas

(areas without values) observed in 2000 and 2001 (in particular in the winter of 2000/01) –

nLw555 composites before July 2002 correspond to MODIS-Terra only (Figure 3.4a).

Anomalous high nLw555 values are observed during 2000-01, 2002-03, and 2013-14

winters, while 2001-02, 2004-05, 2005-06, 2007-08, and 2011-12 winters appear to be less

impacted by the river discharge and, consequently, by the turbid river plume (Figure 3.4a).

Relation between river outflow and nLw555 is less important in terms of the turbid

plume extent. The wind forcing presents a secondary role in the cross-shore propagation of

the Douro estuarine plume (Mendes et al. (2014) - Chapter 2).

Maximum plume extent was found on 2002-03 winter (Figure 3.4a), but higher river

discharges and nLw555 anomalies were found on 2000-01 winter (Figure 3.3a). Alongshore

winds play a key role on the plume confinement and offshore expansion events at inter-annual

scale during positive anomalies of river discharge. Downwelling-favourable winds occurred

during 2000-01, related to the landwards transport of the plume (Otero et al., 2008; Mendes

et al., 2014), were stronger than during 2002-03 winter, which can explain this difference.
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Figure 3.4: (a) Hovmöller diagram of monthly nLw555 anomalies for a latitudinal band
coincident with Douro River mouth. (b) Douro river discharge and (c) zonal and (d)
meridional wind monthly anomalies.
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Great negative nLw555 anomalies are usually associated with winters with the

predominance of upwelling-favourable winds, i.e. 2001-02, 2004-05, 2005-06, 2007-08,

and 2011-12 winters (Figures 3.4a, c, d). Persistent northern and northeasterly winds

induce winter upwelling events (deCastro et al., 2008; Álvarez et al., 2009), which have

similar atmospheric patterns to those observed during summer, when precipitation and

river discharge are minimum.

3.3.3 Inter-annual variability of dominant patterns

EOF analysis was carried out to examine dominant non-seasonal plume variability

using nLw555 images. The first three EOFs and corresponding time series (Principal

Component (PC)) are represented in Figure 3.5. The EOF spatial coefficients indicate the

spatial extension and the dynamic importance of the processes in the study region, while

PCs indicates the importance of the phenomenon (Navarro and Ruiz, 2006). The first

EOF represents 59.7% of the total variance (Figure 3.5a). All the spatial coefficients were

negative with the maxima found near the river mouth and decreasing offshore. This result

represents the major influence of the Douro River discharge on nLw555 pattern. The first

PC (Figure 3.5d) has a similar pattern to river discharge anomalies (Figure 3.4b), with a

significant correlation coefficient of 0.62 (pv<0.01) – negative PC values represent major

plume events. A punctual disagreement was found on the autumn of 2004. The second and

third EOF modes represent 9.4% and 6.1% of the total variance, respectively (Figures 3.5b

and 3.5c).

Spatial variability of the second EOF enables the identification of two different zones

(Figure 3.5b), showing different forcing mechanisms in these regions. Turbidity is enhanced

along the coast – positive values in Figure 3.5e correspond to periods with anomalous

plumes near shore. Values of EOF are negative in the open ocean and positive near the

shoreline.

The PC2 is negatively correlated with UI monthly anomalies (r=0.33, pv<0.01)(Figure

3.5e), showing that the second EOF spatial variability is influenced by the zonal Ekman
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Figure 3.5: First three modes of EOF analysis after removing the annual and semi-annual
harmonics of monthly nLw555 fields (a, b, and c, respectively). The percent of variance of
each mode is also shown. First three PC showing the time evolution of the modes presented
above (d, e, and f, respectively).

transport, which is consequently related with offshore transport of the plume (Figure 3.5b).

The third EOF presents two separated groups of plume patterns (Figure 3.5c), located

northward and southward of the Douro river mouth. Values are negative at the north, while

at the south they are positive with similar amplitude. Values are close to zero at 200 m

isobath (Figure 3.5c). The third EOF pattern is similar with the mean-state of the Douro

estuarine plume under downwelling-favourable winds shown in Chapter 2 (Mendes et al.,

2014). Thus, the meridional wind component seems to influence the third EOF spatial

distribution. The correlation between PC3 times series and alongshore wind component
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(r=0.22, pv<0.01)(Figure 3.5f) reveals the secondary importance of meridional winds in the

Douro estuarine plume propagation.

nLw555 monthly composites corresponding to the extreme negative values described

in the principal components (1, 2 and 3 in Figures 3.5d, 3.5e and 3.5f) are depicted in

Figures 3.6a, 3.6b and 3.6c. Wind rose diagrams for each situation are also included.

During February 2014 (Figure 3.6a), PC1 presents a high negative amplitude and

a smaller influence of PC3 mode. As stated above, the strong positive anomaly of river

discharge explained this pattern. In this case, precipitation rate seem to be in phase with

river discharge (Figures 3.3a and 3.3c) and southwest and westerly winds are predominant.

Westerly winds tend to accumulate freshwater along the coastline and to decrease the

cross-shore transport (Chapter 2; Chao (1988b) and Mendes et al. (2014)). The turbid

plume is confined to the coast generating a northward and southward alongshore band

(Chapter 2, Mendes et al. (2014)). The southward band has stronger intensity (represented

by positive PC3 amplitude) with values greater than 2.5 mW cm−2µm−1 sr−1. The nearshore

region between the Douro and Ria de Aveiro is shallower than the northern coast (Figure

3.1). Thus, wave sediment resuspension may be the cause of high turbid values in this area

(12 – 16 m depth, Coelho and Veloso-Gomes (2006)).

During January 2003 (Figure 3.6b), PC2 shows a maximum amplitude with an

Figure 3.6: (a, b, c) nLw555 monthly fields for extreme negative peaks in EOF time series
(1, 2, and 3 in Figures 3.5d, 3.5e and 3.5f). Wind roses are included for the same months
with the direction indicating where the wind is blowing from (meteorological convention).
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important influence of PC1 (Figure 3.5e). High turbid values are found along both northward

and southward directions, which are explained by PC1 amplitude. However, as precipitation

peaks as well as southwesterly winds are not in phase with river discharge (Figure 3.3

and Figure 3.4), the plume shows a characteristic pattern when compared with previous

case. Northerly winds were predominant along this month (negative zonal component of

Ekman transport), causing winter upwelling events, which control the turbid plume fate.

High turbid values (3 mW cm−2µm−1 sr−1) are found in the bulge area, close to the river

mouth, and an offshore expansion of the bulge is observed (Chapter 2; Otero et al. (2008,

2013) and Mendes et al. (2014)). Moreover, the plume structure has a slight southwestward

inclination, and two turbid coastal bands are detectable in opposite directions from the

Douro Estuary in agreement with plume mean-state during upwelling events described in

Chapter 2. Medium turbid values (0.5-1.0 mW cm−2µm−1 sr−1) covered a large offshore

area, indicating an increase of cross-shore transport caused by upwelling-favourable winds.

The spatial distribution of a PC3 negative extreme is depicted in Figure 3.6c. A high

river discharge anomaly was observed on March 2010 (Figure 3.4b), with an intense nLw555

anomaly limited nearshore (Figure 3.4a). Southerly winds associated with a negative

NAO phase (Vicente-Serrano et al., 2011), pushed the Douro turbid plume against the

coast (Chapter 2; Otero et al. (2008) and Mendes et al. (2014)) generating a continuous

coast-attached turbid band to the north, and increasing the possibility of the Douro plume

to merge with water from smaller rivers discharging from the coast. The buoyant coastal

plume originated from this mixture (WIBP) often generates a strong northward surface

current that has substantial biological implications on surrounding area, namely in the

Minho River region and in the Rias Baixas (western coast of Galicia, Spain) (Marta-Almeida

et al., 2002; Sousa et al., 2013, 2014a; Mendes et al., 2016).

3.3.4 Climate influence

The correlation between variables presented in Figure 3.3 (nLw555, river discharge,

and precipitation rate) and the teleconnection indices (NAO and EA) were calculated
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during winter months (DJF) from 2000 to 2014. In addition, time lags between the variables

were also considered: Lag 1 represents JFM values of nLw555, Douro River discharge

and precipitation rate; Lag 2 corresponds to FMA and so on. The correlation coefficients

between DJF atmospheric patterns and the referred variables (with different lags) are

depicted in Figure 3.7.

The EA index shows to be directly correlated with the three variables. A positive EA

pattern represents low pressure dominating the study area during winter months. Under this

situation, more cold fronts reach the Northwestern Iberian coast resulting in a precipitation

increase (Lorenzo and Taboada, 2005; deCastro et al., 2006). Precipitation has a high

significant correlation with EA index (r=0.64) when no lag is considered. Then, this

correlation coefficient decreased continuously until no significant values were observed with

lags of 2, 3, and 4 months (Figure 3.7). This result is in agreement with a previous study

carried out by Lorenzo and Taboada (2005), in the southern part of Galicia and in the

Figure 3.7: DJF atmospheric correlation patterns (EA – above; NAO – bellow) with
nLw555, river flow, and precipitation from 2000 to 2014. A 0 lag corresponds to the DJF
period, 1 to JFM period, and so on. Results with a significance level greater than 95% are
represented by stars, greater than 90% by squares, and less than 90% by empty circles.
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Atlantic coast (about 80 km north of the Douro Estuary). Regarding the EA influence on

river discharge, significant correlations were found for all lags (r>0.46) with a maximum

(r=0.54) when 1-month lag is considered. This result is in the line of that obtained by

deCastro et al. (2006) for the Minho River (Figure 3.1). They found smaller correlation

coefficients between the Minho River discharge and EA index with 0 and 1-month lag (close

to 0.40). Significant correlation coefficients were observed between EA index and nLw555

for all lags with a maximum for a 1-month lag (r=0.51). The influence of EA index could

be related to the prevalence of southerly winds at shelf, which tend to maximize the turbid

signal near the river mouth (Chapter 2; deCastro et al. (2006) and Mendes et al. (2014)).

The correlation coefficient between river flow and the NAO index reaches its maximum

value of -0.50 for a time lag of 1 month. This result is in the line to those obtained by

Trigo et al. (2004) for Atlantic Iberian rivers, including the Douro River. Nevertheless, it is

smaller than the one found by these authors from 1978 to 1998 (r=-0.76) and smaller than

the one obtained for the Minho River by deCastro et al. (2006) (r=-0.54) from 1970 to 2005.

This contrasts with the tendency for correlations to diminish from south to north over

the region (Trigo et al., 2004; deCastro et al., 2006). However, deCastro et al. (2006) also

found that correlation for the Minho River decreases in time, reaching values below –0.4 for

periods from 1980 to 2005. The correlation coefficients found between precipitation anomaly

and NAO index show a similar pattern to that described for the river. Maximum correlation

is found at 1-month lag (r=-0.48) and drops to insignificant values for subsequent lags

(Figure 3.7).

The correlation between nLw555 time series anomaly and NAO index presents

unexpected results (Figure 3.7). A significant maximum correlation of -0.42 is reached for a

time lag of 3 months, corresponding to early spring months (MAM). Several physical and

biogeochemical processes can change ocean water turbidity, turning the relation between

nLw555 and atmospheric patterns more difficult to evaluate. This correlation could be

explained in terms of biological influence (i.e. coastal blooms) during spring upwelling

events (3-month lags).

nLw555 composites (March and April) after a positive and negative winter phase
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of NAO are depicted in Figures 3.8a and 3.8b, respectively. Under a positive DJF NAO

(Figure 3.8a), turbid values during the subsequent spring are lower than after a negative

DJF NAO (Figure 3.8b). The main differences were found along the coast, near the river

mouth. Medium turbid values (0.6-1 mW cm−2µm−1 sr−1) are confined to a short coastal

band of about 10 km after a positive DJF NAO (Figure 3.8a) and until 30 km off coast after

a negative one (Figure 3.8b). Phytoplankton blooms are usually a source of medium turbid

values (0.6-1 mW cm−2µm−1 sr−1) on coastal waters, but significantly smaller compared

with the turbidity induced by the river outflow (Saldías et al., 2012).

The positive phase of the NAO (JFM) is characterized by colder, drier winters and

by stronger northerly winds, which favour the winter upwelling events in the Douro coastal

region (Lorenzo and Taboada, 2005; deCastro et al., 2006, 2008). Northerly winds increase,

together with a decrease of the sea surface temperature and atmospheric conditions, inhibited

water-column stratification and, combined with lower nutrient availability, appears to limit

the phytoplankton development (Barton et al., 2003). Thus, it is reasonable to assume that

this higher correlation between NAO and nLw555 at 3-month lag is due to the upwelling

Figure 3.8: nLw555 spring composites (March and April) after a (a) positive and (b)
negative NAO winter phases (DJF).
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season shift towards winter, which can affect the magnitude and the timing of coastal spring

blooms off the Douro River region.

3.3.5 The anomalous 2004 event

An anomalous turbid patch (values above 3-4 mW cm−2µm−1 sr−1) was observed

during 2004 autumn by means of monthly nLw555 images (Figure 3.3a and Figure 3.4a).

The evolution of this anomalous event can be observed in daily images of Figure 3.9a. These

images show a patch with very high nLw555 values unconnected with the Douro River

discharge. The turbid feature development starts south of Douro Estuary (between the

Douro Estuary mouth and the Ria de Aveiro) at about 15 km offshore on 25 September

(Figure 3.9a), presenting several ramifications but none suggesting a fluvial origin (26 and

27 September, Figure 3.9a). The bloom increases rapidly both in area and in magnitude

after 28 September, when nLw555 reaches values of about 4 mW cm−2µm−1 sr−1.

Well-developed patterns related to freshwater plume turbidity are unexpected when

river discharge is below 500 m3 s−1 (Chapter 2; Teodoro et al. (2009) and Mendes et al.

(2014)). The daily river discharge between the end of September and the beginning of

October is low (∼300 m3 s−1), although over September/October average (Figure 3.3a and

3.3b).

Two spectra of nLw! (nLw!) taken from the bloom core (28 September and 12

October) are depicted in Figure 3.9b. In 28 September, after 15 days of upwelling-

favourable winds, maxima turbid values are observed in bands near 550 nm (nLw547=3.9

mW cm−2µm−1 sr−1; nLw555=3.8 mW cm−2µm−1 sr−1, Figure 3.9a). After that, those

turbid features merged into a larger and brighter bloom (12 October, Figure 3.9a) with

nLw555 values near to 4 mW cm−2µm−1 sr−1. In this case, the bloom core spectrum is

characterized by a peak at 488 nm (5.3 mW cm−2µm−1 sr−1, Figure 3.9b) with higher

reflectance in the blue region, but with a nLw555 value higher for the first case (Figure

3.9b).

A biological factor may be responsible or co-responsible for these very high turbid
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Figure 3.9: (a) nLw555 daily images from 26 September to 12 October of 2004. (b) nLw
spectra from the pixels marked with a white star on September 28 and October 12.

values. One of the best assumption is a coccolithophore bloom, which usually causes a very

bright patch of water with a turquoise colour (Moore et al., 2012; IOCCG, 2014). These
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blooms can be visible in ocean-colour images as a result of light scattering by the coccolith

plates detached from cells (from death or overproduction) suspended in near-surface waters

(Moore et al., 2009). The transitions from upwelling to downwelling (summer-autumn) are

often reported to be the most favourable situation for coccolithophore growth (Giraudeau

et al., 1993; Ziveri et al., 1995). This transition is typically observed in the Northwestern of

Iberian Peninsula during October (Figueiras et al., 2002) and is characterized by intermittent

upwelling events, as in 3.9b. These conditions promote the confluence of warmer oceanic

waters into colder and nutrient rich coastal upwelled waters (Silva et al., 2009; Moita et al.,

2010).

Coccolithosphore blooms and turbid plumes are usually discriminated by the

wavelength peak for reflected light, which is around 555 nm for sediment-dominated

waters and 490 nm for coccolithospore bloom (Moore et al., 2012; IOCCG, 2014). That

is the spectrum shape of October 12, indicating that a coccolithospore bloom (Figure

3.9b) could induce this higher nLw555 anomaly (Figure 3.3a). A conclusion from the

spectrum analysis of September 28 remains unclear. Nevertheless, the coastal detection of

any coccolithosphore bloom will be certainly affected by the background optical properties

of the water during the event. For example, the presence of detritus and coloured dissolved

matter can attenuate the reflectance in the blue region, causing a peak shift towards 555

nm, as already reported for a bloom event in the English Channel (Smyth et al., 2002;

Gordon et al., 2009; Moore et al., 2012).

The real source of these anomalous turbid features during 2004 autumn remains

unclear. The detection of coccolithophore blooms apart from other phenomena related to

bright water by remote sensing is a challenging task. Even more without available in situ

data for the period under analysis. However, this phenomenon could give a reasonable

explanation of disagreements between the Douro River discharge and nLw555 time series

for this single case. Despite these limitations, nLw555 MODIS imagery can be a useful

tool, in combination with other ocean-colour products (Particulate Inorganic Carbon (PIC)

concentration among others) to explore other turbid anomalies that can be related to

phytoplankton blooms at higher temporal resolution in the Northwestern Iberian Peninsula.
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3.4 Conclusion

The seasonal and inter-annual variability of the Douro turbid plume was evaluated

taking into account the river discharge, wind, precipitation rates and climate patterns,

namely NAO and EA indices. The main conclusions of this Chapter can be summarized as:

• High correlations were obtained between monthly time series of nLw555, river

discharge and precipitation rates. All peak values of nLw555 matched with extreme

local forcing. The autumn of 2004 is a remarkable exception.

• Positive nLw555 anomalies are often related with south and westerly winds that

favours precipitation and, consequently, increases monthly river discharge. Although

stronger downwelling winds usually enhances the positive anomaly intensity, it also

reduces turbid plume width. Negative anomalies are usually associated with winters

with the predominance of upwelling-favourable winds when precipitation and river

discharge are minimum.

• The first EOF is representative of large turbid plumes with a strong correlation with

anomalies of river discharge (59.7%). The second EOF mode characterizes the zonal

Ekman transport (offshore propagation) and the third EOF one is related to northerly

and southerly winds variability, representing a smaller part of the total variability

(9.4% and 6.1%, respectively).

• The EA pattern plays a key role on precipitation rate in the Douro Estuary region,

being directly correlated with all variables and in agreement with previous studies.

The correlation between nLw555 and DJF EA index presents a peak at 1-month lag

(r=0.51), as well as the river discharge (r=0.54).

• The correlation coefficient between DJF NAO index and Douro river discharge is high

(-0.50), for a time lag of 1-month. Correlation between nLw555 and DJF NAO index

present a peak of -0.42 at 3-month lag. The spring correlation (MAM) is possibly

affected by upwelling season shifts, affecting biological coastal production.
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• An extreme anomalous turbid pattern not related to estuarine outflow was found

south of the Douro river mouth during the autumn of 2004. Despite the real source of

this event remains uncertain, a coccolithophore bloom could be the most reasonable

explanation.

Although Chapters 2 and 3 were fundamental to detect and observe the mean-state

and the inter-annual variability of the Douro estuarine plume, finer-scale temporal

and spatial phenomena continue to be unclear.

Numerical modelling and in situ monitoring could possibly fill comprehension gaps

that MODIS daily images cannot afford. A numerical model implementation with

tidal flow and freshwater variations as inputs is required to assess a better knowledge

of Douro estuarine plume both in near and far field regions. The implementation

and exploitation of a coastal numerical model is one of the main objectives of this

dissertation that will be presented and discussed in Chapters 4, 5, and 6.



Chapter 4

Numerical model: estuarine and coastal

implementations

4.1 Introduction

A general overview of the main formulations solved by MOHID is presented in

this chapter. The modelling methodology developed and implemented to evaluate the

propagation of the Douro estuarine plume (Chapters 5 and 6) is also described.

Two model configurations with three nested coastal levels each were used to evaluate

the Douro estuarine plume dynamics and its propagation over shelf. The first level is a 2D

barotropic model (L1) that propagates the hydrodynamic solution for high resolution 3D

baroclinic models (L2 and L3), where water properties are computed. The main differences

between the two configurations are the limits of the higher resolution levels (L2 and L3),

which need to comprise two different areas affected by the Douro estuarine plume due to

computational limitations. The configuration #1 was already validated by Sousa et al.

(2013) and comprises the region north of Douro Estuary. The configuration #2 is focused

on the adjacent coast of this estuary, comprising an area between the Ria de Aveiro Lagoon

and the mouth of the Minho River, from south to north, respectively. Although the core of

these implementations is based on the previous numerical modelling design by Sousa et al.

69
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(2014c,b) and Vaz et al. (2015) for Minho and Tagus estuarine plumes, respectively, small

updates were applied. In addition, a proper validation of the new coastal implementation

was performed (configuration #2) by comparing computed water properties results and in

situ observations.

A good validation likewise a satisfactory confidence in the model results are strongly

dependent on the boundary conditions imposed, such as land discharges and atmospheric

forcings. Therefore, three other models are used and/or developed. The results from two

estuarine models that simulate estuarine tidal flows from Douro (novel application) and

Minho (Sousa et al., 2013) rivers are used as inputs for coastal model as well as the inputs

from small rivers discharging into Rias Baixas. Moreover, an atmospheric application

using the Weather Research and Forecasting model (WRF) was also implemented for the

coastal region under study in configuration #2 and its predictions were validated through

comparison with meteorological in situ measurements.

This Chapter is organized as follows: Section 4.2 introduces the numerical model and

an outline of its physics background. Section 4.3 presents the main description of the coastal

models implementation. In addition, are described the estuarine and atmospheric model

applications and presented the results of their validation. The validation of the coastal

model (configuration #2) is shown in Section 4.4, while in Section 4.5 a brief conclusion of

this Chapter is presented.

4.2 Numerical model - MOHID

4.2.1 Hydrodynamic model

MOHID solves the primitive equations for incompressible flows in 3D Cartesian

coordinates. Hydrostatic equilibrium is assumed as well as Boussinesq and Reynolds

approximations. A brief summary of the physics solved by the model is presented (a more

detailed description can be found in Santos (1995), Martins et al. (2001), Leitão (2002) and

Vaz (2007)).
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The momentum balance equations for horizontal velocities is described in Cartesian

coordinates by:
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where u, v and w are the velocity vector components in x, y and z directions, respectively,

f the Coriolis parameter, Ah and Az the turbulent viscosities in the horizontal and vertical

directions and p is pressure. The temporal evolution of velocities is given by the balance

between advective transports, Coriolis force, pressure gradient and turbulent diffusion.

