15 May, 2019

Dr. José Manuel Domínguez Alonso

Department of Applied Physics
Earth Sciences
“Campus da Auga” Building
Rúa Canella da Costa da Vela 12
Universidade de Vigo
32004 Ourense, Spain
Office: 1.4
e-mail: jmdominguez@uvigo.es
Phone: +34 988 368 786

Scopus ID: 55696865500
ORCID iD: 0000-0002-2586-5081
WoS ResearcherID: N-2219-2014
ResearchGate ID: Jm_Dominguez2
Google Scholar: J.M. Domínguez

My research activity is mainly focused on computational fluid dynamics using HPC (High Performance Computing) and its application to coastal engineering. I have been working for the last nine years on accelerating numerical models such as SPH (Smoothed Particle Hydrodynamics) for GPUs and clusters collaborating with people from University of Manchester and Flanders Hydraulics Research in Belgium. I am the main developer of the DualSPHysics code (www.dual.sphysics.org, DualSPHysics on GitHub, YouTube channel), one of the most efficient and advanced SPH codes for fluid simulation.


§ J. Sun, L. Zou, N. Govender, I. Martínez-Estévez, A.J.C. Crespo, Z. Sun, J.M. Domínguez. 2023. A resolved SPH-DEM coupling method for analysing the interaction of polyhedral granular materials with fluid. Ocean Engineering, 287: 115938. doi:10.1016/j.oceaneng.2023.115938.
§ J. El Rahi, I. Martínez-Estévez, B. Tagliafierro, J.M. Domínguez, A.J.C. Crespo, V. Stratigaki, T. Suzuki, P. Troch. 2023. Numerical investigation of wave-induced flexible vegetation dynamics in 3D using a coupling between DualSPHysics and the FEA module of Project Chrono. Ocean Engineering, 285: 115227. doi:10.1016/j.oceaneng.2023.115227.
§ B. Tagliafierro, M. Karimirad, C. Altomare, M. Göteman, I. Martínez-Estévez, S. Capasso, J.M. Domínguez, G. Viccione, M. Gómez-Gesteira, A.J.C. Crespo. 2023. Numerical validations and investigation of a semi-submersible floating offshore wind turbine platform interacting with ocean waves using an SPH framework. Applied Ocean Research, 141: 103757. doi:10.1016/j.apor.2023.103757.
§ J. Mitsui, C. Altomare, A.J.C. Crespo, J.M. Domínguez, I. Martínez-Estévez, T. Suzuki, S. Kubota, M. Gómez-Gesteira. 2023. DualSPHysics modelling to analyse the response of Tetrapods against solitary wave. Coastal Engineering, 183: 104315. doi:10.1016/j.coastaleng.2023.104315.
§ I. Martínez-Estévez, B. Tagliafierro, J. El Rahi, J.M. Domínguez, A.J.C. Crespo, P. Troch, M. Gómez-Gesteira. 2023. Coupling an SPH-based solver with an FEA structural solver to simulate free surface flows interacting with flexible structures. Computer Methods in Applied Mechanics and Engineering, 410: 115989. doi:10.1016/j.cma.2023.115989.
§ S. Capasso, B. Tagliafierro, S. Mancini, I. Martínez-Estévez, C. Altomare, J.M. Domínguez, G. Viccione. 2023. Regular Wave Seakeeping Analysis of a Planing Hull by Smoothed Particle Hydrodynamics: A Comprehensive Validation. Journal of Marine Science and Engineering, 14(4): 700. doi:10.3390/jmse11040700.
§ G. Ruffini, J.M. Domínguez, R. Briganti, C. Altomare, J. Stolle, A.J.C. Crespo, B. Ghiassi, S. Capasso, P. Girolamo. 2023. MESH-IN: A MESHed INlet offline coupling method for 3-D extreme hydrodynamic events in DualSPHysics. Ocean Engineering, 268: 113400. doi:10.1016/j.oceaneng.2022.113400.
§ I. Martínez-Estévez, J.M. Domínguez, B. Tagliafierro, R. Canelas, O. García-Feal, A.J.C. Crespo, M. Gómez-Gesteira. 2023. Coupling of an SPH-based solver with a multiphysics library. Computer Physics Communications, 283: 108581. doi:10.1016/j.cpc.2022.108581.