The hydrostatic approximation is assumed with:

∂p

∂z
− ρg = 0 (4.3)

where g is gravity and ρ is density. If the atmospheric pressure (patm) is subtracted from

p, and density is divided into a constant reference density (ρ0) and a deviation (ρ′) from

that reference density, the pressure in any depth is obtained integrating between z and free

surface η:

p(z) = patm + gρ0(η − z) + g

∫ η

z

ρ′ (4.4)

Equation 4.4 relates pressure at any depth with atmospheric pressure at free surface,

sea level and density anomaly integrated between the level and surface. Deriving this

equation in the horizontal directions is obtained the pressure gradient to be used in
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Equations 4.1 and 4.2:
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The total pressure gradient is the sum of the gradients of atmospheric pressure, of the

sea surface elevation (barotropic pressure gradient) and the density distribution (baroclinic

pressure gradient). This decomposition is then introduced in Equations 4.1 and 4.2 assuming

the Boussinesq approximation (ρ′ � ρ0) resulting in:
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The vertical velocity is calculated from the incompressible continuity equation (mass

balance equation):
∂u
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+
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+
∂w

∂z
= 0 (4.9)

by integrating between the bottom and the depth z:

w(z)− w(−h) = − ∂
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)
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vdz

)
(4.10)

where w(−h) is assumed null.

The free surface equation is obtained by integrating the continuity equation over the
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water column, between the bottom (z = −h) and the free surface elevation (z = η):
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MOHID also solves a transport equation for salinity, water temperature or any other

tracer:
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where α is the property which is transported, KH and KV are the horizontal and vertical

diffusion coefficients, respectively, and FP is a source or sink term.

Finally, the density ρ is calculated as function of water temperature and salinity by

the United Nations Educational, Scientific and Cultural Organization (UNESCO) equation

of state (Fofonoff and Millard, 1983).

4.2.2 Lagrangian model

The Lagrangian particle-tracking model is a subset of MOHID modelling system

and has been used specially to study pollutant dispersion (Gómez-Gesteira et al., 1999;

Braunschweig et al., 2003). This type of model uses the passive tracer’s concept, which

is characterized by their spatial coordinates. The Lagrangian module uses hydrodynamic

information, updating the calculations without need to solve all variables at the same time.

Model assumes that velocity of each particle (uP ) can be split into a large scale organized

flow, characterized by a mean velocity (uM), provided by the hydrodynamic model, and

a smaller scale random fluctuation (uF ), so that uP = uM + uF . Particle tracking model

solves the following equation:

∂xi
∂t

= uP (xi, t) (4.13)
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where xi is the particle position. Equation 4.13 is solved using an explicit method:

xt+∆t
i = xti + ∆tutp (4.14)

The random movement is calculated following the Allen (1982) procedure, based on

the mixing length and the standard deviation of the turbulent velocity provided by the

hydrodynamic model. Particles retained velocity for long enough to perform the random

movement, which is dependent on the local turbulent mixing length.

In this study, every particle is taken to be a water parcel whose paths are computed

as it moves through the surface layer.

4.2.3 Equations discretization

MOHID uses a finite volume approach to perform the spatial discretization of the

equations, which is fully described in Martins et al. (1998, 2001) and Leitão (2002). In the

horizontal direction an Arakawa C staggered grid is adopted (Arakawa and Lamb, 1977).

The temporal discretization is carried out using a semi-implicit algorithm: the Alternate

Direction Implicit (ADI) described in Abbott and Basco (1989) that computes sea level

evolution with two time levels per iteration, following the method proposed by Leendertse

(1967). This algorithm calculates alternatively one component of the horizontal velocity

implicitly while the other is calculated explicitly, avoiding the calculation of internal and

external modes with different time steps (Leitão, 2002).

For the baroclinic force, MOHID uses a z-level approach for any type of vertical

coordinates (Kliem and Pietrzak, 1999). The horizontal density gradient is always integrated

into the Cartesian space. Advection and diffusion of tracer properties, i.e. water temperature

and salinity, are computed explicity in horizontal and implicity in vertical, using a Total

Variation Diminishing (TVD) Superbee method (Pietrzak, 1998). The vertical mixing

is solved using a laplacian diffusion equation, where the turbulent viscosity is computed

using the k − ε model. MOHID system is coupled to the General Ocean Turbulence

Model (GOTM) (Burchard et al., 1998; Burchard and Bolding, 2001). This is a water column
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model, which simply allows a choice between some standard turbulence parameterizations.

The parameterization proposed by Canuto et al. (2001) were used in the nested coastal

applications.

4.2.4 Initial conditions

In terms of hydrodynamic, initial elevation equal to the mean water level of the study

region with null gradient was used as well null velocity for 2D estuarine and 3D nested

coastal models.

The initial ocean stratification in levels 2 and 3 of the nested model applications was set

by 3D fields of water temperature and salinity from World of Ocean Atlas 2013 (WOA2013)

monthly mean climatologies (https://www.nodc.noaa.gov/OC5/WOD13/docwod13.html -

Zweng et al. (2013) and Locarnini et al. (2013)).

Initial condition of water temperature and salinity for estuarine models are set constant

in space with typical values considering the period of simulation.

4.2.5 Boundary conditions

Five different types of boundaries were considered in this work: bottom, surface,

lateral closed, lateral opened and moving boundaries.

4.2.5.1 Surface boundary

On the free surface boundary all advective fluxes across the surface are assumed null,

which means vertical Wflux is null:

Wflux|surface = 0 (4.15)

Diffusive flux of momentum is explicitly imposed by means of wind surface stress, ~τW :

Az
∂u

∂z
|surface = τWx (4.16)

https://www.nodc.noaa.gov/OC5/WOD13/docwod13.html
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Az
∂v

∂z
|surface = τWy (4.17)

The wind stress is computed according to a quadratic friction law:

τWx = C10ρaWx| ~W | (4.18)

τWy = C10ρaWy| ~W | (4.19)

where ~W is the wind speed measured 10 m above sea surface and ρa is the air density. C10

is a drag coefficient, which is a function of wind velocity in each horizontal direction (Wx

and Wy).

The sensible and latent heat fluxes are calculated using the Bowen and Dalton laws,

respectively (Chapra, 1997).

Surface boundary conditions are computed by the model from meteorological data

provided by the user, such as wind intensity and direction, air temperature, atmospheric

pressure, relative humidity, solar radiation.

4.2.5.2 Bottom boundary

At the bottom, advective fluxes are imposed null and diffusive flux of momentum

is estimated from bottom stress calculated from a quadratic law, which depends on the

near-bottom velocity:

Az
∂u

∂z
|bottom = CDu

√
u2 + v2 (4.20)

Az
∂v

∂z
|bottom = CDv

√
u2 + v2 (4.21)
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where CD is the bottom drag coefficient, which is calculated by:

CD =

 kc

log(
z+zb0
zb0

)

2

(4.22)

where kc is the von Karman constant and zb0 is the bottom roughness length. zb0 was set to

0.0025. Bottom stress must be semi implicitly calculated in the momentum equation for

numerical stability reasons. No fluxes of salinity and/or water temperature are considered

at the bottom.

4.2.5.3 Lateral closed boundaries

Closed boundaries correspond to land. A free slip condition is used to resolve this

lateral boundary, assuming a zero normal component of mass and momentum diffusive

fluxes at cell faces in contact with land.

4.2.5.4 Lateral open boundaries

Two different types of lateral open boundaries are considered in the coastal and

estuarine model implementations: the ocean and landward boundary conditions.

Considering the 3D nested model applications, amplitude and phase of the main

tidal constituents from a product based on a global hydrodynamic model (Finite Element

Solutions of 2004 or 2012) are imposed in the 2D barotropic model at first level. The

tidal reference solution generated by this model is then propagated to the subsequent

3D baroclinic levels applying the Flather (1976) radiation scheme. External solutions of

salinity and water temperature provided by monthly climatologies from WOA2013 database

are also imposed at baroclinic models in level 2. All ocean boundary conditions at level

3 are supplied by hydrodynamic and water properties solutions from level 2. A Flow

Relaxation Scheme (Martinsen and Engedahl, 1987) is applied to water level, velocity

components, water temperature and salinity in baroclinic models. This scheme also adds

small corrections to model predictions by diminishing deviations from the reference solution.
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As landward boundary condition, estuarine discharges are imposed only in level 3 with

related water temperature and salinity properties from outflows predicted offline from 2D

estuarine numerical models. Small rivers that discharging into Rias Baixas are also imposed

at this level.

Regarding the estuarine 2D model applications, tidal forcing and daily river discharges

are imposed in lateral ocean and landward boundaries, respectively. Water temperature

and salinity are considered constant at ocean and river boundaries, with typical values

considering the period of simulation. Only for validation purposes, the water temperature

of rivers discharge was set dependent on predicted daily smooth air temperature for the

estuarine region.

4.2.5.5 Moving boundaries

Moving boundaries are closed boundaries that change position in time. If there are

intertidal zones in the domain, some model cells can be alternatively covered or uncovered

depending on tidal elevation. These type of boundaries are especially useful in this study

for estuarine model applications. A stable algorithm is required for modelling these zones

and their effect on hydrodynamics of estuaries. A detailed explanation of the algorithms

used by MOHID can be found in Martins et al. (2001) and Leitão (2002).

4.3 Coastal model implementation

The implementation of the coastal model to the region of influence of the Douro

estuarine plume follows a downscaling methodology similar to that used to simulate the

Algarve coastal circulation (Leitão et al., 2005) and the Tagus estuarine plume propagation

(Vaz et al., 2009a). Moreover, this method was recently validated for the Northwest coast

of the Iberian Peninsula in a study about the Minho estuarine plume propagation and its

influence on Rias Baixas circulation (Sousa, 2013; Sousa et al., 2014c,b). Coastal numerical

applications with identical implementations to that used by Sousa (2013) was applied, with

few updates that will be described in next subsections.
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In the last years, downscaling techniques have been successfully applied in the field of

coastal oceanography to simulate hydrodynamics and water quality, and to solve common

management questions on the local scale (Leitão et al., 2005; Kenov et al., 2012; Mateus

et al., 2012). Downscaling techniques are used to transfer information from large-scale

(regional/global) to small-scale models (local), enabling a comprehensive description of

dynamics processes and the properties within water. These techniques are often used as

well to extend operational forecasts from global and regional scales to local coastal and

estuarine systems (Franz et al., 2014).

A domain included inside the domain of another model is named as nested domain, or

sub-domain. The boundary conditions are then provided from a domain to its sub-domains.

Thus, larger and coarse resolution domains (father models) provide boundary conditions

for finer nested domains (son models). Son models are used to represent regions where a

higher spatial resolution is needed.

In addition to the 3D nested coastal model implementation, 2D estuarine

implementation for the Douro and Minho estuaries are included in order to simulate

the estuarine-coastal exchange. These applications run offline, computing the estuarine

outflows, which serve as landward boundaries for 3D coastal models.

Atmospheric boundary conditions to the estuarine and coastal models are provided

from WRF model predictions for the study region.

4.3.1 Configurations

The region of Douro estuarine plume influence is very large, especially during extreme

conditions of river discharge. Due to computational constraints, two 3D configurations need

to be implemented to represent this region, with three nested coastal levels each, comprising

the region between the Ria de Aveiro Lagoon and the Minho River, and between the Douro

River and Rias Baixas. 2D models applications for the Douro and Minho estuaries were

used to accurately simulate the Douro estuarine plume propagation and its interaction with

Minho estuarine plume and Rias Baixas.
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The nested model configuration adopted for both cases is systematized in Figure 4.1.

The first and larger level is used to simulate the barotropic tide (L1). The second and third

levels are baroclinic models (L2 and L3). The third level comprises a smaller region with

higher horizontal resolution to compute plume propagation. The downscaling from second

to third level is made to smooth the transition of resolution from the first level.

The first level (L1) is equal for both configurations (Figure 4.2), ranging from 13.5°W

to 1°E and 33.5°N to 50°N, with a variable horizontal resolution of 0.06°(∼6 km) offshore

and was constructed based on the ETOPO1 global database. This level is a 2D barotropic

model using the fully revised tidal solution from a global hydrodynamic model (Finite

Element Solution 2012 (FES2012)) as boundary condition (Carrère et al., 2012). This

constitute an update to the Sousa (2013) coastal application, which used an older version

of this global product as tidal forcing in the L1 domain (FES2004).

As stated before, two configurations with different high-resolution levels (L2 and L3)

were adopted in this work. To study the interaction between Douro and Minho estuarine

plumes and their impact on the Rias Baixas adjacent circulation, the same L2 and L3 levels

of Sousa (2013) were used, with a small southward extension of L3 in order to include

the Douro River mouth (configuration #1 - Table 4.1). This configuration was already

Figure 4.1: Schematic diagram of the MOHID (Sousa, 2013).
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Figure 4.2: The MOHID nesting applications for configurations #1 (red-upper panel) and
#2 (blue-lower panel).

validated by Sousa (2013).

L2 and L3 levels were created comprising a region further south and focused in the

Douro Estuary (configuration #2 - Table 4.2) to study a southward possible larger range

of plume propagation along the coastal region in response to wind forcing from north

conditions.

Both L2 and L3 bathymetries were built based on GEBCO (Becker et al., 2009). A

z-level vertical discretization using Cartesian coordinates was adopted. Sigma coordinates

were applied on the first 10 m, considering the surface behaviour of estuarine plumes and

the importance of the baroclinic processes on their dispersion (Tables 4.1 and 4.2).

The initial conditions of water temperature and salinity in L2 and L3 set by 3D

fields from WOA2013 and the open boundary conditions at level 2 are forced from the

same external solution representing an additional improvement of the Sousa et al. (2013)
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Table 4.1: Summary of configuration #1. Dimensions and characteristics.

Domain D1 D2 D3

Grid Corners
Lon; -13.50 / 1.00°

Lat: 33.48 / 49.90°

Lon; -10.08 / -8.40°

Lat: 40.91 / 43.50°

Lon; -9.52 / -8.60°

Lat: 40.99 / 42.86°

Dimensions 273 × 241 129 × 24 372 × 184

# cells 65793 10836 68448

∆x (km) 6 2 0.5

∆t (s) 180 60 15

z Discretization ——— 7 Sigma + 39 Cartesian 7 Sigma + 35 Cartesian

Tide FES2012 D1 D2

Water Properties ——— WOA2013 D2

Atmosphere ——— WRF WRF

Discharge ——— ——— Estuarine Model

model configuration, which used an older version of this database (World of Ocean Atlas

2009 (WOA2009)).

In L2 a time step of 60 s is used and the turbulent horizontal eddy viscosity is set

to 20 m2 s−1. The time step and turbulent horizontal eddy viscosity in the L3 are set to

60 s and 5 m2 s−1, respectively. Following Sousa (2013), the baroclinic forcing is slowly

activated over 10 inertial periods. The 3D momentum, heat and salt balance equations are

computed implicitly in the vertical direction and explicitly in the horizontal direction.

As landward boundary condition (only in L3 grids), a point discharge representing the

Douro outflow is considered (configurations #1 and #2). In addition, the Minho estuary

outflow as well as small inputs from rivers discharging in Rias Baixas are considered in

configuration #1. Oitabén-Verdugo, Lérez, Umia and Ulla River discharges were obtained

from estimations presented by Otero et al. (2010) and Douro and Minho outflows are

computed by estuarine models (see Section 4.3.2.2), and directly imposed as momentum,

water and mass discharge to coastal models (L3).
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Table 4.2: Summary of configuration #2. Dimensions and characteristics.

Domain D1 D2 D3

Grid Corners
Lon; -13.50 / 1.00°

Lat: 33.48 / 49.90°

Lon; -9.94/ -8.40°

Lat: 40.16 / 42.10°

Lon; -9.52 / -8.60°

Lat: 40.50 / 41.75°

Dimensions 273 × 241 97 × 68 251 × 184

# cells 65793 6596 46184

∆x (km) 6 2 0.5

∆t (s) 180 60 15

z Discretization ——— 7 Sigma + 39 Cartesian 7 Sigma + 36 Cartesian

Tide FES2012 D1 D2

Water Properties ——— WOA2013 D2

Atmosphere ——— WRF WRF

Discharge ——— ——— Estuarine Model

Surface boundary conditions are imposed using predictions of the WRF model with

a spatial resolution of 4 km. Meteorological data predictions for configuration #1 were

obtained from MeteoGalicia (www.meteogalicia.es) as in Sousa et al. (2013) coastal model

application, while for configuration #2 a new implementation of this atmospheric model

was required since those data does not totally covered the region. This application will be

fully described in Section 4.3.3. WRF output spatial fields were then hourly interpolated

for L2 and L3 levels using a triangulation method in space and a linear method in time.

All simulations were carried out using a multi-core approach (4 cores) through Open

Multi-Processing (OpenMP) parallel programming tool adding up another improvement

to the MOHID configuration of Sousa et al. (2013) that run in single mode. OpenMP

Application Programming Interface (API) was used to reduce the computational time,

following the shared memory paradigm in order to improve model performance (Mateus

and Neves, 2013).

www.meteogalicia.es
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4.3.2 Landward boundary - Estuarine models

4.3.2.1 Douro Estuary

The Douro estuarine model was implemented in a 2D mode (depth integrated) to

reproduce outflow and respective water properties at the mouth, under different discharge

conditions (Figure 4.3).

The numerical grid for the Douro Estuary was built from bathymetric data provided

by the Instituto Hidrográfico (IH), updated with topographic data from an available Digital

Terrain Model (DTM) for adjacent offshore area. The numerical bathymetry has 233 and

527 cells in North-South and West-East directions, respectively, with 40 m spatial resolution.

The tidal forcing is imposed on the ocean open boundary. The tide is determined

from fifty harmonic constituents calculated from a Sea Surface Elevation (SSE) dataset

measured at the tide gauge located near the Leixões harbour during 2007 (see Figures 2.1

and 2.2 in Chapter 2). A phase and amplitude correction factor was imposed in way that

model accurately reproduces the SSE at the tidal gauge (Vaz et al., 2005; Mendes, 2010).

Daily mean Douro River discharge data was obtained from the SNIRH database

Figure 4.3: The numerical bathymetry of the Douro Estuary with reference to the location
of the stations used on the model calibration and validation.
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(www.snirh.pt) at the Crestuma dam and was imposed in the model as land boundary.

The initial and the ocean boundary conditions were fixed with typical values for the

simulation period based on WOA2013 climatologies. After performing several experiences,

a time step of 6 s and a horizontal eddy viscosity of 5 m2s−1 were adopted.

The model configuration was calibrated and validated using the methodologies

proposed by Dias and Lopes (2006a,b) and Dias et al. (2009). As a first approach, a

qualitative comparison of the temporal evolution between model predictions and SSE data

measured is performed for September 2005, using data from the IH project Estuarine

COntributions to Inner Shelf dynamics (ECOIS) at several locations (Figure 4.3). The

validation procedure was performed using independent data sets, which include observations

of current velocities and SSE values (February/March 2006 data). The model’s accuracy

was evaluated through determination of the RMSE (Equation 4.23) and SKILL parameter

(Equation 4.24)(Willmott, 1981; Warner et al., 2005), and also through the comparison

between amplitude and phase of the main tidal constituents determined from harmonic

analysis (Dias and Lopes, 2006a,b; Dias et al., 2009). It should be noted that the low

frequency signal was removed from the observation data, considering a cut-off frequency of

30 h.

RMSE is given by:

RMSE =

{
1

N

N∑
i=1

[Xiobs −Ximodel
]2
} 1

2

(4.23)

where N corresponds to the number of records and Xobs and Xmodel represent observed and

predicted data, respectively. For local comparison of SSE, values between 5 and 10% of the

local amplitude should be considered very good (Dias et al., 2009).

The SKILL parameter is calculated by:

SKILL = 1−
∑
|Xmodel −Xobs|2∑(∣∣Xmodel −Xobs

∣∣+
∣∣Xobs −Xobs

∣∣)2 (4.24)

where values close to 1 correspond to a perfect adjustment, while small values (near 0)

www.snirh.pt
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indicates a complete disagreement between predictions and observations. Values higher

than 0.95 should be considered excellent (Dias et al., 2009).

It is well known that the water column depth, the estuary geometry and the bottom

friction strongly influence the propagation of the tidal wave. The first two factors depends

on estuarine and coastal characteristics. Therefore, calibration was performed by tuning the

bottom friction coefficient for the entire estuary. In this study, the best overall adjustment

between model results and field observations was achieved using a bottom rugosity of 0.0025,

which was the same adopted for a previous MOHID implementation in the Minho estuary

(Sousa et al., 2013).

Figure 4.4 shows the comparison between predictions and observed SSE values for

all stations (Figure 4.3) and Table 4.3 presents the model accuracy parameters calculated

between both time series.

RMSE results range between 2 and 3% of local tidal amplitude and, according to the

Figure 4.4: Comparison between predicted (red) and measured (blue) SSE for R1 (a), R2
(b), A1 (c) and A2 (d) stations.
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Table 4.3: RMSE and SKILL parameters and percentage of error (relative to the amplitude
range) for SSE.

SSE (m)

Station RMSE SKILL Error (%)

R1 0.06 0.99 2.9

R2 0.05 0.99 2.3

A1 0.05 0.99 2.0

A2 0.07 0.99 2.0

criterion proposed by Dias et al. (2009), these values are considered excellent (Table 4.3).

Regarding the SKILL, values are higher than 0.998 in all calibration stations, showing an

excellent agreement between predictions and observations (Table 4.3).

The comparison between harmonic constituents (Pawlowicz et al., 2002) determined

from predictions and in situ SSE data also attest the excellent adjustment obtained in the

calibration procedure (Table 4.4). According to results, amplitude and phase agreement is

excellent. The higher difference in the amplitude of the main local constituent (principal

lunar semi-diurnal - M2) was found at R2 station (∼4 cm), while the phase differences for

this constituent are lower than 4 minutes for all stations. The mean amplitude difference

for the principal solar semi-diurnal constituent (S2) is ∼2 cm, whereas the mean phase lag

is ∼8 minutes. The amplitude differences of the lunar diurnal constituents, K1 and O1, are

about 2 cm, while the phase lags are 18 and 30 minutes, respectively.

The SSE amplitude is similar at mouth and inner estuary. Furthermore, the amplitude

of tidal constituents also present similar values for all stations (Table 4.4). This is not a

typical behaviour in estuaries, where tidal wave propagating along estuary usually conducts

to a tidal amplitude attenuation towards the estuary head duet to the bottom friction.

Here, the tidal wave is reflected at the head (Crestuma dam) interfering with initial wave,

creating conditions for a standing wave generation and consequent resonance as pointed

out by Vieira and Bordalo (2000).
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Table 4.4: Phase (Pha) and amplitude (Amp) of main tidal constituents determined from
predictions (Mod) and observations (Obs) of SSE

Station A1 A2 R1 R2

Obs Mod Obs Mod Obs Mod Obs Mod

M2

Amp (m) 1.109 1.084 1.137 1.153 1.109 1.071 1.161 1.116

Pha (°) 80.5 81.8 83.6 85.4 81.9 81.8 87.1 87.2

S2

Amp (m) 0.501 0.482 0.509 0.505 0.501 0.476 0.535 0.501

Pha (°) 109.3 113.6 113.3 118.1 110.8 113.6 117.1 120.7

K1

Amp (m) 0.048 0.062 0.051 0.072 0.048 0.058 0.050 0.067

Pha (°) 77.8 74.1 76.5 73.5 78.2 73.9 78.3 69.5

O1

Amp (m) 0.067 0.052 0.064 0.053 0.067 0.051 0.067 0.047

Pha (°) 311.9 319.5 316.8 324.2 312.6 319.4 321.4 326.0

Regarding the model validation, predictions and observations of SSE and current

velocity were compared for independent periods to those analysed in the model calibration,

keeping all the model parameters previously defined. Figure 4.5 shows SSE and current

velocity time series from in situ measurements and model predictions in R1 and R2 stations.

RMSE values for SSE have the same order of magnitude of those determined in the

calibration (Table 4.3), but relative errors are higher, especially in R1 station. The SKILL

values are higher than 0.997 for all stations (Table 4.5). Both parameters indicate an

excellent fit between predictions and observations, showing that the model is properly

validated.

Concerning the current velocity (Figures 4.5c and 4.5d), and its intrinsic differences

between predictions and observations, a higher disagreement is expected for both stations

(Table 4.5). Although the velocity amplitude agreement is good for R1 station (RMSE of

18.9%), higher differences are found for R2 station (RMSE of 29.6%)(Table 4.5). This may

be explained by the station proximity to Crestuma dam, which can induce high frequency

variations in the current velocity due to freshwater discharge (higher velocity of current in
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Figure 4.5: Comparison between predicted (red) and measured (blue) SSE and current
velocity (along the flow direction) for R1 (a,c) and R2 (b,d) stations.

observations during ebb).

According to these results, it may be considered that estuarine model accurately

reproduces the SSE and current velocity data under different and independent conditions.

Consequently, this numerical model implementation is considered validated for the Douro

Estuary.

Table 4.5: RMSE and SKILL parameters and percentage of error (relative to the amplitude
range) for SSE and current velocity comparison.

SSE (m) Current velocity (m s−1)

RMSE SKILL Error (%) RMSE SKILL Error (%)

R1 0.20 0.99 5.0 0.26 0.92 18.9

R2 0.11 0.99 2.8 0.30 0.68 29.6
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4.3.2.2 Minho estuary

The Minho outflow is computed with an estuarine model already implemented,

calibrated and validated in previous works (Sousa, 2013; Sousa et al., 2014c)(Figure 4.6).

In the following, a brief description is given:

The numerical grid has 119 × 100 cells, with a variable spatial step between 100 m, in

inner part of the estuary, and 650 m (300 m in the west-east direction) at the ocean boundary.

The numerical bathymetry was generated from data measured by IH in 1978/1989/1999.

Tidal forcing from a global tidal model (Le Provost et al., 1998) is imposed at the open

boundary and the Minho River discharge supplied by the Confederación Hidrográfico del

Miño-Sil is imposed at the upstream end of the estuary. Meteorological data were obtained

from MeteoGalicia (www.meteogalicia.es). The time step is 10 s, the horizontal eddy

viscosity is 10 m2 s−1, and a constant value of 0.0025 is assumed for bottom rugosity.

The calibration/validation results obtained by Sousa et al. (2013) for this model

implementations reveal averages of RMSE and Skill calculated from SSE observations and

predictions of 0.16 m and 0.96, respectively. The results for the semi-diurnal constituents

Figure 4.6: Numerical grid of the Minho Estuary.

www.meteogalicia.es
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(M2 and S2) presented an excellent agreement between model predictions and observations

at the mouth of the estuary, with amplitude errors of 0.06 m for both constituents. The

differences in terms of phase were 4.09° and 7.58° for M2 and S2, respectively. The diurnal

constituents also revealed a good agreement between model predictions and observations,

with average amplitude (phase) errors of about 10% (11.5°) and 17% (10.6°) for the

constituents K1 and O1, respectively.

4.3.3 Surface boundary - Atmospheric input

In order to supply the coastal model (configuration #2) with proper atmospheric data,

an implementation of the WRF version 3.6.1 (Skamarock et al., 2008) was performed for

the whole area under study, comprising both configurations. This model has being widely

used, not only for researchers, but also by national meteorological institutes (Pereira et al.,

2013).

The implementation here developed uses three two-way nested domains (Figure 4.7).

Figure 4.7: WRF domains.
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The downscaling methodology follows a domain ratio of 1/3, with the father domain (D1)

covering most of the Europe with a spatial resolution of 36 km. The two other domains

(D2 and D3) present 12 and 4 km of resolution, respectively. The higher resolution domain

(4 km) allows reproducing in detail small-scale features, especially coastal wind variations,

which are crucial to define the plume propagation and fate. The vertical discretization was

composed by 28 unequal spaced layers in each domain.

The atmospheric model boundary condition was forced, every 6 hours, with data from

the Global Forecast System (GFS) model (NCEP, 2003) with 1° spatial resolution.

Model predictions of air temperature, meridional and zonal wind components, solar

radiation and relative humidity were compared with in situ measurements acquired for

Northwest Iberian Coastal Current (NICC) project (http://www.hidrografico.pt/nicc.

php) at Viana do Castelo coastal station (41.706°N -8.860°W; Figure 4.7) during 2006 and

2007 in order to validate WRF model outputs.

The visual assessment of model results revealed an accurate reproduction of the

general data variability (Figures 4.8, 4.9, 4.10, 4.11, and 4.12). A quantitative evaluation

was also performed comparing model predictions and the Viana’s observations, calculating

Figure 4.8: Original (a) and 24 h smoothed (b) time series of WRF predictions (red) and
in situ observation (blue) of air temperature at Viana station. Scatter plot with fitted
regression line (c). Optimal and best fit is represented by dashed grey and solid red line,
respectively.

http://www.hidrografico.pt/nicc.php
http://www.hidrografico.pt/nicc.php
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Figure 4.9: Original (a) and 24 h smoothed (b) time series of WRF predictions (red) and in
situ observation (blue) of zonal wind component at Viana station. Scatter plot with fitted
regression line (c). Optimal and best fit is represented by dashed grey and solid red line,
respectively.

Figure 4.10: Original (a) and 24 h smoothed (b) time series of WRF predictions (red) and
in situ observation (blue) of meridional wind component at Viana station. Scatter plot
with fitted regression line (c). Optimal and best fit is represented by dashed grey and solid
red line, respectively.
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Figure 4.11: Original (a) and 24 h smoothed (b) time series of WRF predictions (red) and
in situ observation (blue) of solar radiation at Viana station.

Figure 4.12: Original (a) and 24 h smoothed (b) time series of WRF predictions (red) and
in situ observation (blue) of relative humidity at Viana station.



4.3 Coastal model implementation 95

Table 4.6: Quantitative assessment of WRF model predictions with Viana station
observations of air temperature (Tair), zonal wind component (Wx), meridional wind
component (Wy), solar radiation (SR), and relative humidity (RH) from January 2006 to
March 2007.

Tair (°C) Wx (m s−1) Wy (m s−1) SR (W m−2) RH (%)

RMSE 1.94 2.93 3.33 119 14.5

SKILL 0.95 0.83 0.87 0.95 0.95

RMSE (Equation 4.23) and SKILL parameter (Equation 4.24).

Predicted air temperature presents a good agreement with observations (Figure 4.8),

with RMSE values lower than 2°C (Table 4.6) and a SKILL of 0.95. The daily variation

of temperature is underestimated by the model (Figure 4.8a and c), but presents a very

good agreement concerning 24 hours smoothed time series.

Concerning zonal and meridional wind components, the model reproduces very well

the observations (Figures 4.9 and 4.10). The meridional component is better predicted

with RMSE values of 3.33 (about 16% of the meridional wind amplitude) and a SKILL

of 0.87, while the zonal component comparisons show an RMSE value of 2.93 (about 29%

of the local amplitude) and a SKILL of 0.83 (Table 4.6).

Regarding solar radiation, a very good correlation between predictions and observations

was found, with SKILL of 0.97. On the other hand, relative humidity presents only a

reasonable agreement (SKILL=0.75). This variable presents a higher dispersion between

predicted and observed values, but with a good overall correlation (Figure 4.12). In the

end of simulation, during February 2007, a strong disagreement is detected. As it was

not observed for other variables, an error on data acquisition may be responsible for this

discrepancy.

Wind is the most important atmospheric variable concerning studies of plume

propagation over the ocean. Thus, a very good WRF model performance is required

for efficient coastal numerical modelling applications. For that purpose, in addition to the

zonal and meridional wind components comparisons, wind rose diagrams were computed
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Figure 4.13: Wind rose diagrams from in situ observations (a) and from WRF model
predictions (b).

for both in situ data and predictions (Figure 4.13).

Northwesterly winds are prevalent during the comparison period in both datasets.

The wind intensity tends to be higher in WRF predictions. Westerly winds are the second

predominant for both datasets, but with higher intensity for model predictions. Southerly

winds that usually correspond to stormy winter conditions, are well represented by the

model, but with less predominance and intensity than in situ data.

Results depicted in Figure 4.13 show that WRF reproduces very well wind variability

in the Douro Estuary region and in the adjacent coastal area.

The atmospheric model implementation was considered successfully validated for

the study region. Results show that the model is able to reproduce accurately the main

atmospheric features of this region, being able to produce accurate boundary conditions for

the coastal model.

4.4 Coastal model validation - Configuration #2

The validation of the nesting numerical modelling application (configuration #2)

developed to characterize the impact of the Douro estuarine plume in the adjacent coast

will be described in this section. The model’s accuracy to reproduce the plume dispersion
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in coastal ocean is analysed for the winter of 2007. CTD and Acoustic Doppler Current

Profiler (ADCP) data collected during NICC project by IH are described and then compared

with model predictions. The spatial assessment of the model in terms of salinity and water

temperature are evaluated through the comparison of model predictions and remote sensing

imagery. Predictions from L1 barotropic domain (Figure 4.2), which is the same for both

configurations, were also compared to tidal constituents derived from observation (IH) taking

into account the FES2012 solution as ocean boundary condition. The model predictions

using the Finite Element Solution 2004 (FES2004) as tidal forcing were also included in this

analysis to evaluate the gain of performance when using the newer version of this external

solution.

Two sets of simulations were performed to validate the coastal model application

using the initial and boundary conditions described in previous sections (configuration #2).

The first was dedicated to evaluate the accuracy of the L1 barotropic domain and the other

to evaluate the coastal model accuracy in prediction the Douro estuarine plume dispersion

under winter conditions.

The barotropic simulation comprises the year of 2013, but only for the L1 domain.

The other simulation is carried out for all domains from 20 January to 28 February of 2007,

excluding the spin-up period (6-months). Due to the lack of information in the SNIRH

database, the water temperature of the freshwater inflow in the estuarine model was set

based on the daily smooth air temperature provided by WRF model predictions in the

Douro Estuary region. The salinity was set to 0.

A comparison between the amplitudes and phases of the main solar (K1 and O1) and

lunar (M2 and S2) constituents calculated from predicted and observed data provided by IH

for 2013 (websig.hidrografico.pt/content/produtos/tabelasmare/) was performed

to validate the L1 domain. Five stations were analysed: Leixões, Aveiro, Cascais, Sines

and Faro (Figure 4.14). First, a harmonic analysis of the predicted SSE time series for

each station was performed using the software T_TIDE (Pawlowicz et al., 2002). After are

compared the predicted tidal constituents with those available from in situ measurements.

L3 validation is performed for January/February of 2007. The dataset includes profile

websig.hidrografico.pt/content/produtos/tabelasmare/
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Figure 4.14: Location of the study area with the tide gauges used to validate tidal
propagation in L1 domain (a). The Douro Estuary and the coastal adjacent ocean (b).
The dam and the tide gauge at Leixões harbour are marked with a black pentagon (D)
and square (T), respectively. The ADCP is marked by a circle (A). The bathymetry, from
GEBCO, is shown with white lines (contours in meters).

current measurements from an ADCP installed at ∼40 km north of the Douro Estuary

mouth (Figure 4.14) and hydrographic surveys performed using Conductivity, Temperature,

and Depth (CTD) sensors carried on aboard of NRP Auriga (2007), which cover the shelf

area off the Douro River. Figure 4.15 shows the location of sampling stations used in this

study. The adjustment between model predictions and observed data was evaluated by

means of the RMSE (Equation 4.23) and Bias computation:

Bias =
1

N

N∑
i=1

(Xiobs −Ximodel
) (4.25)

The spatial model ability to reproduce water temperature patterns in the continental

shelf is also analysed, comparing SST horizontal predicted fields with daily infrared remote

sensing images obtained from MODIS sensor onboard of Aqua satellite. SST products were

obtained by applying an algorithm that uses the MODIS 31 and 32 bands at 11 µm and 12

µm. In each image, a quality evaluation of remote sensed data was performed. A quality

flag of 0 indicates best quality, while 4 indicates complete failure. All pixels with quality
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Figure 4.15: Sampling stations location during the 2007 survey.

flags higher than 1 were removed from the images. This threshold was used since a quality

flag of 1 can be representative of below average SST values associated with upwelling events,

river plumes or even clouds (NASA, 2015). L2 ocean-colour images of nLw555 were used as

plume tracers, considering that high turbid regions are associated with low salinity patches

created by freshwater sources (Nezlin and DiGiacomo, 2005; Nezlin et al., 2005; Saldías

et al., 2012). Images were processed following the methodology presented in Chapter 2.

4.4.1 Tidal propagation

Table 4.7 summarizes the results from comparison of the main tidal constituents

between the implementations using the FES2004 (old version) as tidal forcing and the
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Table 4.7: Harmonic analysis results of observed data from (IH) and predicted SSE results
using FES2004 and FES2012 databases during 2013 for Leixões, Aveiro, Cascais, Sines, and
Faro (Amplitude (Amp) and phase (Pha) of M2, S2, O1, and K1 constituents).

M2 S2 O1 K1

Amp (m) Pha (°) Amp (m) Pha (°) Amp (m) Pha (°) Amp (m) Pha (°)

Leixões

FES2004 1.081 74.45 0.370 102.47 0.061 320.07 0.076 60.16

FES2012 1.073 74.42 0.373 102.72 0.064 319.79 0.073 61.26

IH 1.044 76.10 0.366 104.40 0.062 319.40 0.070 60.20

Aveiro

FES2004 1.079 72.94 0.370 100.74 0.065 319.01 0.075 60.93

FES2012 1.072 72.92 0.373 101.00 0.074 318.80 0.072 62.01

IH 0.968 78.80 0.334 106.90 0.056 318.70 0.590 61.60

Cascais

FES2004 1.016 63.30 0.352 89.70 0.058 316.70 0.069 53.69

FES2012 1.007 63.27 0.356 90.01 0.058 312.27 0.067 57.52

IH 0.988 64.20 0.350 90.60 0.060 314.50 0.070 54.10

Sines

FES2004 1.021 62.20 0.354 88.44 0.059 314.66 0.071 53.28

FES2012 1.010 62.15 0.357 88.75 0.061 307.38 0.067 56.82

IH 0.985 63.30 0.347 89.40 0.062 312.70 0.070 54.50

Faro

FES2004 1.026 55.87 0.360 81.45 0.059 310.80 0.067 47.62

FES2012 1.001 56.27 0.359 82.34 0.056 302.78 0.064 55.17

IH 0.982 66.00 0.345 94.80 0.059 318.50 0.065 56.9

FES2012 (new version) and also with data provided by IH for several tidal gauges along

Portuguese coast.

The overall distribution of the observed and predicted amplitude and phase is similar.

The semi-diurnal contributions (M2 and S2) are responsible for the majority of the tidal

energy (∼90%), in agreement with results from Marta-Almeida et al. (2002). The FES2004

and FES2012 presents very similar results, with a slight improvement found for the new

database. Larger differences are detected in the M2 amplitude for all stations, with a

maximum of 3 cm for the Faro tidal gauge. From these results is demonstrated that the

model implementation with the new forcing at the open ocean boundary from FES2012 (in

the L1 domain) presents better results in this validation. Comparing with observations,
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the maximum error in terms of amplitude is detected for Aveiro station for all constituents

(0.11 cm for M2, -0.04 cm for S2, -0.02 cm for O1, and -0.01 cm for K1). The larger phase

lag is observed in Faro station (about 19 minutes for M2). Regarding the station near

Douro Estuary (Leixões), the comparison presents the better results. For the semi-diurnal

constituents, the amplitude differences are -0.03 cm and 0.007 cm for M2 and S2, respectively.

The phase lag is about 1.68° for both constituents corresponding to about 3 minutes in

the arrival of the tidal wave. For the diurnal tidal constituents the amplitude difference is

minimal: -0.002 cm (O1) and -0.002 cm (K1). Phase differences are -0.39° (∼1.6 minutes)

and 1.06° (∼6 minutes) for O1 and K1, respectively.

In summary, the harmonic analysis results show that the amplitude and phase of

major tidal constituents are well reproduced by the 2D barotropic model (L1 domain), with

better results when using the FES2012 database as open boundary condition.

4.4.2 Plume propagation

River discharge and wind forcing affect the propagation of estuarine plumes, influencing

its fate and mixing over shelf waters (Choi and Wilkin, 2007). It is important to evaluate

the model accuracy to reproduce the Douro estuarine plume under different conditions

of wind and river discharge. Therefore, a fully comparison between in situ observations,

remote sensing data and model predictions is carried out to guarantee the confidence in

this nested coastal model implementation.

During the winter of 2007, CTD data were acquired on 24th (stations 1-15) and 26th

of January (stations 16-26) and 6th of February (stations 27-75)(Figure 4.15).

Five days before 24 January, the Douro freshwater input was very low (ranging from

168 to 348 m3 s−1) and wind was weak (< 3 m s−1) and variable. This situation remains

until 10th February, in terms of discharge, which makes difficult to clearly detect low salinity

features in coastal ocean. In 26th of January, moderate southerly winds are observed,

remaining with the same direction until 5th of February.
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4.4.2.1 Salinity

Five representative vertical profiles for each section were individually analysed in

order to avoid figures overload. In situ and predicted salinity values (Figure 4.16) reveal low

salinity features in all sections, being section 2 an exception. Although the plume spreading

is well simulated, the model tends to overestimate the stratification, which is an expected

feature in front of the Douro Estuary mouth. The plume depth is about ∼15-20 m while

the model generates a thinner less dense water layer (∼5-10 m), but with a similar offshore

dispersion. Similar disagreements are observed in sections 4 and 5 profiles on a smaller

magnitude (differences lower than 5 m) (Figure 4.16). These deviations may be possible

related with short-time variations in the river discharge inflow, which are not imposed in

this model application. Moreover, the wind-wave contribution, which is not implemented in

this model configuration, may enhance the vertical mixing in surface layers (1-2 meters).

A quantitative comparison of the visual differences detected in the vertical profiles

between model predictions and observation were evaluated by RMSE and Bias parameters.

RMSE values range from 0.01 (DV16 station) to 1.05 (DV55 station) in profiles presented

in Figure 4.16. Bias are negative for all stations, except for DV39 and DV73 stations,

indicating that model underestimate the plume signal. The values vary from -0.54 (DV55

station) to 0.08 (DV28 station).

Vertical salinity structures along five cross-shore sections are depicted in Figure 4.17.

The model predictions reproduce well the impact of the estuarine buoyant water in the

coast, where water masses with low salinity are expected to be found. However, as stated

above, vertical mixing is underestimated by the model, retaining the riverine waters near

surface (section 1 in Figure 4.17).

Data from sections 1 and 2 were obtained under northeast and northerly wind forcing,

which tends to increase the offshore and southward transport as reported in Chapter 2

(from ocean-colour observations). This is corroborated by both in situ data and model

predictions. The maximum plume extent is observed in section 1, located in front of the

river’s mouth, and no plume signal is detected in the northward section of the estuary.
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Figure 4.16: Observed (red dots) and predicted (black line) salinity vertical profiles during
the 2007 survey - Figure 4.15.
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Figure 4.17: Observed and predicted salinity along cross-shore sections 1, 2, 3, 4, and 5
during the 2007 survey - Figure 4.15.
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Data from sections 3, 4 and 5 were collected before the region started to be affected

by cold fronts, associated with successive low-pressure systems. Most of the results show a

transition moment from northerly to southerly wind regimes with low freshwater inflow.

The plume detachment from the coast (section 5) is well reproduced by the model, revealing

that the plume jet is aligned with the NE-SW direction as expected in a transition from

upwelling to downwelling-favourable winds. In contrast to section 1 results, the model

predictions reproduce very well the halocline in section 4 (same location - Figure 4.15), but

disagrees in terms of plume extension.

The large errors found for sections closer to the river mouth can be attributed to the

high temporal variability of river inflow from Crestuma dam. Daily average water volume

discharged by the dam is imposed as land boundary in the 2D estuarine model. However,

the volume can vary from 0 to 1000 m3 in a small period of time (few hours), depending

on the hydroelectric power demand or other constrains (Azevedo et al., 2010). The data

used as landward boundary condition in the estuarine model was not available at this finer

temporal scale.

Section 3 results depicts the excellent model accuracy in predicting the Douro River

plume behaviour under downwelling-favourable winds.

Figure 4.18 presents the comparison between the turbid signal nLw555 and the

predicted surface salinity patterns off the Douro Estuary. Despite the restricted available

images for this period, these 4 snapshots corroborates the results from the vertical salinity

structure (Figure 4.17).

In general, the spatial pattern from model predictions and observations is similar

north of the Douro Estuary. All images represent the plume propagation under southerly

winds, when it was confined to the coast, creating a turbid coastal band north of the estuary

mouth. The model can reproduce very well the bulge extension in front of the estuary

mouth (Figures 4.18a and 4.18e). After 10th of February (Figures 4.18b, 4.18c, 4.18d,

4.18f, 4.18g, and 4.18h), the river discharge increases from low to moderate-high regimes

(1200-1400 m3 s−1). Besides the intermittent wind regime, a northward coastal band is well

identified in both predictions (low salinity) and satellite observations (high turbidity). Some
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high turbid features that are detected in the ocean-colour images southwards the Douro

River mouth, are not observed in model results as low salinity values. As shown in section

2.4, the coastal region between Aveiro and Porto is shallower than the area located north

of the Douro Estuary and, consequently, it is more susceptible to sediment resuspension

caused by wind-wave forcing(Coelho and Veloso-Gomes, 2006). This may resulted in high

values of nLw555 associated with turbidity, but not related with Douro estuarine outflow.

4.4.2.2 Water temperature

The comparison between observed and predicted vertical structures of water

temperature is depicted in Figure 4.19 for the same profiles that were analysed for salinity.