§ G. Novak, P. Pengal, A.T. Silva, J.M. Domínguez, A. Tafuni, M. Cetina, D. Zagar. 2023. Interdisciplinary design of a fish ramp using migration routes analysis. Ecological Modelling, 475: 110189. doi:10.1016/j.ecolmodel.2022.110189.
§ J.M. Domínguez, G. Fourtakas, C. Altomare, R.B. Canelas, A. Tafuni, O. García-Feal, I. Martínez-Estévez, A. Mokos, R. Vacondio, A.J.C. Crespo, B.D. Rogers, P.K. Stansby, M. Gómez-Gesteira. 2022. DualSPHysics: from fluid dynamics to multiphysics problems. Computational Particle Mechanics, 9(5): 867–895. doi:10.1007/s40571-021-00404-2. -Open access-
§ C. Altomare, J.M. Domínguez, G. Fourtakas. 2022. Latest developments and application of SPH using DualSPHysics. Computational Particle Mechanics, 9(5): 863–866. doi:10.1007/s40571-022-00499-1.
§ M. Brito, F. Bernardo, M.G. Neves, D.R.C.B. Neves, A.J.C. Crespo, J.M. Domínguez. 2022. Numerical Model of Constrained Wave Energy Hyperbaric Converter under Full-Scale Sea Wave Conditions. Journal of Marine Science and Engineering, 10(10): 1489. doi:10.3390/jmse10101489.
§ B. Tagliafierro, M. Karimirad, I. Martínez-Estévez, J.M. Domínguez, G. Viccione, A.J.C. Crespo. 2022. Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method. Energies, 15(11): 3993. doi:10.3390/en15113993.
§ T. Suzuki, O. García-Feal, J.M. Domínguez, C. Altomare. 2022. Simulation of 3D overtopping flow–object–structure interaction with a calibration-based wave generation method with DualSPHysics and SWASH. Computational Particle Mechanics, 9(5): 1003–1015. doi:10.1007/s40571-022-00468-8.
§ B. Tagliafierro, A.J.C. Crespo, I. Martínez-Estévez, J.M. Domínguez, M.Göteman, J. Engström, M. Gómez-Gesteira. 2022. A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions. Applied Energy, 311: 118629. doi:10.1016/j.apenergy.2022.118629.
§ R.J. Lowe, C. Altomare, M. Buckley, R. da Silva, J.E. Hansen, D. Rijnsdorp, J.M. Domínguez, A.J.C. Crespo. 2022. Smoothed Particle Hydrodynamics simulations of reef surf zone processes driven by plunging irregular waves. Ocean Modelling, 171: 101945. doi:10.1016/j.ocemod.2022.101945.
§ S. Capasso, B. Tagliafierro, I. Martínez-Estevez, J.M. Domínguez, A.J.C. Crespo, G. Viccione. 2022. A DEM approach for simulating flexible beam elements with the Project Chrono core module in DualSPHysics. Computational Particle Mechanics, 9(5): 969–985. doi:10.1007/s40571-021-00451-9.
§ J. O’Connor, J.M. Domínguez, B.D. Rogers, S.J. Lind, P.K. Stansby. 2022. Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs. Computer Physics Communications, 273: 108263. doi:10.1016/j.cpc.2021.108263.
§ A. English, J.M. Domínguez, R. Vacondio, A.J.C. Crespo, P.K. Stansby, S.J. Lind, L. Chiapponi, M. Gómez-Gesteira. 2022. Modified dynamic boundary conditions (mDBC) for general-purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems. Computational Particle Mechanics, 9(5): 911-925. doi:10.1007/s40571-021-00403-3.
§ N. Quartier, A.J.C. Crespo, J.M. Domínguez, V. Stratigaki, P. Troch. 2021. Efficient response of an onshore Oscillating Water Column Wave Energy Converter using a one-phase SPH model coupled with a multiphysics library. Applied Ocean Research, 115: 102856. doi:10.1016/j.apor.2021.102856.