Since water temperature has higher variability and is more dependent from the open ocean

and atmospheric boundary conditions, it is expected a lower agreement than for salinity

results. Nevertheless, cold water temperature associated with the Douro estuarine discharge

during winter helps to identify the plume signal in warmer coastal waters (Peliz et al.,

2002).

As for salinity profiles a quantitative assessment of the model accuracy using RMSE

and Bias parameters were perfomed for water temperature profiles. RMSE ranges from

0.16°C (DV34 station) to 1.07°C (DV16 station), with an average of 0.58°C considering all

stations. Bias is positive for all profiles, even for those not shown in Figure 4.19, indicating

that the model tends to underestimate observed water temperature. Bias range from

0.08°C (DV37 station) to 0.90°C (DV16 station).

Figure 4.20 shows the vertical structure of water temperature along the five sections

depicted in Figure 4.19. Besides the good representation of the plume and the low RMSE

and Bias values, model predictions diverge from observations in sections 1 and 2 (deviation of

about∼ 1°C). In section 2, where no low salinity water masses are observed, the disagreement

may be generated by a ineffective setting of the ocean boundary condition. Although

WOA2013 climatology shows to be useful to study hypothetical numerical scenarios or

typical winter events, may not be an accurate choice to evaluate cases under anomalous
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Figure 4.19: Observed (red dots) and predicted (black line) water temperature vertical
profiles during the 2007 survey - Figure 4.15.
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Figure 4.20: Observed and predicted temperature along cross-shore sections 1, 2, 3, 4, and
5 during the 2006 survey - Figure 4.15.
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seasonal conditions. Nonetheless, the deviation range (∼1°C) is low and very similar to

that obtained by Sousa (2013) in the numerical predictions for the coastal ocean near the

Minho River and Rias Baixas.

Figure 4.21 shows SST patterns obtained from predictions and satellite data on 26th

(Figures 4.21a and 4.21e) and 27th(Figures 4.21b and 4.21f) of January and on 1st(Figures

4.21c 4.21g) and 25th(Figures 4.21d and 4.21) of February 2007. The last snapshot shows an

event of moderate-to-high river discharge (1423 m3 s−1) and downwelling-favourable winds,

while the others represent low discharge regimes under weak and intermittent northerly

winds. The plume propagation over the ocean is fairly predicted by the model. A weak

plume jet is observed in the southwest direction in both satellite and predicted images at

the end of January (Figures 4.21a, 4.21b, 4.21e, and 4.21f), but the model underestimates

the estuarine outflow.

Tidal influence in estuarine flux increases under low regimes of river discharge. Thus,

the isolated colder patches in the jet plume direction, observed in predicted and in situ data

from 26th and 27th of January are possible related with that influence. Tidal plume pattern

suggests the generation of internal waves (Nash and Moum, 2005) by the Douro River

plume. Images from February 1 represent a weak wind event, where a perfect circular bulge

is observed in the satellite image (Figure 4.21b). Besides the shape is not well predicted by

the model, water temperature within the plume is similar to the observations (∼12.5°C). An

upwelling phenomenon, which is not directly related with the plume propagation, is observed

in model predictions between the Ria de Aveiro Lagoon and the Douro River mouth, where

colder waters emerge from deeper layers of the ocean (Figure 4.21g). This feature is also

observed in MODIS images, with small offshore extension and lower magnitude. Here,

water temperature presents a deviation from the model of about 2-2.5°C. The comparison

between Figures 4.21d and 4.21h shows that model predicts very well the propagation of

Douro estuarine plume under southerly winds events, when a coastal band with lower water

temperatures is visible north of estuary mouth. The prediction of plume shape is excellent

and the SST deviation in the northward coastal band does not exceed 1°C.
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4.4.2.3 Coastal circulation

The effect of the Douro River discharge in the generation of a northward coastal

current in the inner shelf was researched in some recent works (Marta-Almeida et al., 2002;

Ruiz Villarreal et al., 2005; Otero et al., 2013). These are essential numerical modelling

studies, but proved that a high Douro river discharge combined with strong southerly winds

can generate a northward surface coastal current with velocities of about 1 m s−1. Thus,

the characterization of surface velocity and its vertical structure with measurements from

an ADCP is very relevant in the context of this dissertation. In addition, observations help

to validate the coastal hydrodynamic model, contributing to fill the knowledge gaps about

the impact of the Douro River plume in the adjacent coastal circulation.

Current velocity profile observations from a ADCP placed north of estuary mouth

(Figure 4.14) were used to validate the model predictions in terms of circulation in the coastal

region off Douro Estuary. This dataset records zonal and meridional current components

during more than 1 month, representing important and reliable information to characterize

the Douro plume propagation. Figure 4.22 shows the temporal evolution of zonal and

meridional components of ADCP in situ data velocity and model predictions at the same

location (Figure 4.14). Data was recorded from 16th of January to 26th of February 2007.

Observed and predicted fields were filtered with a 33-h low pass filter (pl33tn - Flagg et al.

(1976))to remove high-frequency variability from the series. The wind regime (WRF model)

and the Douro River discharge during the survey period are depicted in Figures 4.22a and

4.22b, respectively.

In general, the model accuracy to predict the current magnitude and direction in

coastal ocean is satisfactory. The observations recorded by the ADCP during this event

presents very peculiar characteristics, with different river discharge regimes, ranging from

low (300 m3 s−1) to high (1500 m3 s−1), and high variability of wind direction and magnitude,

mainly after February 10 (Figure 4.22). The observed zonal component of current presents

some spurious values in surface layers, with strong negative values (offshore direction)

during several days. The model does not reproduce some of these patterns, but the analysis
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Figure 4.22: (a) Meridional wind component at ADCP location. (b) Douro River discharge
at Crestuma dam. (c,d) Time series of observed and predicted cross-shore component of
current.(e,f) Time series of observed and predicted along-shore component of current during
2007 survey.
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needs to be cautious. Model predictions fairly agree with observations and the offshore

transport after the downwelling to upwelling-favourable conditions is clearly represented in

both fields. Regarding the meridional component, the agreement is excellent. Periods of

higher velocity magnitude in both negative and positive components are very well predicted

by the model, even under high wind variability, which confirms again the reliability of

WRF atmospheric model outputs. Disagreement was only found during weak and variable

wind and low discharge regimes from January 20 to February 1 of 2007, where the model

underestimates the southward current, especially in surface layers. Around January 25

model predictions disagree also in direction, with a weak northward current. In a period of

significant wind oscillations and moderate-to-high river discharges, surface velocity is very

high, reaching values of about 1-1.2 m s−1 under stronger downwelling winds (10-12 m s−1).

Figure 4.23 shows the time evolution of zonal (Figure 4.23a) and meridional (Figure

4.23b) current results for the profile previously analysed, but from an idealized model

simulation without the Douro estuarine discharge. In general, results are very similar to

the real simulation (Figure 4.22), revealing the crucial importance of wind regime in the

inner-shelf circulation and, therefore, in the plume propagation (Lentz and Fewings, 2012).

Nevertheless, the northward current magnitude is significantly lower, with values ranging

from 0.3 to 0.6 m s−1. The deviation is larger the higher is the river discharge. Peaks of low

Figure 4.23: Profile time series of cross-shore (a) and along-shore (b) component of current
during 2007 survey without Douro River discharge.
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salinity and water temperature near surface correlate very well with the northward current

(Figure 4.24). There is an exception observed in January 22 that represents a transitional

moment from downwelling (northward transport) to upwelling-favourable winds (southward

and offshore transport). In this moment, the reminiscent volume of freshwater is carried

out offshore and southwards (salinity ∼35) after had been transported northward forced by

southerly winds in the first instant (salinity ∼33)(Figure 4.24a).

To evaluate how quickly coastal currents respond to wind variations, time series of

meridional current at 2 m depth are depicted in Figure 4.25for simulations with and without

river discharge. This figure also includes the meridional wind component for comparison

with current time series. Douro estuarine plume contributes to reinforce the northward

coastal current, which is generated by strong downwelling favourable winds, even in a

moderate flux regime. The plume presence can double or triple the current magnitude.

The real simulation, with the estuarine outflow imposed in the coastal domain, presents

a lag of few hours (3-12 hours) between northward current and southerly winds (wind

ahead current). On another hand, if coastal waters are not affected by the buoyant plume,

the average time lag is larger (∼7 hours), indicating that currents respond slowly to wind

forcing. It is observed that the spring-neap tidal cycle may influence this delay, when

coastal water is affected by the buoyant plume. Around the neap tide peak, current tends to

Figure 4.24: Time series of salinity (a) and water temperature (b) during 2007 survey.
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Figure 4.25: Time series of meridional wind component (black dashed line) and along-shore
component of current for a simulation with (blue) and without (red) the Douro River
discharge during 2007.

respond faster to wind variations (∼4.25 hours) than in spring tide situations (∼8.6 hours).

In the simulation without the Douro estuarine outflow the delay is approximately the same

for both tidal moments. These results reveal some fortnightly tidal cycle influence in the

plume propagation, even during high-river discharge. As stated in Chapter 2, the ebb-flood

cycle impact would be more evident in the near-field region, close to the river mouth.

4.5 Conclusion

In this Chapter, several numerical model applications were designed, implemented,

calibrated and successfully validated for the coastal region under influence of the Douro

estuarine plume.

Two different coastal numerical model configurations, both based on the nested

domains technique, were applied to study the Douro estuarine propagation through the

coastal ocean using the MOHID model. The configurations #1 and #2 diverge essentially

in the geographical limits of the regions under scope in the high-resolutions sub-domains

(L2 and L3). While configuration #1 (including the Minho River and Rias Baixas) will be

only used to study the Douro estuarine plume interaction with northern coastal regions

(Chapter 6), configuration #2 will be applied to evaluate in detail the propagation of the
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Douro plume under different river discharges and wind scenarios (Chapter 5).

Landward and atmospheric boundary conditions in both coastal configurations are

supplied by data from estuarine and atmospheric model applications totally or partially

implemented and validated in this work. A 2D estuarine model was implemented and

validated with success for the Douro Estuary. In this way, estuarine water fluxes and

properties with respective tidal fluctuations are satisfactory imposed in the L3 coastal

domains in configurations #1 and #2, better describing the reality of estuary-coast dynamics.

The outflows from Minho Estuary are calculated from a previously validated model (Sousa

et al., 2013) and will only be imposed in L3 domain of configuration #1 (Chapter 6).

Regarding the atmospheric input, the implementation of the atmospheric WRF for the

region under study revealed a good agreement between model predictions and in situ

measurements, namely with air temperature, zonal and meridional wind components,

relative humidity and solar radiation. These atmospheric parameters are essential to a

proper prediction of the Douro estuarine plume propagation using this coastal model

application.

Comparisons between observations and predictions of phase and amplitude of major

tidal harmonic constituents in several locations along the portuguese coast revealed that

model accurately reproduces the tidal propagation in the large barotropic domain (L1).

Moreover, the use of a new global tidal solution (FES2012) for boundary condition in this

domain revealed a higher model accuracy than when using the older version (FES2004).

Salinity and water temperature surface fields from L3 domain (3D) were evaluated against

remote sensing products (SST and turbid composites). In addition, model predictions were

compared with field observations of ocean vertical structure (water temperature, salinity

and current) from CTD casts and ADCP measurements. Model predicts horizontal and

vertical local structures of water temperature and salinity accurately, considering both

qualitative and quantitative comparisons with observations.

Both predictions and observations of current velocity revealed a rapid response of the

plume to wind variations and notable influence of the riverine water in the reinforcing of

the northward coastal current.
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Although errors are not negligible, the validation procedure shows that the model

developed in this study adequately reproduces the hydrodynamic and water properties of

Douro region and its adjacent coastal ocean. Therefore, this nested model implementation

is a useful and suitable tool to study the propagation and fate of Douro estuarine plume in

the Northwest of the Iberian Peninsula.

In next chapters, the nesting numerical model using configuration #2 validated here

will be applied to characterize and study the propagation of the Douro estuarine plume.

In addition, the implementation based on configuration #1 will be applied to assess the

interaction between the Douro and Minho estuarine plumes.



Chapter 5

Characterization of the Douro estuarine

plume

5.1 Introduction

As stated in Chapter 1, the classic pattern of propagation of a estuarine plume in the

coastal ocean consist in the formation of a jet-like non-steady structure (bulge) in front of

the river’s mouth, recirculating freshwater that then feeds a coastal buoyant current (Fong

and Geyer, 2002; Avicola and Huq, 2003; Dzwonkowski and Yan, 2005; Horner-Devine et al.,

2006; Thomas and Weatherbee, 2006).

The river discharge and tides have major influence in the source and near-field

regions (Hetland, 2005; Horner-Devine et al., 2015). Here, the balance between the inertial

momentum and buoyancy determines the plume dynamics. The wind starts to dominate

the plume dispersion (far-field), when the discharge decreases its influence (mid-field).

Usually, downwelling-favourable winds tend to push the plume against the coast through

an Ekman transport response and vertical mixing reduces stratification in the plume.

Upwelling-favourable winds have been found to thin the plume and transport the buoyant

layer offshore, increasing vertical stratification in the area under the wind’s influence (Fong

and Geyer, 2001; Lentz, 2004; Lentz and Largier, 2006; Otero et al., 2008; Jurisa and Chant,

119
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2012).

In Chapters 2 and 3, the mean-state and the inter-annual variability of the Douro

estuarine plume was evaluated using satellite imagery. This Chapter aims to study the

response of the Douro estuarine plume to several idealized wind forcing scenarios under low,

moderate and high winter river discharges using the coastal numerical implementations

described in Chapter 4. Several scenarios are considered from weak-to-moderate winds

from each of the four cardinal directions.

All data used in this Chapter and the methodology followed are described in Section

5.2. Section 5.3 presents the major results from numerical simulations carried out to study

the influence of river discharge and wind variability on the plume propagation. General

characteristics of the wind driven plume in terms of main patterns and circulation are

highlighted in Section 5.3.2.4. A brief summary of this Chapter is presented in Section 5.4.

5.2 Data and methods

5.2.1 Discharge and wind scenarios

A statistical analysis of the maximum annual values of the Douro River discharge was

performed to characterize the winter river discharge events. River discharge from SNIRH

database measured in Crestuma dam from 1986 to 2014 were used (D in Figure 5.1). Three

scenarios were chosen taking into account the 25th, 50th and 75th percentiles of annual

maxima of the month with maximum daily mean inflows (January - 1055 m3 s−1). These

percentiles correspond to low (608 m3 s−1), moderate (1486 m3 s−1) and high (3299 m3 s−1)

discharge winter scenarios, respectively.

Following the methodology proposed by Sousa (2013), the idealized scenario with

high river discharge starts from the mean base value for January (1055 m3 s−1) and then

increases exponentially to 3299 m3 s−1 (Figure 5.2a, red line). The maximum is about three

times the average discharge for January. This ratio was adopted for moderate (Figure 5.2a,

black line) and low (Figure 5.2a, blue line) discharge scenarios. Thus, the low and moderate
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Figure 5.1: Location of the study area. The coastal region adjacent to the Douro Estuary.
Dam location marked with a pentagon (D) and cross-sections (O, N, B, M, and S) marked
with black lines. The bathymetry, from GEBCO, is shown with white lines (contours in
meters).

discharge scenarios initiate with a river input of 192 m3 s−1 and 475 m3 s−1, respectively

and then, likewise for the high river discharge scenario, increases exponentially during 4

days until reaching the fixed value previously defined for each case. The water temperature

and salinity of the Douro River discharge in the estuarine model implementation described

in Chapter 4 were set to 8°C and 0, respectively.

The definition of the wind scenarios was based on statistical results by Sousa (2013)

from wind data provided by the NCEP-CFSR (http://rda.ucar.edu/pub/cfsr.html) at

a control station located in the region off the Minho estuary from 1979 to 2010. Considering

that wind magnitude variability is almost negligible between the coast off the Douro and

http://rda.ucar.edu/pub/cfsr.html
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Figure 5.2: The Douro River discharge scenarios (red line: high discharge; black line:
moderate discharge; blue line: low discharge) (s). Water flux (b), water temperature (c)
and salinity (f) computed in the river mouth from estuarine model simulations for the three
scenarios.

Minho estuaries, the results by Sousa (2013) are acceptable for this study. Sousa (2013)

revealed that the probability of occurrence of winds with intensity lower than 3 m s−1 is

32 %, while the probability of occurrence of moderate winds (between 3 and 6 m s−1) is

higher than 46 %. These wind intensities were used as representative of the prevailing wind

regime of this region in the simulations.

To study the behaviour of the Douro estuarine plume and its response to external

forcing, several numerical experiments were conducted. 27 experiments to test the plume

propagation were simulated, including four different wind directions (north, south, west and

east), two different wind intensities (3 and 6 m s−1) and three different river discharges (high,

moderate and low). Moreover, three simulations were carried out without wind imposition.

All simulations run with a six months spin-up period, from July 2009 to February 2010, but
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only results for January 2010 are analysed. The defined wind forcing for each scenario starts

on 5 January 2010, when the river discharge reached its maximum, and then held steady

constant in all scenarios. Although both wind and discharges are idealized, the conditions

adopted for 2010 are representative of an average winter in this region (see Chapters 3 and

6).

To evaluate the role of river discharge and wind forcing in the plume propagation

a variety of results will be analysed. Several surface and cross-section fields of salinity 5

days after the peak discharge will be depicted considering the main numerical scenarios. At

the same time, the equivalent depth of freshwater is determined in order to evaluate the

horizontal pattern of plume dispersal:

Fw =

∫ η

−h

Sa − S(z)

Sa
dz (5.1)

where Sa is a reference or ambient salinity, which represents the limit of the buoyant plume.

Following Peliz et al. (2002) and Otero et al. (2008), 35.6 was used as the reference salinity.

S(z) is the water column salinity.

The freshwater transport was also evaluated in five sections (Figure 5.1) to identify

its temporal and spatial variability and to study the effect of wind and discharge on plume

dispersal. Section O (Offshore) is the only alongshore section, and was selected to study the

offshore plume propagation. It is located at 9° of longitude between 50 and 100 isobaths.

Section N (North) was defined in the far-field region of the Douro plume, to evaluate the

northward coastal transport and the alongshore velocities promoted by the buoyant current.

Section B (Bulge) was defined in the region where the re-circulating bulge will be likely

observed. Section M (Mouth) represents the region near the mouth of the river. It was

chosen to evaluate the role of cross-shore current velocities and vertical salinity fields in

the near-field region. Section S (South) was defined in the region between the Douro River

mouth and the Ria de Aveiro Lagoon to assess the possibility that plume generates a

southward current and Douro riverine waters affect this region.

The freshwater transport, relative to the reference salinity, Sa, is determined as the
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integral of freshwater fraction:

VFw =

∫∫ η

−h

Sa − S(z)

Sa
usdzdxs (5.2)

where us is the horizontal velocity normal and xs is the horizontal distance across each

section (Choi and Wilkin, 2007).

5.2.2 Plume parameters

River plumes may be characterized and classified based on a number of parameters

and criteria that will be determined and analysed. In this study, it was considered the

numbers related to estuarine, outflow and plume properties. A brief description of each is

given below.

Estuarine processes govern the initial momentum and buoyancy of a river plume when

enters in the coastal ocean (Horner-Devine et al., 2015). To evaluate how estuarine dynamics

affects the spreading and properties of the estuarine plume, Nash et al. (2009) adopted the

estuary Richardson number, RiE, as defined by Fischer (1972). The formulation evaluates

how the tidal velocity (utidal) is important and competes with the freshwater inflow (Qf ) in

influencing the plume propagation in over shelf, assuming that advection scales with Qf

and turbulence scales with utidal. This number is defined as:

RiE =
g

′
rQf

WEu3
tidal

(5.3)

where g′
r = g(ρamb − ρr)/ρr represents the reduced gravity, where g is the gravitational

acceleration, ρamb is the ambient ocean density and ρr is the river input density. Qf is the

freshwater inflow rate, utidal the root-mean-squared velocity due to tide-generated currents

(Llebot et al., 2014), and WE is the width of the estuary.

High values of RiE ( Ri−1
E → 0) indicate no mixing and a purely fresh plume with

salinity 0. When Ri−1
E →∞ (low values of RiE) there are no river inflow into the estuary

(Nash et al., 2009). Following Fischer et al. (1979), the transition between well-mixed and
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stratified estuaries occurs in the range 0.8 > RiE > 0.08 and this limit will be considered

in this study to establish the tide influence on the plume.

Several non-dimensional parameters applied by Yankovsky and Chapman (1997) to

predict the plume propagation based only on the properties of the buoyant inflow at the

source (here the estuarine outflow at the mouth) were used to characterized and identify the

type of the Douro estuarine plume in the absence of ambient shelf circulation. Moreover,

the length predictions by Yankovsky and Chapman (1997) will be also compared with

model predictions.

The Rossby number is a dynamic parameter commonly used to estimate the relative

strength of inertial and rotational processes. Here, the Rossby number associated with the

velocity and length scale of the river inflow into the coastal ocean (Horner-Devine et al.,

2006), Ri, was computed by:

Ri =
Ui
fRDi

(5.4)

Ui and RDi are the mean velocity and the baroclinic Rossby radius of the estuarine outflow,

respectively, calculated by:

Ui =
QE

Wmhi
(5.5)

RDi =

√
g′
ehi
f

(5.6)

where QE is the estuarine outflow, here computed from the estuarine model simulations

(Figure 5.2 b), g′
e is the mean reduced gravity considering the estuarine outflow density and

hi is the average bottom depth at the mouth of the Douro Estuary.

The Burger number, Bi, was calculated to evaluate the buoyancy of the estuarine

outflow. High values of Bi often indicate a plume with surface-advected behaviour

(depending on the value of Ri) in the classification stated by Yankovsky and Chapman

(1997).

Bi =
(g

′
ehi)

1/2

fWm

(5.7)
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To examine whether a flow tends to be governed by baroclinic or inertial processes,

the inflow Froude number will be calculated, Fri (Chao, 1988b):

Fri =
Ui√
g′
ehi

=
Ri

Si
(5.8)

When Froude number is greater than one (Fri � 1), the flow is characterized as

supercritical, and inertial processes are dominant. Lower values (Fri ≤ 1) represent a

subcritical flow in which stratification is more important.

The next parameters are dependent from the ocean properties and therefore some

results from numerical simulations are required to perform these computations. Thus, these

numbers will be determined not only for the river discharge scenarios, but also for all

scenarios tested.

The bulk Kelvin number (Garvine, 1995), Kb, describes the importance of rotational

processes in the plume propagation, and also offers a classification of its scale:

Kb =
Wp

RDh

(5.9)

where Wp is the extent of the plume across-shelf and RDh is the internal Rossby radius of

the plume, which is expressed by:

RDh =

√
g′
php

f
(5.10)

where hp is the thickness of the plume and g′
p is the reduced gravity in the plume layer. In

the mouth g′
p is equivalent to g′

e. Large (small)-scale plume behaviour is identified by large

(small) Kelvin numbers, Kb � 1 (Kb � 1). Large-scale plumes tend to be more affected by

the Earth’s rotation than by inertial dynamics. Small-scale plumes are governed by inertial

dynamics and tend to form freshwater bulges that radiate in all directions from the source

(Garvine, 1995).