§ G. Novak, J.M. Domínguez, A. Tafuni, A.T. Silva, P. Pengal, M. Cetina, D. Zagar. 2021. 3-D Numerical Study of a Bottom Ramp Fish Passage Using Smoothed Particle Hydrodynamics. Water, 13(11): 1595. doi:10.3390/w13111595.
§ M.D. Green, Y. Zhou, J.M. Domínguez, M. Gómez-Gesteira, J. Peiró. 2021. Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks. Ocean Engineering, 229: 108925. doi:10.1016/j.oceaneng.2021.108925.
§ B. Tagliafierro, S. Mancini, P. Ropero-Giralda, J.M. Domínguez, A.J.C. Crespo, G. Viccione. 2021. Performance Assessment of a Planing Hull Using the Smoothed Particle Hydrodynamics Method. Journal of Marine Science and Engineering, 9(3): 244. doi:10.3390/jmse9030244.
§ N. Quartier, P. Ropero-Giralda, J.M. Domínguez, V. Stratigaki, P. Troch. 2021. Influence of the Drag Force on the Average Absorbed Power of Heaving Wave Energy Converters Using Smoothed Particle Hydrodynamics. Water, 13(3): 384. doi:10.3390/w13030384.
§ P. Ropero-Giralda, A.J.C. Crespo, R.G. Coe, B. Tagliafierro, J.M. Domínguez, G. Bacelli, M. Gómez-Gesteira. 2021. Modelling a Heaving Point-Absorber with a Closed-Loop Control System Using the DualSPHysics Code. Energies, 14(3): 760. doi:10.3390/en14030760.
§ C. Altomare, A. Tafuni, J.M. Domínguez, A.J.C. Crespo, X. Gironella, J. Sospedra. 2020. SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure. Journal of Marine Science and Engineering, 8(10): 826. doi:10.3390/jmse8100826.
§ P. Ropero-Giralda, A.J.C. Crespo, B. Tagliafierro, C. Altomare, J.M. Domínguez, M. Gómez-Gesteira, G. Viccione. 2020. Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics. Renewable Energy, 162: 1763-1776. doi:10.1016/j.renene.2020.10.012.
§ D. Kisacik, V. Stratigaki, M. Wu, L. Cappietti, I. Simonetti, P. Troch, A.J.C. Crespo, C. Altomare, J.M. Domínguez, M. Hall, M. Gómez-Gesteira, R.B. Canelas, P. Stansby. 2020. Efficiency and Survivability of a Floating Oscillating Water Column Wave Energy Converter Moored to the Seabed: An Overview of the EsflOWC MaRINET2 Database. Water, 12(4): 992. doi:10.3390/w12040992.
§ O. García-Feal, L. Cea, J. González-Cao, J.M. Domínguez, M. Gómez-Gesteira. 2020. IberWQ: A GPU Accelerated Tool for 2D Water Quality Modeling in Rivers and Estuaries. Water, 12(2): 413. doi:10.3390/w12020413.
§ M. Brito, R.B. Canelas, O. García-Feal, J.M. Domínguez, A.J.C. Crespo, R.M.L. Ferreira, M.G. Neves, L. Teixeira. 2020. A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints. Renewable Energy, 146, 2024-2043. doi:10.1016/j.renene.2019.08.034.
§ R. Albano, S. Manenti, J.M. Domínguez, S. Li, D. Wang. 2020. Computational Methods and Applications to Simulate Water-Related Natural Hazards. Mathematical Problems in Engineering, 2020, 4363095. doi:10.1155/2020/4363095.
§ J. González-Cao, O. García-Feal, D. Fernández-Nóvoa, J.M. Domínguez, M. Gómez-Gesteira. 2019. Towards an automatic early warning system of flood hazards based on precipitation forecast: the case of the Miño River (NW Spain). Natural Hazards and Earth System Sciences, 19, 2583-2595. doi:10.5194/nhess-19-2583-2019.
§ J.M. Domínguez, A.J.C. Crespo, M. Hall, C. Altomare, M. Wu, V. Stratigaki, P. Troch, L. Cappietti, M. Gómez-Gesteira. 2019. SPH simulation of floating structures with moorings. Coastal Engineering, 153, 103560. doi:10.1016/j.coastaleng.2019.103560.