While the Kb is largely a geometric parameter that explores length scales of the plume,
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the plume Rossby number, Rp, is used to estimate the relative strength of inertial and

rotational processes on the plume. Here, the terms in balance are relative to the plume

itself. Rp will be computed by:

Rp =
uplu
fRDh

(5.11)

where uplu is the velocity of the flow in the surface layers (in the plume). High Rossby

numbers (Rp � 1) indicate that the plume is dominated by inertial processes. When the

Rossby number is low (Rp � 1), the rotational processes are dominant.

The mouth Kelvin number, Km, requires a different length scale from Kb (here the

Wm) (Garvine, 1995; Huq, 2009; Horner-Devine et al., 2015):

Km =
Wm

RDh

(5.12)

The Km is used to characterize and classify the plumes in terms of the bulge formation

around the river mouth, taking into account the ratio of estuary width (Wm) at the mouth

to the internal Rossby radius (RDh) of the plume.

The Ekman number, Ekp, will also be calculated to estimate the relative strengths of

frictional and rotational processes within the plume (Cushman-Roisin, 1994; Tilburg et al.,

2011). This number is expressed by:

Ekp =
Az
fh2

p

(5.13)

High values (Ekp � 1) represent a friction-dominated flow, while low values (Ekp � 1)

indicate a rotational-dominated one.

As Rp, the Froude number can be calculated throughout the plume to examine how

dynamics change within plume (Tilburg et al., 2011; Horner-Devine et al., 2015):

Fr1 =
uplu√
g′
php

(5.14)

In this study, the upper-layer Froude number will be calculated in the mouth, Fr1m,
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and within the plume, Fr1p, at a distance of Wp/2.

The Reynolds number will be calculated, to compare the mechanisms of advection

and mixing within the plume:

Rep =
Rp

Ekp
(5.15)

High values for the Reynolds number (Rep � 1) indicate that advection is dominant

over mixing processes. Low values (Rep � 1) indicate a flow governed by frictional or

mixing processes (Tilburg et al., 2011).

To assess the wind impact in the plume shape, the wind strength index introduced by

Whitney and Garvine (2005) will also be computed. This index (WS) is defined as:

WS =
uwind
udis

(5.16)

where

uwind =

√
ρa
ρamb

C10

CDa
W10 (5.17)

udis =
1

Kb

(2g′QEf)
1
4 (5.18)

where W10 is the wind velocity component at 10 m height (3 or 6 m s−1), C10 (1.2×10−3) is

the surface drag coefficient, CDa (1.3×10−3) is the depth averaged drag coefficient and QE

is the estuarine outflow. When |WS| >1, the flow is heavily influenced by the wind, and

when |WS| <1, the flow is dominated by the buoyant forcing. The uwind value is 0.1 and

0.2 for wind scenarios of 3 m s−1 and 6 m s−1, respectively.

5.3 Results and discussion

Wind and river discharge play the most important role in the dispersion of the Douro

estuarine plume. For this purpose, several numerical modelling scenarios of river discharge

and wind forcing were evaluated. The plume parameter numbers as well as the freshwater
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transport were computed in order to obtain a full characterization of the plume propagation

and fate in the coastal ocean.

5.3.1 River discharge influence

5.3.1.1 Patterns of propagation

The plume dispersion is analysed in terms of salinity and equivalent depth of freshwater

for three scenarios considering different river discharges and without wind forcing. The

results after 9 days of simulation, 5 days after the river inflow peak, for each scenario are

presented in Figure 5.3. The vertical distribution of salinity and the zonal and meridional

current along the sections in front of the Douro River mouth (section M), in the area of

each mid-field plume, i.e. bulge (section B) and in the north region between the Cávado

and Minho Rivers mouths (section N) are shown in Figure 5.4 for the same instant.

All figures share common features, i.e the low salinity waters are advected to the right

due to the Coriolis effect and then the plume water extends northward (along the coastline)

after establishing geostrophic balance. These are the common features of a prototypal plume

(Horner-Devine et al., 2015). A re-circulating bulge in front of the mouth, a southward

filament from the main bulge, and a northward coastal current following the coastline,

which generates small-scale eddies promoted by the bathymetry and morphology constrains,

are other shared particularities for the three freshwater discharge scenarios (Figures 5.3a,

5.3b and 5.3c). However, spatial length scales, salinity and equivalent depths of freshwater

values (Figure 5.3d, 5.3e and 5.3f) are considerable different.

The offshore extension of the plume under low river discharge is about 18 km (in the

latitude of the river mouth), the northward current is weak (0.2-0.3 m s−1) (Figure 5.4g),

and the plume front is hard to detect reaching the Cávado River mouth (Figure 5.3a). A

re-circulating bulge in the near-field region is detectable, slightly tilted northward with an

approximately diameter of about 17 km. The maximum equivalent freshwater depth (about

1.2 m) is observed in the centre of the bulge.

Under moderate river discharge, the Douro estuarine plume presents an offshore
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Figure 5.3: Surface currents and salinity (top) and equivalent depth of freshwater (bottom)
5 days after the peak discharge (day 9) under low (a,d), moderate (b,e), and high (c,f) river
discharges with no wind forcing.

extension of about 22 km with a clear re-circulating bulge (∼25 km of diameter) northward

tilted and partially detached from the coast (Figure 5.3b). The plume thickness is about

4 m, excluding the lift-off point near the freshwater source (Figure 5.4b). The maximum

equivalent depth is ∼1.5 m (Figure 5.3b). The vertical structure within the bulge shows
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weak and negative zonal velocities (<0.1 m s−1 - southward direction) close to the coast

and positive values of about 0.3 m s−1 located 10 km from the coastline (Figure 5.4e). A

northward nearshore surface current is observed, reaching the Minho River mouth and

flowing out the domain (Figure 5.3 b). The buoyant current has 7-8 m thickness, about 8

km width and presents salinity of 32. In near surface layers, the zonal velocity is about 0.3

m s−1 (Figure 5.4h).

Salinity surface patterns present very similar features under high river discharge, but

with an increase of the equivalent freshwater depth (close to 2 m), mainly in the bulge

region (Figure 5.3c). The longitudinal extension of the plume is also similar (∼23 km), but

the bulge is larger (∼ 35 km in the major axis of the ellipse). A larger accumulation of

freshwater in the bulge is observed, feeding the northward coastal current (with a surface

velocity of about 0.4 m s−1)(Figure 5.4i).

5.3.1.2 Riverine water transport

Figure 5.5 shows the freshwater transport over sections O (Offshore), N (North), and

S (South) (Figure 5.1) for the three simulations with low (blue line), moderate (black line),

and high river discharges (red line). As stated before, the growth of plume extension does

not increase linearly with river inflow. That is also visible in the freshwater transport

over section O (Figure 5.5a), where differences among the discharge scenarios are not

Figure 5.5: Freshwater transport in sections O (a), N (b), and S (e)(Figure 5.1) under low
(blue), moderate (black), and high (red) river discharges.
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proportional to river inflow. The total sum of the freshwater volume transported between

1 and 10 days after peak discharge is about 2.12×106 m3, 10.56×106 m3, and 19.82×106

m3, for low, moderate, and high river discharge, respectively. Under moderate discharge,

the transport is about 5 times larger than under low discharge. Under high river discharge,

transport is about the double than for the moderate discharge (Table 5.1), following a

logarithmic trend.

However, this trend is not noticeable in the freshwater transport over section N

(Figure 5.5b). Under low river discharge, the total volume of freshwater passing through

this section is lower than 1×106 m3 (0.33×106 m3). For moderate and high river discharge

scenarios are found values of 5.35×106 m3 and 24.55×106 m3, respectively (Table 5.1). In

this case, the northward freshwater transport seems to follow a temporal linear trend with

Table 5.1: Total volume of freshwater transported over sections O, N, and S (5.1) between
1 and 10 days after peak discharge for all combined wind and river discharge scenarios.

Section O (×106 m3) Section N (×106 m3) Section S (×106 m3)

Low Moderate High Low Moderate High Low Moderate High

No Wind 2.12 10.56 19.82 0.33 5.35 24.55 0.07 0.04 0.04

East 3 m s−1 1.02 2.56 8.99 4.78 15.57 37.74 0.00 0.00 0.00

East 6 m s−1 0.48 5.31 17.53 3.93 17.82 42.96 0.00 0.00 0.00

West 3 m s−1 0.28 7.93 45.75 0.00 0.03 9.43 4.76 11.98 4.62

West 6 m s−1 0.00 0.00 0.34 0.00 0.06 0.00 2.53 9.89 36.76

North 3 m s−1 18.71 52.12 127.15 0.00 0.00 0.50 0.00 0.00 0.00

North 6 m s−1 18.79 57.85 138.90 0.00 0.00 0.03 0.00 0.00 0.00

South 3 m s−1 0.04 0.01 0.19 8.70 23.37 48.55 0.00 0.00 0.00

South 6 m s−1 0.00 0.00 0.00 8.93 26.86 61.23 0.00 0.00 0.00
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the river discharge, but more simulations with different values of freshwater inflow need to

be performed to confirm this relationship (VFw(SecN) = 0.0051Qf + 1.14Days− 9.5).

Regarding the southward freshwater transport, the volume is negligible in all cases:

0.07×106 m3, 0.04×106 m3, and 0.04×106 m3 for low, moderate and high river discharge

scenarios (Figure 5.5c - Table 5.1). This confirms that in the absence of significant wind or

under null wind forcing the southward plume dispersion is unlikely.

5.3.1.3 Parameters and criteria

The averaged parameters determined between 1 and 10 days after the peak discharge

for estuarine outflow and plume properties are presented in Tables 5.2 and 5.3, respectively.

In order to evaluate the tidal influence on the estuarine outflow, the Estuarine

Richardson number, RiE, was computed for neap (utidal=0.28 m s−1), spring (utidal=1.12 m

s−1) and mean tide (utidal=0.75 m s−1) conditions (Table 5.2). Under low river discharge, the

induced tidal mixing is very important even during a mean and spring-tides (RiE−Neap < 0.8).

The tide decreases its influence under moderate and high river discharge scenarios. During

a neap-tidal periods, the estuary is also well mixed (RiE−Neap >> 0.8) in moderate and

high river discharge scenarios. Nevertheless, the currents associated with spring-tides are

important under moderate river discharges. Although the RiE−Spring under high river

discharges indicate a well-mixed estuary, the value is close to the limit, showing that the

spring currents can influenced the near-field plume.

Table 5.2: Estuary Richardson number, RiE, during neap (RiE−Neap), mean (RiE−Mean),
and spring-tides (RiE−Spring). Outflows baroclinic Rossby radius (RDi), Rossby number
(Ri), Burger number (Bi) and Froude number (Fri) under low, moderate, and high river
discharges.

RiE−Neap RiE−Mean RiE−Spring RDi (km) Ri Si Fri

Low 9.09 0.47 0.14 16.42 1.70 32.83 0.05

Mod 29.02 1.51 0.45 18.64 4.21 37.28 0.11

High 64.77 3.37 1.01 18.67 9.38 37.33 0.25
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Table 5.3: Key parameters for the Douro estuarine plume under all wind and river discharge
scenarios in study.

Wp

(km)
RDh

(km)
Km Kb Rp Fr1m Fr1p Ekp Rep

udis
(m s−1)

uwind
(m s−1)

WS

No
Wind

Low 20.86 7.30 0.07 2.86 0.31 0.90 0.45 0.32 0.91 0.13 0.00 0.00
Mod 28.54 9.10 0.05 3.14 0.49 1.28 0.73 0.26 2.10 0.16 0.00 0.00
High 28.73 11.53 0.04 2.49 0.62 1.45 0.96 0.18 6.87 0.24 0.00 0.00

East
3 m s−1

Low 11.34 6.73 0.07 1.68 0.60 1.04 0.93 0.45 1.27 0.22 0.10 0.45
Mod 15.18 8.75 0.06 1.73 0.73 1.35 1.18 0.38 2.66 0.29 0.10 0.35
High 20.55 11.33 0.04 1.81 0.75 1.49 1.23 0.18 7.69 0.33 0.10 0.30

East
6 m s−1

Low 6.94 6.64 0.08 1.05 0.92 1.14 1.68 0.76 1.84 0.35 0.20 0.56
Mod 11.40 8.75 0.06 1.30 0.82 1.38 1.47 0.44 3.00 0.38 0.20 0.52
High 16.68 11.58 0.04 1.44 0.80 1.47 1.52 0.24 8.94 0.42 0.20 0.47

West
3 m s−1

Low 15.56 7.43 0.07 2.09 0.25 0.86 0.32 0.23 0.80 0.18 0.10 0.56
Mod 27.50 9.48 0.05 2.90 0.20 1.22 0.30 0.14 1.00 0.17 0.10 0.58
High 38.56 11.48 0.04 3.36 0.24 1.46 0.33 0.11 2.59 0.18 0.10 0.55

West
6 m s−1

Low 8.73 8.97 0.06 0.97 0.34 0.64 0.45 0.18 2.27 0.38 0.20 0.52
Mod 14.47 10.89 0.05 1.33 0.32 0.97 0.45 0.15 2.83 0.37 0.20 0.53
High 23.73 12.19 0.04 1.95 0.22 1.34 0.29 0.06 3.11 0.31 0.20 0.64

North
3 m s−1

Low 30.26 7.20 0.07 4.20 0.21 0.94 0.43 0.49 0.57 0.09 0.10 1.13
Mod 54.08 9.51 0.05 5.69 0.24 1.23 0.53 0.37 1.21 0.09 0.10 1.14
High 62.27 11.72 0.04 5.31 0.37 1.43 0.76 0.27 4.39 0.11 0.10 0.87

North
6 m s−1

Low 6.62 6.53 0.08 1.02 0.75 1.06 1.16 0.49 1.40 0.37 0.20 0.54
Mod 17.52 8.95 0.06 1.96 0.54 1.31 1.01 0.34 2.17 0.25 0.20 0.78
High 56.91 11.76 0.04 4.84 0.21 1.43 0.55 0.19 2.57 0.13 0.20 1.59

South
3 m s−1

Low 8.70 7.20 0.07 1.21 0.58 0.95 0.91 0.42 1.62 0.31 0.10 0.32
Mod 12.99 8.85 0.06 1.47 0.73 1.33 1.18 0.43 2.79 0.34 0.10 0.29
High 21.74 11.07 0.05 1.96 0.75 1.53 1.25 0.26 7.04 0.31 0.10 0.32

South
6 m s−1

Low 3.82 7.25 0.07 0.53 0.85 0.97 1.32 0.45 2.80 0.71 0.20 0.28
Mod 6.57 8.55 0.06 0.77 0.99 1.40 1.78 0.87 4.66 0.65 0.20 0.31
High 10.46 10.67 0.05 0.98 0.96 1.60 2.35 1.27 12.94 0.62 0.20 0.32

The outflow parameters used to predict the plume propagation defined by Yankovsky

and Chapman (1997) are also presented in Table 5.2.



136 Characterization of the Douro estuarine plume

The Rossby radius of deformation, RDi, is equivalent to the longitudinal extension

of the plume: it is low under low river discharge, and higher, with similar values, under

moderate and high estuarine outflows, reaching a steady distance at some point. Ri shows

that inertial dominate over the rotational processes, even under low discharge. This is a

expected conclusion since the Douro River mouth is very narrow and the water flux is

unidirectional along the outflow section. In combination with higher Burger values, Bi, the

results suggest that the Douro plume is a surface-advected plume. Here Bi values ranged

from 32.83 (low discharge) to 37.33 (high discharge). From Yankovsky and Chapman (1997)

theory, a plume can be considered as surface advected when Bi =
√

2Ri. This is true for all

discharges scenarios in this study. Bottom-advected plumes are possible only for a relatively

weak density difference between the ambient flow and buoyant discharge (small Bi), which

is unlikely to be found in Douro Estuary under winter regimes.

The higher density differences found in Douro estuarine discharge yields to an outflow

Froude number, Fri, bellow 1 in all situations, which is an expected result for surface-

advected plume. As Fri < 1 in all situations of the estuarine outflow, the dilution and

mixing processes starts in the estuary (Horner-Devine et al., 2015), revealing the importance

accurately resolving the variable water fluxes between the estuary and coastal ocean to

study the plume propagation. Following Yankovsky and Chapman (1997) formulations, the

surface-advected plume spreads a minimum of more than four outflow Rossby radii offshore

(Wp =∼ 4.22RDi). This means that in the low, moderate and high river discharge scenarios

the predicted offshore extension would be ∼69.3 km, ∼78.7 km and ∼78.8 km, respectively.

From Table 5.3 may be analysed the plume numbers and criteria calculated based on

the numerical model results for all discharge and wind scenarios.

RDh is about 1/3 of the plume width, Wp, and this ratio tends to increase with the

estuarine discharge (Table 5.3). This disagrees with the offshore extension predicted by

Yankovsky and Chapman (1997). The model results indicate Wp values of 20.86 km, 28.54

km and 28.73 km under low, moderate and high river discharge scenarios. The predicted

values from Yankovsky and Chapman (1997) are ∼50 km greater than the observed in the

simulations. According to Yankovsky and Chapman (1997), this difference is not surprising
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considering that the theory neglects the strong winds and tidal forcing. Here, the tidal

forcing associated with both shelf currents and variable estuarine outflow is a key factor

in the stabilization of the bulge growing (Isobe, 2005). The tidal forcing tends to tilt the

plume northwards, creating a partially detached bulge as observed in Figure 5.3 and in

line with results of numerical simulations of Yankovsky et al. (2001). The tidal currents in

the inner shelf also demonstrated to be important in the enhancement of the freshwater

transport northward, changing in time the relation between the bulge growth and the

estuarine outflow, until the moment when this transport equals the river discharge (Isobe,

2005).

The Kelvin bulk number, Kb, is higher than 1 for the three different discharge scenarios,

which indicate that the Douro estuarine plume can be classified as a large scale plume

(Garvine, 1995) without the wind forcing influence.

The very low values for the Kelvin mouth parameter, Km, show the importance of

the inertial processes in the generation of the plume. The existence of a re-circulating

bulge, which is clear in Figures 5.3b and 5.3c, is also supported by the low values of Km

(Table 5.3). If the river mouth width is much smaller than the internal Rossby radius, RDh,

a re-circulating bulge within the plume (without other external forcing) will be observed

(Garvine, 1995; Huq, 2009; Horner-Devine et al., 2015).

Froude mouth numbers, Fr1m are supercritical (Fr1m > 1) for moderate and high river

discharge scenarios (Table 5.3). In these cases, a near-field region is well defined until the

conditions are reduced to subcritical at some distance from the river mouth (Horner-Devine

et al., 2015). At a distance of Wp/2, the subcritical condition was almost achieved for the

moderate discharge simulation, Fr1p < 1, while for high river discharges the condition is

critical, Fr1p ∼ 1. This marks the transition between the near and the mid-field plume

region (∼14 km) (Horner-Devine et al., 2015). In the low discharge scenario Fr1m is lower

than 1 and the plume tends to be strongly influenced by rotation (Horner-Devine et al.,

2015). In addition, the plume Rossby number (Rp) corroborates this result, indicating

that rotational processes dominate within plume. Rp is lower than 1 in all cases, which

is consistent with the Ekman number results (Ekp << 1) where rotation processes also
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dominate over frictional ones (Table 5.3).

Plume Reynolds numbers, Rep, are greater than 1 under moderate and high river

discharges, indicating that inertial processes are very important and the flow within the

plume is not governed by frictional processes in these cases (Table 5.3).

According to the results, the Douro estuarine plume can be classified as a surface-

advected and large-scale plume and can be dynamically characterized as a prototypal plume

(Figure 1.3a - Chapter 1), comprising all dynamical regions. It has a relatively high discharge

and a narrow mouth and its dynamic is modified by Earth’s rotation (Horner-Devine et al.,

2015). The Douro estuarine plume shares this type of morphology with other important

river plumes in the world, such as the Columbia River (Hickey et al., 1998; Thomas and

Weatherbee, 2006; Horner-Devine, 2009; Hickey et al., 2010; Kilcher and Nash, 2010), the

Merrimack River (MacDonald et al., 2007; Kakoulaki et al., 2014), the Niagara River (Masse

and Murthy, 1992; Horner-Devine et al., 2008) and the Hudson River (Chant et al., 2008b).

5.3.2 Wind-driven plume dispersion

5.3.2.1 Patterns of propagation

Surface salinity and equivalent depth of freshwater fields, under the wind scenarios

previously defined and moderate river discharge (5 days after peak discharge - Figure 5.2),

are depicted in Figure 5.6. The vertical distribution of salinity and current is shown in

Figures 5.7, 5.8, and 5.9 for sections M (cross-shore current), N (alongshore current) and S

(alongshore current), respectively.

For the sake of simplicity, equivalent depth of freshwater and vertical structure of

salinity and velocity are not shown under low and high river discharges. As stated before,

independently from discharges, the Douro estuarine plume presents a similar mean state,

varying only in terms of length scale and volume of freshwater. Nevertheless, the plume

parameters and freshwater transport over the sections were calculated and presented for all

combinations of river discharge and wind scenarios.

The maxima distance of offshore plume spreading is observed under upwelling-
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Figure 5.6: Surface currents and salinity 5 days after peak discharge under moderate river
discharge and moderate and strong northerly (a, e), southerly (b, f), easterly (c, g), and
westerly wind forcing (d, h).

favourable winds (Figures 5.6a and 5.6e). In this case, the inclination observed between

the main direction of the plume propagation and the river’s mouth is influenced by an

equilibrium between the river discharge and wind intensity. The higher the discharge,

further from the coast the plume starts to be affected by wind, i.e. the near-field region is

larger when the discharge is higher and the transition from supercritical to subcritical flow

(far-field) occurs further away from the river mouth (Hetland, 2005; Horner-Devine et al.,

2015). No re-circulating bulge is detectable and the offshore propagation of the plume

exceeds the western boundary of the domain under moderate and high river discharges. The

plume in this location is much diluted, but yet may impacts ocean waters in the continental
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Figure 5.7: Salinity and cross-shore velocity (white contours) along section M under
moderate and strong northerly (a, b), southerly (c, d), easterly (e, f), and westerly wind
forcing (g, h) 5 days after peak discharge under moderate river discharges.

margin. In this condition, its spreading will be probably influenced by the main regional

ocean circulation, which is not implemented in this coastal numerical model application.

The vertical salinity dispersion in section M shows a well-stratified and thinner plume
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Figure 5.8: Salinity and alongshore velocity (black contours) along section N under moderate
and strong northerly (a, b), southerly (c, d), easterly (e, f), and westerly wind forcing (g,
h) 5 days after peak discharge under moderate river discharges.

structure with the freshwater confined to 2-3 m depth in the far-field region (Figure 5.7a).

The analysis of the salinity vertical structure under strong winds is challenging due to the

plume dispersion toward southwest. For example, low salinity patches located offshore
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Figure 5.9: Salinity and alongshore velocity (black contours) along section S under moderate
and strong northerly (a, b), southerly (c, d), easterly (e, f), and westerly wind forcing (g,
h) 5 days after peak discharge under moderate river discharges.

(Figure 5.7b) in section M derives from a well-mixed plume filament, which is visible in

Figure 5.6e. This preferential direction of propagation generates a plume signal that is

observed in the vertical structure of the section S (Figure 5.9), where alongshore current is
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higher than 0.4 m s−1.

Isolated patches of low salinity waters caused by the tidal variation in the estuarine

outflow (tidal-plume, Nash and Moum (2005)) are well identified (Figure 5.6e). The

stratification level, the supercritical behaviour of the flow in the source, and the observation

of tidal salinity pulses/bands along the plume jet are characteristics already observed in

the Columbia River plume (Nash and Moum, 2005; Stashchuk and Vlasenko, 2009; Kilcher

and Nash, 2010), constituting a well known source of internal waves in the Oregon coast,

USA. Likewise, the possibility that the Douro estuarine plume generates circular internal

waves seawards increases under upwelling-favourable wind conditions and moderate and

high river discharge.

The analysis of the horizontal and vertical salinity fields shows a confinement of the

estuarine plume in the coastal region under southerly winds (northwards) (Figures 5.6c and

5.6f). Comparing with moderate river discharge without wind forcing, the downwelling-

favourable winds shrink the bulge in front of the river mouth, enhancing the northward

current and the vertical mixing (Figures 5.7c, 5.7d, 5.8c and 5.8d).

The offshore extension of the plume in front of the river mouth does not exceed ∼10

km and ∼6 km under moderate and strong southerly winds, respectively (Figures 5.7c

and 5.7d). The numerical results corroborate the plume patches and coastal band scales

identified in the turbid MODIS composites (Chapter 2) and in previous numerical modelling

studies (Otero et al., 2008).

Two main differences are found between the results under moderate (3 m s−1) and

strong (6 m s−1) southerly winds:

1 - the re-circulating bulge is only detected under moderate wind, where a weak

southward current is observed (∼0.1-0.2 m s−1)(Figure 5.6c). The bulge is much distorted

northwards, comparing with the simulation without wind (Figure 5.3b).

2 - the alongshore current in surface layers is about 1.7 (∼0.5 m s−1) and 2.7 (∼0.8 m

s−1) times higher under moderate and strong winds, respectively, comparing with results

for moderate river discharge without wind forcing (∼0.3 m s−1).

In easterly wind simulation, the results are similar to those found for the southerly
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wind scenario, but with the plume core detached from the coast (Chao, 1988b) and a

weaker northward current (∼ 0.3 m s−1)(Figures 5.6c and 5.6g). The plume detachment is

especially noticeable under strong wind events, which push the plume offshore in opposition

to the pressure gradient force, stopping the water re-circulation near coast (Figure 5.6g)

and enhancing stratification. The plume width near the mouth is larger under moderate

(∼15 km) than under strong winds (∼11 km), which can be explained by the reminiscent

freshwater from the re-circulating bulge, which increases the plume width in front of the

river mouth (Figures 5.7e and 5.7f). However, the buoyant coastal plume width is larger

(∼15 km) under strong than under moderate wind intensities (∼10 km)(Figures 5.8e and

5.8f).

The westerly wind simulation results are very consistent with the turbid composites

presented in Chapter 2. The plume is squeezed landward, accumulating freshwater along

the coast (Figures 5.6d and 5.6h). That accumulation of water is observed in terms of

plume depth in the vertical salinity structure in section M (Figures 5.7g and 5.7h). The

plume thickness is about 5-6 m, excluding the estuary mouth region, where the equivalent

depth of freshwater surpass 2 m (not shown). The offshore extension of the plume in section

M, under moderate wind intensity (3 m s−1) is equivalent (about 22 km) to results from the

simulation without wind (Figure 5.4b). This extension decreases to ∼15 km under strong

westerly winds (6 m s−1).

Both simulations with moderate and strong westerly wind show that the plume does

not generate a buoyant northward coastal current. Nevertheless, these are the only idealized

scenarios where the riverine water from the Douro flows southward along the shelf, reaching

the Ria de Aveiro Lagoon (Figure 5.6h). This turns very plausible the hypothesis that

Douro estuarine plume propagates into the Ria de Aveiro Lagoon (tidal forced estuary, Dias

et al. (2000)) or, at least, mixes with the lagoon waters in the region close to the mouth.

Figures 5.9g and 5.9h show a southward coastal current of about 0.2 m s−1 where low

salinity waters (28-30) are identified. The plume is slightly detached from the coast, with

a thickness of about 3 m under moderate westerly winds (Figure 5.9g). When the wind

intensity is stronger (6 m s−1) the plume flows (∼-0.2 m s−1) confined to the coast with a
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width and thickness of about 12 km and 6 m, respectively.

5.3.2.2 Riverine water transport

Figure 5.10 shows the time evolution of the freshwater transport over sections O

(Figure 5.10a), N (Figure 5.10b), and S (Figure 5.10c), under moderate river discharge and

for all wind scenarios with stronger intensities (6 m s−1) (Northerly - red line; Southerly -

blue line; Easterly - green line; Westerly - black line). To assess an easy comparison to the

simulation without wind forcing, the results under moderate discharge in this situation are

also depicted (brown line).

Results confirm the visual evaluation of the horizontal and vertical salinity fields.

The offshore transport is mainly promoted by northerly winds (Figure 5.10a). The total

freshwater volume transported between 1 and 10 days after peak discharge is about 18.79,

57.85, and 138.90×106 m3 under low, moderate and high river discharge, respectively.

(Table 5.1). Similar values are found for the simulation with moderate wind intensities.

The total volume of freshwater discharged from the Douro Estuary is dispersed offshore

under northerly winds, independently from their magnitude. The transport is equivalent

under strong easterly wind events and without wind forcing (0.48, 5.31, and 17.53×106 m3

under low, moderate, high river discharge, respectively - Table 5.1).

Figure 5.10: Freshwater transport in sections O (a), N (b), and S (e)(5.1) under northerly
(red line), southerly (blue line), easterly (green line), and westerly winds (black line) and
without wind forcing (brown line) with moderate river discharge.



146 Characterization of the Douro estuarine plume

Offshore transport is null under strong westerly winds in low and moderate discharge

simulations and residual (0.34×106 m3) for the higher case (Table 5.1). However, this trend

is not observed under moderate westerly winds (Table 5.1). The wind forcing does not stop

cross-shore transport promoted by the inertial processes in front of the river mouth. The

freshwater is retained in the bulge, increasing the offshore transport through section O

(Figure 5.7d). The competition between inertial and wind stress forces is expressed by the

total volume of freshwater which is propagated offshore under low, moderate, and high river

discharge. Under low and moderate river discharge the offshore transport is considerable

lower (0.28 and 7.93×106 m3, respectively) than in scenario without wind forcing (wind

stress is efficient enough to confine the bulge near the coast). The offshore freshwater

transport in the high river discharge scenario is more than the double (45.75×106 m3) under

moderate westerly winds (wind stress stops northward transport, but is not efficient to

decrease the bulge growth)(Table 5.1).

The total volume of freshwater propagated offshore under downwelling-favourable

winds is negligible and null for moderate and strong wind intensities, respectively (Figure

5.10a - Table 5.1).

Easterly, southerly and no wind scenarios are idealized cases in which the northward

freshwater transport is noticeable (Figure 5.10b). Both easterly and southerly wind events

increase the northward transport about 3 (15.57×106 m3 for 3 m s−1 and 17.82×106 m3

for 6 m s−1) and 5 times (23.37×106 m3 for 3 m s−1 and 26.86×106 m3 for 6 m s−1),

respectively, in comparison to the scenario without wind forcing under moderate river

discharges (5.35×106 m3) (Table 5.1). In high river discharge and moderate westerly wind

scenario, the total volume of freshwater flowing northward is not negligible (9.43×106 m3).

In this case, wind stress is not strong enough to deflect the plume southward, in the opposite

direction of the Kelvin wave propagation. Northward freshwater transport in the remaining

cases is small or even null (Figure 5.10b - Table 5.1).
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5.3.2.3 Parameters and criteria

The key parameters calculated for each scenario summarize very well the results

discussed above for all simulations (Table 5.3). The internal Rossby radius values (RDh) are

very similar between each scenario, as expected. The main differences are identified when

the plume is impacted by westerly winds, where the accumulation of freshwater into the

coast increases the plume thickness near the mouth and, consequently, the RDh value (see

Equation 5.10). The maximum (12.19 km) is found for the high river discharge scenario

under strong westerly winds.

The WP values are higher than RDh and the Kb values are above 1 in the majority

of situations. Some remarkable exceptions are found under strong downwelling-favourable

winds, when the plume is confined to the coast and the length scales of both coastal band

and bulge are equivalent (3.82-10.46 km / 7.25-10.67 km) (Table 5.3). In this situation,

the plume propagation is closer to the small-scale plume according to the classification

proposed by Garvine (1995), where rotational processes have minor impact and the plume

propagates only as northward coastal buoyant current.

The Rp values for all wind scenarios are similar to the case without wind forcing,

indicating that rotational processes dominate within plume, especially under wind scenarios,

which do not favour the northward current (northerly and westerly winds). Rp values

under strong easterly winds are close to 1, showing major importance of inertial processes

influenced by the higher upper layer current velocity within the plume (Table 5.3).

In the same way, EkP values are consistent with Rossby numbers, showing that

rotational processes dominate over friction in all scenarios, except under strong southerly

wind with high river discharges (> hp)(Table 5.3).

Plume Reynolds numbers, Rep, are greater than 1 for most combinations of wind

and river discharge scenarios. Higher values are found under southerly winds, when the

confinement of the plume near the coast induces higher surface current velocities (Table

5.3). Under northerly wind, the plume propagations is limited near surface and the mixing

by frictional processes from wind forcing increases, leading to low Rep values.
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The Fr1m numbers for all wind scenarios are similar to that for the case without

wind, being the westerly winds simulation the only case where the wind stress, opposed to

estuarine outflow, can decrease the momentum near the mouth. However, the flow maintains

supercritical under strong westerly winds at the mouth (Fr1p) in higher river discharge

scenario (Table 5.3). Under easterly and southerly winds this supercritical behaviour is

maintained or even amplified within the plume (Fr1p). In these situations, wind enhances

the plume velocity, especially under downwelling-favourable winds (Table 5.3).

WS shows how the flow in the plume under different wind and river discharge scenarios

is influenced by the wind. The larger and stratified is the plume, more efficient is the

control of the plume fate by wind stress. All values indicate the inertial dominance over

wind stress, except for upwelling-favourable winds (Table 5.3). Due to the jet inclination

under strong northerly winds, values below 1 are uncertain since Wp, which influences Kb,

was calculated taking into account only the plume extension at the river mouth latitude.

5.3.2.4 General features

A summary of the influence of the wind forcing in the Douro estuarine plume

propagation in the western portuguese coast is schematically depicted in Figure 5.11.

The Douro estuarine plume is confined to the coast under downwelling-favourable

winds (Figure 5.11 - blue), generating a narrow and strong northward current. Southerly

winds increase the meridional surface velocity and the vertical mixing. The coastal current

width varies between 4 and 22 km, depending on both wind intensity and estuarine freshwater

volume. Easterly winds (Figure 5.11 - green) tend to detach the plume core from the

coast, stopping the water re-circulation (bulge), and creating a wider and weaker northward

coastal current, in comparison with plume shape under southerly winds. The wind stress

tend to thin the plume, increasing the offshore dilution and dispersion in the boarder. The

region influenced by the estuarine plume under northerly winds is very large (Figure 5.11 -

red), with an offshore freshwater exportation through surface layers (higher stratification).

The plume propagates preferentially in southwest direction, but the angle with the river’s
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Figure 5.11: Schematic representation of the Douro estuarine plume under influence of
northerly (red), southerly (dark blue), easterly (green) and westerly winds (grey). The
location of secondary freshwater outflows are also marked (Lm-Lima River; Cv-Cávado
River; Av - Ave River; RA - Ria de Aveiro Lagoon).

mouth latitude is strongly influenced by the competition between the wind intensity and

the estuarine outflow. Isolated patches of low salinity (tidal pulses) are observed in this

wind scenario. Westerly winds (Figure 5.11 - grey) force a freshwater accumulation in the

near-field region, toward both north and south of the river mouth, increasing the vertical

mixing and decreasing the stratification. This accumulation also generates a southward

coastal current, promoting a freshwater transport until the region of influence of the Ria de

Aveiro Lagoon.



150 Characterization of the Douro estuarine plume

5.4 Conclusion

The main objectives of this chapter were to characterize the Douro estuarine plume

in terms of its dynamics, scale and fate. Several numerical experiments were conducted to

test scenarios under different river discharges, wind directions and intensities.

The results obtained from this analysis suggest the following:

• Without wind forcing, the plume expands offshore, creating a re-circulating bulge

(partial detached) in front of the river mouth. The low salinity waters are advected

to the right due to the Coriolis force and after the establishment of the geostrophic

balance, the plume water flows northward. Both validation procedure (with ADCP

observations - Chapter 4) and numerical idealized scenarios demonstrated that the

buoyancy generated by the Douro estuarine plume under moderate-to-high river

discharges is able to generate, without wind forcing, a northward coastal current of

0.2-0.3 m s−1 with a width lower than 10 km.

• The Douro estuarine plume (without wind forcing) is classified as a surface-advected

large-scale plume and can be characterized as a prototypal plume, comprising a

near-field region (supercritical flow at the source), a tidal plume (isolated low salinity

patches generated by the ebb-tidal cycle), a mid-field region (a re-circulating bulge in

front of the river mouth) and a far-field region (where a coastal current is created).

• Among several river plumes with identical characteristics, the Columbia River plume

seems to be that with higher similitude, despite the higher mean river discharge and

different spatial scales. The Columbia River mouth is located in the same range

of latitude, in an area with a relatively straight and meridional oriented coastline,

with narrow shelf, and strong semi-diurnal tidal activity. Considering this fact,

the possibility of the Douro estuarine plume sharing more particularities with the

Columbia River plume, such as the generation of internal tidal waves (Nash and

Moum, 2005; Nash et al., 2009), is a reasonable hypothesis.
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• The response of the Douro estuarine plume to wind forcing takes less than 1 day,

generating plume propagation main features that can be summarized as follows:

1) Easterly winds form a similar feature to the case without wind forcing. However,

the low salinity band in this case is detached from the coast and a small increase of

the northward current is found.

2) Westerly winds tend to accumulate freshwater into the coast. A southward coastal

current is identified with strong winds and moderate and high river discharge. This is

the only wind scenario where the Douro estuarine plume may reach the Ria de Aveiro

Lagoon.

3) Northerly winds generates an offshore extension of the plume with an inclination

towards southwest. The stratification increases in this case and isolated low salinity

bands propagating offshore were detected in the numerical results.

4) Southerly winds confine the plume to the coast, enhancing the northward current

velocity.

• Combined with moderate-to-high river discharge, downwelling-favourable winds forcing

increases the possibility of the Douro estuarine plume to merge with estuarine sources

located north of the Douro Estuary mouth, such as Minho estuarine plume. In

addition, the combined effect of these plumes can affect the dynamics of the Rias

Baixas, located ∼100 km north of the Douro River mouth. This possibility will be

addressed and analysed in the following Chapter.
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Chapter 6

Interaction between the Douro and

Minho estuarine plumes under winter

conditions

6.1 Introduction

Previous Chapters reveal that Douro estuarine plume can propagate far from its

source and that wind regime plays a crucial role in the definition of the plume fate.

Southerly wind regimes, generally associated with rainfall episodes, which mostly

occur during the fall and winter seasons (Trigo and DaCamara, 2000; Lorenzo et al., 2008),

tend to confine the Douro estuarine plume against coast, feeding a northward buoyant

coastal current. In this case, the probability of that Douro riverine water interacts with

Minho estuarine plume increases as well as the possibility to influence the Rias Baixas

circulation.

Taking advantage of available in situ data, the dynamics of the Minho river plume

and its influence on the Rias Baixas was analysed by Sousa et al. (2014c,b,a) during an

upwelling-downwelling event in May 1998 . These authors found that the plume responds

rapidly to wind variations, being both wind and river discharge the most important forcings

153
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that influence its size and shape in coastal waters. They emphasized that the Minho river

plume may reverse the normal circulation and the vertical density structure inside the Rias

Baixas and that downwelling-favourable winds are crucial for this occurrence (Sousa et al.,

2014c).

Recently, Sousa et al. (2014a) reviewed the event of May 1998 in more detail, confirming

the importance of the Minho plume in the circulation inversion inside the Rias de Vigo and

Pontevedra. This work revealed the significant influence that the mouth morphology of the

Rias has on this process and the lesser effect of rivers discharging into this system. None of

these numerical modelling studies included the Douro estuarine outflow in their simulations,

given its low discharge compared to the Minho during the period under analysis. Although

the Douro River outflow is located approximately 80 km south of the Minho River mouth,

its influence on the Galician coast should be taken into account under certain circumstances,

as it represents the most important freshwater input in this region. One of the most evident

examples of this influence was the February/March 2001 event, when a maximum Douro

River mean daily discharge of over 8000 m3 s−1 was observed.

The winter event of 2010 was choosed to study the interaction between Douro and

Minho estuarine plumes and by two main reasons: 1- wind patterns are typical of winter

conditions and comparable to those of the May 1998 event studied by Sousa et al. (2014c,b,a):

upwelling-favourable winds are followed by strong southerly winds. This situation favours

the influence of external sources of lower surface saline waters on Rias Baixas circulation,

in this case from both the Minho and Douro plumes; 2 - Unlike May 1998, the two major

rivers have discharges close to their winter averages and consequently with exceptional

conditions to detect the plumes propagation through satellite imagery.

Otero et al. (2013) presented a full description of shelf circulation and WIBP behaviour

during winter 2009/2010. However, they focused on the period of extreme discharges of this

winter (from December 2009 to January 2010), when the Douro and Minho peak discharges

were 3-4 times higher than the typical winter values. As dam regulation can generate

substantial differences in the river runoff over a typical winter, there is a good reason to

find out more about the role of each river and its direct and indirect impact on the WIBP
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and shelf circulation under such conditions.

The main goal of this Chapter is to perform an integrated analysis of the dispersion

of the Douro and Minho estuarine plumes and assess their individual influence on the

already well-studied WIBP behaviour during the 2010 winter (typical winter conditions).

The description of this event was based on numerical modelling and remote sensing imagery.

Moreover, two additional scenarios were simulated under hypothetical conditions: turning

off each one of the estuary discharges for each case. Thus, the relative importance of each

plume in WIBP circulation and its direct/indirect influence on Rias Baixas circulation is

studied and compared with the results of Sousa et al. (2014c,b,a). Lagrangian floating

particles were also released at the estuary mouths of the Minho and Douro Rivers, to assess

the main differences in particle trajectories and the water exchange with the Rias Baixas.

It is also worth noting that, although the estuarine mouths are close to each other, the river

basins are mainly located in quite different regions and are strongly regulated by dams.

Although the seasonal variations are identical, substantial differences are often found in

the daily volumes of freshwater. Thus, a study of these hypothetical scenarios would be

an essential part of any accurate analysis of the influence of Douro and Minho Rivers on

circulation patterns on the shelf and Rias Baixas.

This Chapter is organized as follows. The description of the study area is presented in

Section 6.2. A general overview of data, plume parameters, numerical model and numerical

experimental design is given in Section 6.3. The results and the discussion are presented in

Section 6.4. Finally, the main conclusions are drawn in Section 6.5.

6.2 Study area

The study area is the northwestern coast of the Iberian Peninsula, the region mainly

affected by the WIBP propagation (Figure 6.1). This region includes four coastal systems

(Rias de Vigo, Pontevedra, Arousa and Muros) called Rias Baixas and the estuaries of the

major rivers flowing off this coast (Minho and Douro) further south (Figure 6.1). This

area is located on the northernmost limit of the Eastern North Atlantic Upwelling System
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Figure 6.1: Study Area with the three model domains (L1, L2, and L3). Cross-sections (I,
II, III, IV, and V) are marked with black lines. Stars indicate river runoff stations location.
The wind data station is marked with a black triangle.

(Wooster et al., 1976), where alongshore winds interact with coastal topography to generate

upwelling-downwelling processes. The river plumes propagation, mostly from the Douro

and Minho estuaries, dominates surface layer dynamics.

The Douro River is the most important freshwater contributor to the Atlantic Ocean

in the study region and more information about its characteristics and properties can be
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found in Section 1.3.1 (Chapter 1).

The Minho River outflow is located ∼80 km north of the Douro and flows

southwestward from the interior of Galicia until it reaches the Atlantic Ocean, at the

northern border between Portugal and Spain. The river has a length of 300 km with a

catchment area of 17080 km2. The annual average discharge is 405 m3 s−1 (Table 6.1) and

the monthly average discharge oscillates between 100 m3 s−1 in August and 800 m3 s−1 in

February (Río-Barja and Rodriguez-Lestegás, 1992). More than 50 dams, mainly for power

generation, control the river flow. The Frieira dam, situated 80 km from the mouth and

with a capacity of 44 Hm3, is the main artificial barrier before the estuary. The estuary

presents a semidiurnal, high-mesotidal regime and the range of the astronomical tide varies

between 2 m and 4 m during neap and spring tides, respectively (IH, 2006; Sousa et al.,

2013).

There are three other freshwater sources between the Douro and Minho estuaries, all

with insignificant freshwater discharges: Ave, Cávado, and Lima Rivers (Figure 6.1, Table

Table 6.1: Mean discharges of major rivers in the region under scope. (a) data from
http://www.ospar.org. (b) data from Río-Barja and Rodriguez-Lestegás (1992).

Mean River Flow (m3 s−1)

Tambre (b) 51.3

Ulla (b) 64.5

Umia (b) 9.0

Lérez (b) 14.4

Verdugo (b) 10.6

Minho (a) 405

Lima (a) 92

Cávado (a) 73

Ave (a) 32

Douro (a) 708

http://www.ospar.org
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6.1).