§ G. Novak, A. Tafuni, J.M. Domínguez, M. Cetina, D. Zagar. 2019. A Numerical Study of Fluid Flow in a Vertical Slot Fishway with the Smoothed Particle Hydrodynamics Method. Water, 11(9), 1928. doi:10.3390/w11091928.
§ S. Manenti, D. Wang, J.M. Domínguez, S. Li, A. Amicarelli, R. Albano. 2019. SPH Modeling of Water-Related Natural Hazards. Water, 11(9), 1875. doi:10.3390/w11091875.
§ G. Fourtakas, J.M. Domínguez, R. Vacondio, B.D. Rogers. 2019. Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models. Computers and Fluids, 190, 346-361. doi:10.1016/j.compfluid.2019.06.009.
§ M.L. Hosain, J.M. Domínguez, R.B. Fdhila, K. Kyprianidis. 2019. Smoothed particle hydrodynamics modeling of industrial processes involving heat transfer. Applied Energy, 252, 113441. doi:10.1016/j.apenergy.2019.113441.
§ M. Leonardi, J.M. Domínguez, T. Rung. 2019. An approximately consistent SPH simulation approach with variable particle resolution for engineering applications. Engineering Analysis with Boundary Elements, 106, 555-570. doi:10.1016/j.enganabound.2019.06.001.
§ G. Novak, J.M. Domínguez, A. Tafuni, M. Cetina, D. Zagar. 2019. Evaluation of the drag coefficient of a fully submerged body using SPH. Acta Hydrotechnica, 32(57), 107-119. doi:10.15292/acta.hydro.2019.08.
§ T. Verbrugghe, V. Stratigaki, C. Altomare, J.M. Domínguez, P. Troch, A. Kortenhaus. 2019. Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions. Energies, 12(4), 697. doi:10.3390/en12040697.
§ T. Verbrugghe, J.M. Domínguez, C. Altomare, A. Tafuni, R. Vacondio, P. Troch, A. Kortenhaus. 2019. Non-linear wave generation and absorption using open boundaries within DualSPHysics. Computer Physics Communications. doi:10.1016/j.cpc.2019.02.003.
§ J.M. Domínguez, C. Altomare, J. González-Cao, P. Lomonaco. 2019. Towards a more complete tool for coastal engineering: solitary wave generation, propagation and breaking in an SPH-based model. Coastal Engineering Journal, 61: 15-40. doi:10.1080/21664250.2018.1560682.
§ J. González-Cao, C. Altomare, A.J.C. Crespo, J.M. Domínguez, M. Gómez-Gesteira, D. Kisacik. 2018. On the accuracy of DualSPHysics to assess violent collisions with coastal structures. Computers & Fluids, 179: 604-612. doi:10.1016/j.compfluid.2018.11.021.
§ O. García-Feal, J. González-Cao, M. Gómez-Gesteira, L. Cea, J.M. Domínguez, A. Fornella. 2018. An Accelerated Tool for Flood Modelling Based on Iber. Water, 10(10): 1459. doi:10.3390/w10101459.
§ C. Altomare, B. Tagliafierro, J.M. Domínguez, T. Suzuki, G. Viccione. 2018. Improved relaxation zone method in SPH-based model for coastal engineering applications. Applied Ocean Research, 81: 15-33. doi:10.1016/j.apor.2018.09.013.
§ A. Tafuni, J.M. Domínguez, R. Vacondio, A.J.C. Crespo. 2018. A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models. Computer Methods in Applied Mechanics and Engineering, 342(1): 604-624. doi:10.1016/j.cma.2018.08.004.
§ T. Verbrugghe, J.M. Domínguez, A.J.C. Crespo, C. Altomare, V. Stratigaki, P. Troch, A. Kortenhaus. 2018. Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions. Coastal Engineering, 138: 184-198. doi:10.1016/j.coastaleng.2018.04.021.
§ R.B.C. Canelas, A.J.C. Crespo, M. Brito, J.M. Domínguez, O. García-Feal. 2018. Extending DualSPHysics with a Differential Variational Inequality: modeling fluid-mechanism interaction. Applied Ocean Research, 76: 88-97. doi:10.1016/j.apor.2018.04.015.