The Rias Baixas are four flooded tectonic valleys (from south to north: Ria de Vigo,

Ria de Pontevedra, Ria de Arousa, and Ria de Muros) located 30 km north of the mouth of

the Minho River (Figure 6.1). They behave as partially mixed estuaries, with a two-layered

residual circulation pattern, with water flowing seaward through the upper layers and

landward through the lower ones (Álvarez et al., 2006; deCastro et al., 2006; Sousa et al.,

2014c). This particular type of circulation is enhanced by coastal upwelling (Fraga, 1981),

which introduces colder and nutrient-rich water into the estuaries (Wooster et al., 1976;

Fiúza et al., 1998). Freshwater contributions come from rivers that are relatively small,

compared to the Douro and Minho Rivers: Verdugo River at the head of the Ria de Vigo,

Lérez River at the Ria de Pontevedra, Umia and Ulla Rivers at the Ria de Arousa and

Tambre at the Ria de Muros (Figure 6.1, Table 6.1).

6.3 Data and methods

6.3.1 Data

Wind data, provided by the NCEP CFSR (http://rda.ucar.edu/pub/cfsr.html)

at a control station located near the mouth of the Minho River (9.0°W; 42.0°N – Figure

6.1), with a temporal resolution of 6 h was used to characterize the wind speed over the

study area. During the simulation period, the wind was characterized by two interchanging

patterns: downwelling (until 25 January and from 1 to 10 February) and upwelling (from

25 January to 1 February and after 10 February) favourable winds (Figure 6.2a). 6-hourly

averaged winds range between 3 and 6 m s−1, reaching peaks of 6 m s−1. This intensity

range is representative of the prevailing wind regime for this region (Sousa et al., 2014b).

The daily discharge for the Minho River was provided by the Confederación

Hidrográfica del Miño-Sil, while daily mean Douro River outflow data were obtained

from the SNIRH database (www.snirh.pt) at the Crestuma dam. Both rivers present

coincident patterns over this winter (Figure 6.2b). In general, the Minho freshwater input

http://rda.ucar.edu/pub/cfsr.html
www.snirh.pt
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Figure 6.2: (a) Wind pattern (m s−1) and (b) Minho and Douro rivers discharges (m3 s−1)
over the period under study (January/February 2010). Black and grey lines represent the
climatological river discharge trend.

is two thirds that of the Douro River. During the first southerly wind period, there is a

high discharge peak (Douro: > 3000 m3 s−1; Minho: > 2000 m3 s−1), and after that a slow

decrease down to the winter averages - Douro: 1000 m3 s−1 (Chapter 2); Minho: 700 m3

s−1 (Sousa et al., 2014b).

Estimations from Otero et al. (2010) show that the rivers discharge at an approximately

constant rate into the Rias Baixas during the winter period, with values significantly lower

than those from the Minho and Douro discharges. The Ulla River discharge is about 150

m3 s−1 and the Lérez, Umia and Verdugo rivers discharges are about 50 m3 s−1.

The period of January/February 2010 can be considered representative of local winter
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conditions for two main reasons: Wind patterns are typical of winter conditions and the

two major rivers have discharges similar to their winter averages (Figure 6.2b), in particular

in the event ending.

6.3.2 Plume parameters

River plumes are characterized and classified based on parameters and criteria that

are determined or applied in this chapter.

The bulk Kelvin number,Kb (Equation 5.9), the internal Rossby radius, RDh (Equation

5.10), the outflow Rossby number, Ri (Equation 5.4), the plume Rossby number, Rp

(Equation 5.11), the plume Ekman number, Ekp (Equation 5.13), the upper-layer Froude

numbers at the mouth and within plume, Fr1 (Equation 5.14), the Kelvin mouth number,

Km (Equation 5.12), and the Reynolds number Rep (Equation 5.15) are calculated for the

Douro and Minho estuarine plumes.

In addition, the Richardson number is computed (Tilburg et al., 2011), for the purpose

of comparing mixing and stratification:

Rich =
g′∆z

(∆uc)2
(6.1)

where ∆uc is the absolute difference between velocities at two different depths (∆z). An

Rich lower than 0.25 commonly indicates that the kinetic energy of the flow can nullify the

vertical stratification by mixing the plume (Smyth and Moum, 2000; Sanders and Garvine,

2001).

6.3.3 Model

The hydrodynamic model MOHID (www.mohid.com) had been previously implemented

and validated by Sousa et al. (2014c,b) for the area under research. The implementation

consists in the Configuration #1 described in Section 4.4 (Figure 6.1).

Freshwater inputs from the Rias Baixas, Minho and Douro estuarine outflows are

www.mohid.com
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considered landward boundary conditions in the L3 domain (Figure 6.1). Small rivers that

flow into the Rias Baixas, are considered inputs in the Rias de Arousa, Pontevedra and Vigo

in the L3 domain. Sousa et al. (2014b) showed that the influence of the Minho estuarine

plume on the Ria de Muros is insignificant and may only be relevant in extreme cases of

river discharges and northward wind intensity. The Minho and Douro outflows had been

computed previously, using estuarine models developed for the inner part of each estuary

(Mendes et al., 2013; Sousa et al., 2014c) as it was described in Sections 4.3.2.2 and 4.3.2.1,

respectively. Both outflows are then imposed offline in the coastal model. The Ave, Cávado

and Lima Rivers are not considered in this study, due to their small river flow, which is

considered irrelevant for the purposes of coastal circulation (Table 6.1).

A particle-tracking model was coupled to the L3 domain in order to evaluate the

trajectories of passive tracers. This module is described in Section 4.2.2.

The model was run from July 2009 to February 2010 (the first six-months were a

spin-up period), with the aim of covering a typical winter event, from January to February

2010.

6.3.4 Numerical experimental design

The interaction between the Minho and Douro estuarine plumes is assessed by

performing simulations under three scenarios. In the first scenario, the real conditions

corresponding to the period under analysis are simulated, including both the Minho and

Douro River discharges (called the reference scenario, hereafter). In the second simulation,

only the Minho River discharge is considered for the whole simulation (called the Minho

scenario, hereafter). In the third scenario, only the Douro freshwater input is considered

(called the Douro scenario, hereafter). All scenarios take into account the small rivers input

in the Rias Baixas.

The results from the reference scenario simulations were first analysed and compared

with ocean-colour imagery. The salinity and equivalent depth of freshwater fields were

computed, following the procedure of Sousa et al. (2014b), and qualitatively compared with
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nLw555 from MODIS sensor on both the Aqua and Terra satellites (Chapter 2). Average

daily images during upwelling and downwelling-favourable wind conditions were obtained.

The equivalent depth of freshwater is calculated by Equation 5.1.

The interaction between the two estuarine plumes and the water exchange with the

Rias Baixas was assessed following continuously released passive particles (simulation time

step - 15 s) at the Minho and Douro River mouths. Particles release began on 1st and

ended on 10th of February, 2010. The location of these particles was recorded half-hourly

over 10 days of downwelling-favourable winds. Maps of the spatial density of the particles

were calculated during the Lagrangian simulations, as a way of studying the dispersion

of both plumes. Thus, the number of particles in each cell is summed, to represent the

fate of the plumes. The longitudinal maximum for particle densities was also computed at

each latitude step from the river mouths to Ria de Arousa, under each scenario, in order to

define the main plume trajectories.

The offshore dispersion of the Minho plume for the reference and Minho scenarios was

evaluated through of the ratio between the number of particles and the number of grid cells

calculated under both scenarios. This procedure allows the analysis of the influence of both

plumes on the generation of small-scale eddies in the coastal region between the Minho River

mouth and the Ria de Arousa entrance. The generation of eddies was tracked using the

Okubo-Weiss method (Okubo, 1970; Weiss, 1991). This method provides information about

the relative dominance of strain and vorticity. Eddies are defined as regions of concentrated

vorticity, where there is a dominance of vorticity over strain. The Okubo-Weiss parameter,

OW , is defined as:

OW = s2
n + s2

sω
2
r (6.2)

where sn and ss are the normal and shear components of strain and ωr is the relative
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vorticity:

sn =
∂u

∂x
− ∂v

∂y

ss =
∂v

∂x
+
∂u

∂y

ωr =
∂v

∂x
− ∂u

∂y

(6.3)

The Okubo–Weiss parameter serves as a basis for defining a vortex identification

criterion for a region with negative OW . This work followed the Isern-Fontanet et al.

(2006) and Chang and Oey (2014) conditions to define the vortex region. OW needs to

be smaller than a threshold, OW0 = 0.2σOW , where σOW is the spatial standard deviation

of OW . Although the Okubo-Weiss parameter has been widely used to analyse numerical

simulations (Elhmaïdi et al., 1993; Mcwilliams, 1984, among others), the validity of the

criterion may be inaccurate (Basdevant and Philipovitch, 1994). However, it is still valid to

characterize vortex core regions or saddle points (Isern-Fontanet et al., 2006).

The freshwater transport was evaluated in several sections (Figure 6.1) to identify the

temporal and spatial variability of freshwater transport and to study plume interaction.

The freshwater transport, relative to the reference salinity, Sa, is defined by Equation 5.2.

6.4 Results and discussion

6.4.1 Reference scenario on winter 2010

The behaviour of the Douro and Minho estuarine plumes is shown in Figure 6.3 under

upwelling (upper panel) and downwelling (lower panel) favourable winds.

The salinity and equivalent depth of freshwater snapshots at 1 pm on February 1st

(end of northerly winds period, Figure 6.2a) show an offshore dispersion of both plumes in a

southwestern direction (Figure 6.3a and 6.3b). There is a typical bulge around the mouth of
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Figure 6.3: Model snapshots of salinity and equivalent depth of freshwater (m) on February
1 (a and b, respectively) and on February 9 (d and e, respectively). Average nLw555
(mW cm−2 µ m−1sr−1) from MODIS observations during upwelling (25/1 – 01/02) (c) and
downwelling-favourable winds (01/02 – 10/02) (f).

each estuary (Otero et al., 2013; Mendes et al., 2014). This offshore expansion leads to higher

stratification and mixing/dilution (Lentz, 2004; Lentz and Largier, 2006), which decreases

the probability of any interaction between the plumes. The fast dilution of the freshwater

from the Minho River prevents a more explicit contact between the two plumes. Thus,

direct interaction is extremely unlikely during upwelling events. During the downwelling

period, there is a confinement of both plumes against the coast, creating a continuous

along-shore freshwater feature ∼10 km wide (Figure 6.3d and 6.3e). Stratification decreases

compared with the upwelling event and both plumes tend to be aligned northward, in a
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coherent structure with surface velocities of about 1 m s−1, in line with the results obtained

by Otero et al. (2013) and observed in previous Chapter. The salinity and equivalent

depth of freshwater snapshots at the end of the downwelling event show an accumulation of

freshwater against the coast. Since the discharges from small rivers are almost constant

over time, the Douro and Minho plume intrusion in the Rias de Vigo, Pontevedra, and

Arousa was unequivocal in this situation (Figure 6.3e). As expected, the plume influence

on the Ria de Muros is very small, when compared with the southern Rias. This concurs

with Sousa et al. (2014c).

MODIS turbid composites show similar patterns during the offshore expansion and

confinement of both plumes (Figure 6.3c and 6.3f). Both composites attest the ability of

this model configuration to simulate river plume features (length and width) and variability.

Values for several parameters that describe general plume characteristics were

calculated for the Minho and Douro Rivers (Garvine, 1995; Tilburg et al., 2011; Horner-

Devine et al., 2015) for all scenarios during upwelling and downwelling periods (Table

6.2).

The results for the Douro scenario (not shown) are similar to the reference scenario.

For the other scenarios, the Douro and Minho River plumes share some characteristics;

however, they also show some differences.

The Douro plume width, Wp, is about twice that of the Minho for downwelling periods

and that difference is lower under upwelling events (Table 6.2). On the other hand, the

Rossby radius of deformation, RDh, is similar for both plumes, but higher for Minho River

(∼1/6 of distance between Minho and Douro River mouths). In the majority of situations

of upwelling-favourable winds, when RDh is smaller than Wp , the Kb is above or near

1, indicating an important influence of rotational processes . Under downwelling winds,

when the plume is confined to the coast, inertial processes are more important (Kb < 1;

RDh > Wp). Low values for the Kelvin mouth parameter, Km, suggest that regions near the

river mouths are more affected by inertial than by rotational processes and, as both mouth

widths are narrow comparing with each internal Rossby radius, river discharges are likely

to form a bulge, even under northward winds (Garvine, 1995; Huq, 2009; Horner-Devine
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Table 6.2: Key parameters of the Minho (Minho and Reference scenarios) and Douro
estuarine plumes (Reference scenario) under upwelling and downwelling-favourable winds.

Minho plume Minho plume Douro plume

Minho Scenario Reference Scenario Reference Scenario

Upwelling Downwelling Upwelling Downwelling Upwelling Downwelling

RDh (km) 8.82 16.40 12.55 16.67 9.45 12.82

Wp (km) 10.25 3.84 10.05 3.43 16.45 7.56

Kb 1.16 0.23 0.80 0.21 1.74 0.59

Km 0.06 0.03 0.04 0.03 0.05 0.04

Rp 0.57 0.32 0.41 0.36 0.52 0.42

Ri 2.08 1.74 2.08 1.74 3.69 2.76

Ekp 0.20 0.02 0.06 0.01 0.15 0.05

Rep 3.50 25.78 10.21 30.83 3.26 8.39

Fr1p 1.11 0.54 0.82 0.50 0.82 0.58

Fr1m 0.94 0.43 0.66 0.43 1.05 0.64

et al., 2015).

Froude numbers within the plumes, Fr1p, and at the estuary mouths, Fr1m, show

that stratification is more important than inertial processes, except for the Minho estuarine

plume in the Minho scenario (Table 6.2). Fr1p is always larger than Fr1m for all situations

in Minho plume, showing that the near-field region is larger than Wp/2 for this estuarine

plume (Hetland, 2005; Horner-Devine et al., 2015).

The outflow Rossby values (Ri) indicate that inertial processes dominate at the mouth

of the estuaries in line with Km results (Table 6.2). Rotational influence within plume

is evident for both rivers in all cases, Rp. This is also consistent with the values for

the Ekman number, (Ekp � 1), where rotational processes also dominate over frictional

ones, even during upwelling periods. Plume Reynolds numbers, Rep, are greater than

1 for all situations, indicating that inertial processes are more important than frictional
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mixing-related processes within the plume (Table 6.2). However, the results show that this

dominance is more evident during downwelling periods. Frictional processes tend to be

more relevant under northerly winds, when the plume is thinner.

Differences between the values found in the Minho and reference scenarios show the

significant influence that the Douro discharge can have on the Minho plume. However,

the increase of freshwater in the Minho region, from the Douro River, does not change

the Minho plume average width during upwelling or downwelling periods where a slightly

decrease is found (10.25-10.05 km and 3.84-3.43 km, respectively, Table 6.2).

6.4.2 Interaction between the Douro and Minho estuarine plumes

under southerly winds

The interaction between the Douro and Minho estuarine plumes, and their consequent

intrusion in the Rias Baixas, is enhanced during downwelling-favourable winds. Thus, the

Lagrangian model was set from 1st to 10th February, when the discharges from both rivers

are close to the climatological winter average.

For the comparison between the Reference scenario and the Douro scenario, particles

are released at the Douro river mouth. The Minho River plume dynamic is taken into

account in the reference scenario, but not in the Douro scenario (the Minho River is switched

off ). No particles are released at the Minho river mouth in any of these scenarios. Similarly,

in the comparison between the reference scenario and the Minho scenario, particles are

released at the Minho river mouth and the Douro River dynamic is taken into account

in the reference scenario, but not in the Minho one (the Douro River is switched off ). In

this case, no particles are released at the Douro river mouth, in any of those scenarios.

The spatial particle density during the Lagrangian simulations for the Douro and Minho

rivers is depicted in Figures 6.4 and 6.5, respectively. In general, concerning the release

of particles at the Douro estuary mouth, the Douro (Figure 6.4a) and reference (Figure

6.4b) scenarios do not show great differences regarding the release of particles at the Douro

estuary mouth. In both simulations, the particles tend to turn right after the release point
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Figure 6.4: Sum of Lagrangian particles released from Douro River mouth over the
downwelling period (01/02 – 10/02) for the Douro (a) and the Reference (b) scenario.
Main trajectories for two scenarios (c).

and then continue northward, maintaining their distance from the coast.

After the Minho River mouth, there are some changes in the main trajectories (Figure

6.4c). Though particles in the Douro scenario follow a preferential pathway closer to the

coastline, their offshore dispersion seems to be larger and with more branches in that

direction (Figure 6.4c, black points). Considering the small number of particles in the Rias

Baixas region, plume intrusion remains unclear.

Under the Minho (Figure 6.5a) and reference (Figure 6.5b) scenarios, there are major

differences in the density map for the particles released at the Minho River mouth. In

the Minho scenario, particles near the Minho River mouth are aligned with the plume jet

toward the southwest (Figure 6.5a). In the reference scenario (Figure 6.5b), the buoyant

coastal current produced by the Douro estuarine plume limits the Minho plume expansion

in that direction, pushing more particles northwards.

In two-river systems, like the Douro-Minho, the coastal current due to the upstream

river flow (Douro) acts like a variable ambient current to the downstream plume (Minho)
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Figure 6.5: Sum of Lagrangian particles released from Minho River mouth over the
downwelling period (01/02 – 10/02) for the Minho (a) and the Reference (b) scenario. Main
trajectories for two scenarios (c). The offshore eddies generation (Okubo-Weiss parameter)
is calculated for the area represented by the black rectangle (a,b).

(Yuan et al., 2011). Moreover, in the presence of an alongshore ambient current, Fong

and Geyer (2002) demonstrated that bulge growth, from the freshwater source (here the

Minho River), ceases. Similarly, when particles are released at the Douro River, there is

a smaller dispersion of particles offshore in the reference scenario (Figure 6.5a and 6.5b).

The main trajectory of particles is closer to the coast in the Minho scenario (Figure 6.5c,

black points).

Regarding the dispersion of particles over the shelf and in the Rias Baixas, a higher

number of branches and a larger dispersion in the offshore direction are evident in the

Minho scenario (Figure 6.5a). On the other hand, the reference scenario (Figure 6.5b)

shows a greater concentration of particles in a smaller area. This is an interesting feature

of this particular region, and is similar to the patterns obtained in laboratory experiments

by Yuan et al. (2011). They observed that the upstream plume (here the Douro plume)

wrapped the downstream plume (here the Minho plume) to form a large re-circulating bulge
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Figure 6.6: Number of particles per cell for the reference scenario (red line) and the Minho
scenario (blue line). Error bars represent the standard deviation divided by the square root
of the total number of particles.

system. Such plume wrapping can be identified by the difference between the main particle

trajectories in the Douro and Minho scenarios and in the reference scenario (Figures 6.4

and 6.5). The bulge re-circulation enhancement could cause the high density of particles

in the Minho-Rias Baixas region in the reference scenario. To confirm this visual analysis,

the ratio of particles per cell for the reference and Minho scenarios was calculated (Figure

6.6). Various thresholds for the minimum number of particles in each cell (particle limit,

Figure 6.6) were considered, in order to determine if both scenario trends remain the same

in higher particle density regions (larger particle threshold). In the reference scenario, more

particles per cell were found than in the Minho scenario (Figure 6.6). This result indicates

that particles from the Minho River cover a large area in the latter scenario than in the

reference scenario, even in areas greatly influenced by the Minho discharge (larger particle

limit).

6.4.3 Douro estuarine plume effect on freshwater fate and on the

generation of small-scale instabilities

The offshore freshwater export, over the shelf, from the low-salinity band, will be

different in the regions marked in Figure 6.5a and 6.5b with a rectangle. The Okubo-Weiss
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parameter, OW , was calculated for the reference and Minho scenarios, to evaluate the

dispersion of plume and the generation of eddies. The sum of grid points, Aeddy, was

analysed where the condition for a vortex creation is fulfilled: OW ≤ OW0 (Isern-Fontanet

et al., 2006; Chang and Oey, 2014).

Figure 6.7a shows Aeddy time series for simulations under both scenarios. Time series

were also compared with hourly meridional wind component in the coastal region (Figure

6.7b) and Minho and Douro rivers discharges (Figure 6.7c). Figure 6.7b shows a clear

relation between wind pattern and the generation of small-scale eddies. On the other hand,

changes in river input seem to be irrelevant for the generation of instabilities over the shelf

(Figure 6.7c).

The Aeddy is higher after the change of wind from downwelling to upwelling (moment

1 and 3) and smaller under downwelling-favourable winds. During southerly winds, the

Figure 6.7: (a) Aeddy where OW < 0.2σOW for Reference (red) and Minho (blue) scenarios.
(b) Hourly meridional wind component near coast off Douro and Minho rivers and (c) daily
freshwater inflow of Minho and Douro rivers. Red (Reference) and blue (Minho) lines in
figures (b) and (c) represents the Aeddy filtered with a 132-h low pass. Vertical lines 1, 2,
and 3 represent upwelling/downwelling wind favourable transitions and line 4 represents the
instant when Douro river plume reaches the Minho River coastal area. Error bars represent
the Aeddy standard deviation divided by the square root of Aeddy size.
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freshwater is retained in a less stratified band attached to the coast and, when wind

direction reverses, the riverine water tends to expand offshore (Hetland, 2005; Lentz and

Largier, 2006), creating instabilities when the plume front collides with ocean waters. The

decreasing trend of Aeddy is not greatly altered when the wind reverses from northerly

(upwelling-favourable) to southerly (downwelling-favourable) (moment 2). This shows

that the plume transition from a very stratified and expanded structure over the shelf

(upwelling) to a vertical mixed and confined coastal band (downwelling) is not the cause

of more small-scale instabilities. The behaviour of the Mississippi-Atchafalaya plume in

the numerical simulations of Marta-Almeida et al. (2013) presents some similarities. These

authors also noticed that, during upwelling winds, the river plume front is more susceptible

to instabilities than under downwelling winds. Considering the difference in Aeddy in the

reference and Minho scenarios from moment 2 to 3, the plume behaviour is related to

the generation of small-scale eddies. More small-scale eddies were generated under the

Minho than under the reference scenario (coherent with Figure 6.5, black box). During a

constant wind regime, the differences in the buoyant coastal feature caused by the influence

of the Douro plume (line 4, Figure 6.7) is sufficient to generate more small-scale eddies

over the shelf and, consequently to favour effective freshwater exportation and the offshore

entrainment of the plume, as low salinity bands.

Thus, in order to analyse the Douro effect on the Minho plume, the temporal evolution

of the Richardson number (Figure 6.8a) was calculated at ∼5 m depth in a region near

the coast (Figure 6.1, section IV). After 4th of February, when the Douro plume reached

the Minho region, the Richardson number is smaller in the reference scenario than in the

Minho scenario. Although values are over 0.25 in both scenarios, indicating that the flow

cannot overturn the vertical stratification, the influence of freshwater from the Douro River

plays an important role in increasing the vertical mixing in this region. This is clear in

the snapshots of vertical salinity structure along section IV (Figure 6.8b and 6.8c). In

the reference scenario, vertical salinity fields show the influence of freshwater until ∼20

m, especially close to the coast (Figure 6.8b). On the other hand, in the Minho scenario

(Figure 6.8c), the plume is restricted to the first 5-8 m.
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Figure 6.8: (a) Time series of Richardson number calculated in the location marked by a
cross in lower panels. Snapshots of salinity vertical structure in cross-section IV (Figure
1) for Reference (b) and Minho (c) scenarios. Vertical line in upper panel represents the
snapshots instant.

Results obtained under the reference scenario present some similar patterns to those

found in laboratory experiments (Cenedese and Lerczak, 2007; Yuan et al., 2011). The

Douro plume has a higher chance of mixing with ocean waters and, when it reaches the

Minho plume (less dense surface water), tends to flow underneath the Minho outflow (Figure

6.8b). In this way, the two-river plume system is aligned more vertically (in agreement

with Cenedese and Lerczak (2007) and Yuan et al. (2011) results), limiting the well-known

surface-advected plume behaviour of the Minho plume (Sousa et al., 2014b).

The freshwater transport offshore and northward was calculated (Figures 6.9e and

6.9d). The results are in line with the hypothesis proposed above. The freshwater transport
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Figure 6.9: Freshwater transport in sections I (a), II (b), III (c), IV (d), and V (e) (Figure
6.1) for Reference (red), Minho (blue), and Douro (black) scenarios. Green line in subplot
(d) represents the difference in freshwater transport at section IV between Reference and
Douro scenarios.

in section IV (Figure 6.9d) shows that when the Douro plume starts to interact with the

Minho one, there is an increase in the freshwater volume (+37%) that flows northward in

the Rias Baixas direction. The difference between the freshwater transport in the reference

and Douro scenarios is also larger (+11%), compared to the Minho scenario after 4th

February (Figure 6.9d, green line). The presence of an ambient flow (here the Douro river

plume) makes the northward transport of freshwater more efficient (Fong and Geyer, 2002).

For freshwater transport through section V (Figure 6.9e), VFw is positive (to the coast)

before 4th of February, because the wind rotates from south to north on 1st of February,

and pushes freshwater from offshore into the coast. After 4th of February, when the Douro

plume reaches the Minho region, the offshore transport (negative) is very small (∼0.004 Sv

and ∼0.006 Sv for reference and Minho scenarios, respectively). Nevertheless, the difference

suggests, once again, that the Douro plume prevents offshore freshwater transport in the

region of plume interaction (-34%).

The results presented in this section suggest that, despite its small contribution to
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surface salinity changes in the Minho-Rias Baixas region, the Douro plume has an important

influence on plume stratification. The isopycnals tend to be more vertical in presence of the

Douro plume (even during a downwelling event), preventing the generation of small-scale

eddies and the consequent offshore transport of freshwater.

6.4.4 The influence of the Douro plume on the intrusion of less

dense water into the Rias Baixas

The Minho plume intrusion into the Rias Baixas during events of moderate-to-high

river discharge combined with southerly winds has been well documented in previous studies

(Sousa et al., 2014b). This intrusion of less dense water at the surface produces an unusual

salinity gradient, which is able to generate an inversion of normal estuarine circulation

(Sousa et al., 2014a). The impact of the Douro plume on the intrusion of less dense water

in the Rias Baixas was also explored taking advantage of the Lagrangian particles tracking

model. For this purpose, the sum and the temporal average of particles released at Minho

and Douro rivers that cross the section defined at each Ria mouth (Table 6.3; sections I, II,

and III shown in Figure 6.1) were analysed and the fraction of particles, P , inside each Ria

was compared to the total of particles at each region of influence:

P =
Pi

Pi + Pm
× 100 (6.4)

where Pi is the number of particles inside each Ria and Pm represents the number of particles

in the adjacent area of each mouth. Moreover, the freshwater transport was calculated over

the same sections between 2 and 8 February.

As stated in Section 6.4.2, the small number of particles derived from the Douro River

in the Rias Baixas region show that, during this winter event of average river inflows, the

direct effect of the Douro plume on the Rias Baixas is irrelevant (Figure 6.4, Table 6.3).

The same conclusions may be obtained from the freshwater transport results under the

Douro scenario (Figure 6.9). In this scenario a null freshwater transport into the Ria de
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Table 6.3: Sum (S) and average (A) of the particles, released at Minho and Douro river
mouths, recorded, over time, inside the Rias Baixas in the downwelling period (01/02
- 10/02) for Reference, Douro and Minho scenarios. Average of particles fraction, P , is
calculated between particles inside each Ria, Pi, and the total of particles inside each region
of influence (Pi+Pm).

River Scenario
Ria de Vigo Ria de Pontevedra Ria de Arousa

P (%) S A P (%) S A P (%) S A

Douro
Reference

0.2

±0.02
41 0.1

0

±0
0 0

10.9

±0.7
318 0.7

Douro
0.7

±0.09
414 1

1.2

±0.08
422 1

6.6

±0.6
158 0.4

Minho
Reference

13.8

±0.9
96228 221.7

24.1

±0.9
134396 309.7

22.5

±1.0
125762 289.8

Minho
9.8

±0.6
53846 124.1

23.7

±1.2
116195 267.7

30.9

±0.7
180557 416

Vigo (positive values) was found (Figure 6.9a). The freshwater intrusion into the Rias de

Pontevedra and Arousa after 6th and 7th of February, respectively, is not related with the

Douro River discharge (Figures 6.9b and 6.9c). Rather, this originates from small rivers

that flow into the Ria de Vigo and then enter the Ria de Pontevedra. This confirms the

interconnectivity of the Rias Baixas in terms of water exchange, as previous verified by

Sousa et al. (2014b). An analogous process is observed between the Rias de Pontevedra

and Arousa, but with a lower water volume exchange.

The direct influence of the Douro plume on the Rias Baixas could not be negligible

during extreme discharges peaks, as has been presented by Marta-Almeida et al. (2002)

and Otero et al. (2013). However, there is an indirect influence of the riverine waters from

the Douro (Figures 6.8 and 6.9) that can change the fate of lighter water (mainly from the

Minho Estuary), which definitely affects the intrusion pattern inside the Rias Baixas. In

the Minho scenario, the number of particles released at the Minho estuary mouth (sum
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and average) that cross the Ria de Vigo and Pontevedra entrances is lower than in the

reference scenario (Table 6.3). On the contrary, the number of particles that cross the Ria

de Arousa mouth section is lower in the reference scenario. The results from the fraction of

the particles that penetrate each Ria, P , are identical (Table 6.3). The fraction of particles

inside the Rias de Vigo and Pontevedra is larger for the reference scenario, while for the Ria

de Arousa it is larger for the Minho scenario. Although the main trajectory of particles off

the Rias Baixas, in the reference scenario, is far from the coast, it seems that the volume of

freshwater that reaches the mouths of the Rias de Vigo and Pontevedra is more important

(enhancing the horizontal density difference between inside and outside) for the intrusion of

particles. In addition, the lower number of small-scale instabilities (Figure 6.7) and the

resulting lower dispersion of freshwater offshore also leads to an important confinement of

the plume against the coast and, consequently, to an higher intrusion efficiency into the Rias

de Vigo and Pontevedra. The results for the Ria de Arousa have a different interpretation

as regards coastline orientation (Sousa et al., 2014b). This ria’s mouth is located along the

main plume trajectory for both scenarios, acting as a fishing net for the particles that flow

northward. The freshwater fate results from the number of particles released at the Minho

river mouth that reach each Ria in the reference and Minho scenarios.

The results from the freshwater transport computed over sections I, II, and III (Figures

6.9a, 6.9b, and 6.9c) corroborates the outcomes from the Lagrangian particle simulations

(Table 6.3) previous described. The Douro river plume transports a slightly higher volume of

lighter water (+1.6%) into the Ria de Vigo from 2th to 5th of February and then contributes

to its retention inside this Ria (+25% retention) (Figure 6.9a). In the Ria de Pontevedra,

freshwater intrusion is 14% more effective in the reference scenario than in the Minho one

(Figure 6.9b). Conversely, a lower volume of freshwater enters the Ria de Arousa (Figure

6.9c) during the reference scenario than in the Minho scenario (-13%), showing agreement,

once again, with Lagrangian particle results.

It is worth mentioning the significant impact that this high freshwater intrusion could

have on the ecology of the Rias de Pontevedra and Vigo. The possible enhancing of negative

circulation inside these estuaries (Álvarez et al., 2006; Sousa et al., 2014c), caused by the
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increased supply of freshwater, tends to stop the water exchange between the Ria de Vigo

and the shelf, thus increasing residence time and consequently affecting water quality (Sousa

et al., 2014c). This freshwater intrusion acts as a selective force on the phytoplankton

assemblage. For example, diatoms are unable to counteract under these conditions and are

therefore removed from the water column (Pitcher et al., 2010). On other hand, the extra

supply of nutrients from the plume could fertilize the outer part of the estuary, resulting in

an extra feeding source for the main shellfish in the area (deCastro et al., 2006).

A summary of the new results, bearing in mind the main known features of the Minho

estuarine plume and the influence of the Douro plume, was drawn up and schematically

depicted in Figure 6.10. Figure 6.10a shows the well-documented behaviour of the Minho

plume and its influence on the Rias Baixas under southerly winds and moderate river

discharges. When the wind blows northwards, part of the plume tends to turn southwest

but most of it is confined against the coast. The export of freshwater offshore is intensified

through small-scale eddies. Moreover, there is Minho plume intrusion into the Rias Baixas,

through surface layers, when the density in the inner part of estuaries is higher than in the

outer part.

The indirect influence of the Douro plume on the Minho plume is summarized in the

diagram presented in Figure 6.10b. In both Minho and reference scenarios downwelling-

favourable winds push both plumes against the coast, generating the WIBP (Peliz et al.,

2002). North of the Minho Estuary, waters from the Douro River merge with the Minho

plume to change its preferential trajectory. The main trajectory of particles released at

the Minho River is slightly displaced westward. In addition, the Douro plume prevents the

dispersion of freshwater and its consequent transport to the open ocean through small-scale

eddies. The increase in freshwater in the outer part of the Rias de Vigo and Pontevedra

increases the density gradient between water inside and outside the estuaries, enhancing

the water exchange. The results for the Ria de Arousa have a different interpretation, as

regards its coastline orientation (Sousa et al., 2014b).
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Figure 6.10: (a) Schematic representation of Minho River plume behaviour and its influence
on Rias Baixas (Sousa et al., 2014c,b,a) and (b) schematic representation of Minho River
plume behaviour and its influence on Rias Baixas under the influence of Douro River plume
during downwelling favourable winds.

6.5 Conclusion

The results present in this Chapter contribute to the definition and understanding

of the western Iberian Peninsula circulation patterns, highlighting the importance of the

interaction between the Douro and Minho estuarine plumes in the propagation of WIBP.

Representative winter conditions were analysed, taking into account the estuarine inflow

from the Douro and Minho Rivers under different river discharge conditions. Comparisons

with remote sensing images attest the accuracy of this model configuration to simulate both

estuarine plume features along the inner shelf.
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Interaction between the Douro and Minho plumes is unlikely during upwelling events.

The Ekman transport leads to an offshore dispersion of plumes and the fast dilution of

freshwater from the Minho plume prevents any explicit contact with the Douro plume.

Under southerly winds, both plumes tend to be confined against the coast. A well-

mixed ∼10 km wide freshwater band (WIBP) is formed with strong northward surface

currents (∼1 m s−1). The probability of interaction between the Douro and Minho plumes

increases, as does their intrusion into the Rias Baixas.

Lagrangian simulations showed that the direct influence of the Douro plume on the

Rias Baixas is small, when compared to the Minho plume. However, the Douro estuarine

plume has an important indirect influence on both plumes’ fate over the shelf. The

freshwater contribution from the Douro Estuary leads to a WIBP current stabilization,

preventing offshore freshwater export (by means of the generation of small-scale eddies),

enhancing water exchange with the Rias de Vigo and Pontevedra, and contributing to

reverse circulation inside these. As the Rias Baixas are important production sites for

marine species, minor changes to the local salinity field, estuarine circulation or input of

nutrients can significantly affect the local economy.

Further research into other implications inside the Rias Baixas would be helpful. The

implementation of a higher resolution model in this particular area would offer a clearer

image of the influence of both the Douro and Minho plumes. Moreover, the consequences

for southward estuarine systems and coastal regions from the Douro freshwater input during

upwelling events should be addressed in future studies, as its daily discharge peaks can be

much higher those from the Minho.
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Final conclusions and future work

Whereas summary conclusions were presented at the end of each Chapter, an overview

of the main outcomes as well as some suggestions for future research are given in this

section.

Ocean-colour images from MODIS were fundamental to characterize the temporal and

spatial scale of the Douro estuarine plume, showing the utility of remote sensing imagery to

monitor estuarine plumes like the Douro. The nLw555 data showed to be the best proxy to

detect the turbid signal of riverine waters in the coastal zone adjacent to the Douro Estuary

mouth, presenting the best compromise amongh the percentage of available pixels and the

correlation values between river discharge and nLw555. The turbid plume is well observed

in nLw555 composites when the river discharge exceeds 500 m3 s−1. River discharge and

wind act as primary forcing in the plume propagation and fate. Near coast, the variability

of the turbid signal intensity responds very well to the river discharge in Crestuma. Wind

modulates the plume propagation and fate over the ocean, generating different turbid plume

mean-states, which strongly depend on wind direction and magnitude. Turbid composites

show the secondary influence of the tide on the Douro estuarine plume dispersion. Major

influence was observed in the near-field region, related to the tidal variation of estuarine

outflow (flood-ebb cycle). No significant differences between low and high tide turbid

composites were found in offshore regions.

181
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The temporal variability of the Douro estuarine plume was evaluated taking into

account long-term data from river input, precipitation and climate patterns, namely NAO

and EA indices. Large turbid river plumes occurred in the winters of 2000/01, 2002/03,

and 2013/14 with high correlations obtained between monthly time series of nLw555, river

inflow and rainfall rates. Turbid time series showed a high correlation (r=0.51) with EA

winter patterns (DJF), presented a maximum peak at 1-month lag (EA ahead nLw555

signal). The NAO index shows a secondary role in the extension and magnitude of the

Douro turbid plume. Although NAO winter pattern are well correlated with the Douro

river discharge, it is not observed for nLw555 time series with same time lag (1-month).

However, a high correlation was observed between nLw555 and winter NAO at 3-month

lag. This unexpected spring correlation can be related with an upwelling season shift from

spring to winter. The spring biological production is affected and, consequently, coastal

turbid patterns are changed in a range of low-to-medium nLw555 values. An anomalous

turbid pattern was found in the autumn of 2004 without any direct relation with Douro

estuarine outflow. Despite the real source of this event remains uncertain, a coccolithophore

bloom rises as a reasonable.

The numerical modelling tasks were performed by setting-up two configurations to

study the Douro estuarine plume propagation (Chapter 4). These coastal configurations

(configurations #1 and #2) are based on the numerical model MOHID, where three levels

one-way nested grids and two estuarine models (Minho and Douro estuaries) are included.

An improved configuration #1 and Minho estuarine model, previously validated by Sousa

et al. (2013), were used to study the impact of the Douro estuarine plume water in the

Minho and Rias Baixas regions. Computational limitations prevent the study of the whole

area of interest in a single L3 domain (from Ria de Aveiro to cape Finisterra) without

reducing the spatial resolution. Thus, configuration #2, based on a previous implementation

(Sousa et al., 2013) was developed with focus in the Douro Estuary and both northward and

southward adjacent coastal regions. This configuration, as well as the Douro estuarine 2D

model application, were validated by comparing model predictions and observations from a

large variety of datasets. The results reveal that this coastal nested model implementation
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accurately reproduces local hydrodynamics and thermohaline patterns over the Northwestern

Portuguese coast, allowing the proper study of the Douro estuarine plume propagation.

The characterization of the Douro estuarine plume in terms of its dynamics, scale

and propagation over the continental shelf was addressed in Chapter 5 using the numerical

model implementation validated in Chapter 4 (configuration #2). For this purpose, several

scenarios with different river discharges (low, moderate and high), wind directions (north,

south, west and east) and intensities (3 and 6 m s−1) were defined.

In the absence of significant wind or under null wind forcing, the plume presents

typical characteristics of a prototypal plume (Horner-Devine et al., 2015). It comprises a

near-field region, a re-circulating bulge in front of the river mouth and a northward coastal

current in the far-field region. Moreover, the Douro estuarine plume can be classified as

a surface-advected and large-scale plume according to classifications of Yankovsky and

Chapman (1997) and Garvine (1995), respectively. The results also demonstrate that a

moderate-to-high river discharge is enough to create, without southerly wind component, a

northward near surface coastal current of 0.2-0.3 m s−1 (about 10 km width).

Simulations considering wind forcing reveal low salinity patterns similar to those

found for turbid composites generated in Chapter 2, confirming nLw555 as a good proxy

for the Douro estuarine plume signal. From the analysis of model predictions, a schematic

representation of the main plume propagation and circulation patterns under different

wind forcing scenarios were proposed. Under easterly winds, a plume shape similar to that

predicted in the simulations without wind forcing is revealed. However, a slight detachment

from the coast is observed with a small increase in current velocity. Westerly winds tend

to accumulate freshwater near the coast, being the only wind scenario where a southward

coastal current is generated. Under northerly winds, the plume main feature is an offshore

extension with an inclination towards southwest, while southerly winds tend to confine the

plume to the coast, enhancing the velocity within the plume, with values higher than 0.8 m

s−1 under high river discharge.

A particular characteristic of the plume propagation under downwelling-favourable

winds and moderate-to-high river discharge is the generation of a strong northward coastal
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current, which transport about five times more riverine water from Douro than in the

absence of wind forcing. In these wind conditions, the Douro and Minho estuarine plumes

starts to interact. The interaction between these estuarine plumes is addressed in Chapter

6, where the influence of the merging process in the WIBP propagation is highlighted. A

representative winter event was simulated and analysed (2010 winter), including the Douro

and Minho estuarine outflows, by using an improved version of the coastal model application

previously validated by Sousa et al. (2013) (configuration #1) and a particle tracking model

implementation. A schematic representation of the direct and indirect influence of the

Douro estuarine water in the coast off Minho Estuary and in Rias Baixas was proposed.

Lagrangian simulations revealed that the Douro plume has a small direct influence on Rias

Baixas dynamics. However, it has an important indirect influence on merged plumes’ fate,

leading to the WIBP current stabilization, preventing the offshore freshwater export and

enhancing water exchange with the southern Rias (Vigo and Pontevedra). As Rias Baixas

are recognized as an important production area for marine species, minor changes in their

hydrography can significantly affect the local economy.

More work can be addressed in future using remote sensing products for the region of

influence of the Douro discharge. The current lack of long-term in situ data such as salinity,

water temperature, Coloured Dissolved Organic Material (CDOM), chlorophyll, remote

sensing reflectances, among other properties is a fundamental limitation to fully understand

the relation between turbidity (used in this work as a Douro estuarine plume proxy) and low

salinity waters. The development of consistent monitoring programs dedicating to measure

high volumes of data would generate conditions to create feasible satellite derived salinity

fields. This can be performed based on linear and multi-linear relationships (Ahn et al.,

2008; Palacios et al., 2009), or more complex, using neural networks to pair in situ salinity

values with satellite data along with other environmental variables such as tides, bathymetry,

SST, chlorophyll-a, river discharge, etc., generating links between these variables (Geiger

et al., 2013). A large number of in situ measurements would also contribute to create and

tune regional algorithms, properly validating remote sensing products for this coastal region.

This can be done for past (SeaWiFS, MERIS, etc.), current and future satellite missions



185

(MODIS from NASA and Sentinel from ESA) devoted to ocean observations

Considering short-term possibilities, the examination of further anomalous turbid

features under low discharge regimes deserves more attention. If the relation between these

patterns and cocolithosphore blooms can be verified, new opportunities will be open to

create an easy and practicable method to detect and evaluate bloom events.

From the analysis of numerical simulation results performed in Chapters 5 and 6, two

future topics arises, justifying a more in-depth analysis in a short-term period:

1) Is it possible that the Douro riverine water propagates into the Ria de Aveiro

Lagoon, changing substantially the local hydrography under strong westerly wind events?

2) What are the main patterns of the Douro plume propagation under a punctual

event of moderate-to-high river runoff during late spring and summer seasons?

A methodology similar to that followed in Chapter 6 should be implemented to study

the first question, using a more realistic estuarine-coast system (two-way) in the numerical

simulation. In this way, both estuarine systems can be computed integrated in the coastal

domain, giving conditions to perform an important analysis of the water mixing within this

tidal-driven coastal lagoon.

Configuration #2 should be validated under summer conditions to assure conditions

to accurately answer the second question, when the typical differences between water

temperatures in ocean and in estuary are usually opposite to those found during winter.

Then, a methodology similar to that followed in Chapter 5 should be adopted, including a

prior statistical analysis of wind and river discharge in summer conditions.

Despite different discharge regimes and length scales, the Douro estuarine plume can

be compared with other river plumes. One example is the Columbia River plume (U.S.A),

which shares some particularities with the Douro plume. Consequently, some investigations

similar to that performed off Oregon coast can be tested in the Douro region in the future.

For example, the possibility that Douro Estuary acts as a generator of internal waves seems

to be a reasonable hypothesis and need to be verified, since internal waves can potentially

increase nutrients supply to euphotic zone, enhancing the near-surface chlorophyll, which

is often visible in ocean-colour images (da Silva, 2002). This task should be addressed by
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combining resources such as remote sensing, field observations and numerical modelling:

1) using Synthetic Aperture Radar (SAR) images that often indicate regions of enhanced

surface roughness associated with internal wave velocity convergences (Nash and Moum,

2005), 2) performing front tracking experiments as documented by Kilcher and Nash

(2010) and Hickey et al. (2010) (see Figure 4 of Kilcher and Nash (2010)) to observe tidal

plume fronts, 3) implementing numerical coastal models (preferably a two-way coupled

estuary-coast system) with higher vertical and horizontal resolution in the tidal plume

region.

The Douro re-circulating bulge structure is clear in majority of the numerical

simulations (Chapter 5). However, this structure was never observed in situ and modelling

results need to be verified. To observe this anticyclonic circulation north of the Douro

River mouth, a field work based on CTD transects (cross and along shore) and/or gliders

observations (Saldías et al., 2016) as well as a deployment of more than one ADCP would

be required to characterize its horizontal and vertical structure (Horner-Devine et al., 2009).

Another solution would be the implementation of a High Frequency (HF)-Radar system,

allowing to the long-term measurement of the surface velocity horizontal fields near the

river mouth (Chant et al., 2008b).
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