§ F. Zhang, A.J.C. Crespo, C. Altomare, J.M. Domínguez, A. Marzeddu, S. Shang, M. Gómez-Gesteira. 2018. DualSPHysics: a numerical tool to simulate real breakwaters. Journal of Hydrodynamics, 30(1): 99-105. doi:10.1007/s42241-018-0010-0.
§ J. González-Cao, O. García-Feal, J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira. 2018. Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics. Journal of Hydrodynamics, 30(1): 87-94. doi:10.1007/s42241-018-0009-6.
§ C. Altomare, J.M. Domínguez, A.J.C. Crespo, J. González-Cao, T. Suzuki, M. Gómez-Gesteira, P. Troch. 2017. Long-crested wave generation and absorption for SPH-based DualSPHysics model. Coastal Engineering, 127: 37-54. doi:10.1016/j.coastaleng.2017.06.004.
§ R.B. Canelas, J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira, R.M.L. Ferreira. 2017. Resolved Simulation of a Granular-Fluid Flow with a Coupled SPH-DCDEM Model. Journal of Hydraulic Engineering, 143 (9), art. no.06017012. doi:10.1061/(ASCE)HY.1943-7900.0001331.
§ A.J.C. Crespo, C. Altomare, J.M. Domínguez, J. González-Cao, M. Gómez-Gesteira. 2017. Towards simulating floating offshore Oscillating Water Column converters with Smoothed Particle Hydrodynamics. Coastal Engineering, 126: 11-16. doi:10.1016/j.coastaleng.2017.05.001.
§ C.E. Alvarado-Rodríguez, J. Klapp, L.D.C. Sigalotti, J.M. Domínguez, E. Cruz-Sánchez. 2017. Nonreflecting outlet boundary conditions for incompressible flows using SPH. Computers and Fluids, 159: 177-188. doi:10.1016/j.compfluid.2017.09.020.
§ A. Barreiro, A.J.C. Crespo, J.M. Domínguez, O. García-Feal, I. Zabala, M. Gómez-Gesteira. 2016. Quasi-Static Mooring solver implemented in SPH. Journal of Ocean Engineering and Marine Energy, 2(3): 381-396. doi:10.1007/s40722-016-0061-7.
§ R.B. Canelas, A.J.C. Crespo, J.M. Domínguez, R.M.L. Ferreira and M. Gómez-Gesteira. 2016. SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows. Computer Physics Communications, 202: 131-140. doi:10.1016/j.cpc.2016.01.006.
§ C. Altomare, J.M. Domínguez, A.J.C. Crespo, T. Suzuki, I. Caceres, M. Gómez-Gesteira. 2015. Hybridisation of the wave propagation model SWASH and the meshfree particle method SPH for real coastal applications. Coastal Engineering Journal, 57(4): 1550024. doi:10.1142/S0578563415500242.
§ A. Mokos, B.D. Rogers, P.K. Stansby, J.M. Domínguez. 2015. Multi-phase SPH modelling of violent hydrodynamics on GPUs. Computer Physics Communications, 196: 304-316. doi:10.1016/j.cpc.2015.06.020.
§ R.B. Canelas, J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira, R.M.L. Ferreira. 2015. A Smooth Particle Hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. International Journal for Numerical Methods in Fluids, 78: 581-593. doi:10.1002/fld.4031.
§ C. Altomare, A.J.C. Crespo, J.M. Domínguez, M. Gómez-Gesteira, T. Suzuki, T. Verwaest. 2015. Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96: 1-12. doi:10.1016/j.coastaleng.2014.11.001.
§ A.J.C. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-Gesteira, S. Longshaw, R. Canelas, R. Vacondio, A. Barreiro, O. García-Feal. 2015. DualSPHysics: open-source parallel CFD solver on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 187: 204-216. doi:10.1016/j.cpc.2014.10.004.
§ A. Barreiro, J.M. Domínguez, A.J.C. Crespo, H. González-Jorge, D. Roca, M. Gómez-Gesteira. 2014. Integration of UAV photogrammetry and SPH modelling of fluids to study runoff on real terrains. PLoS ONE, 9(11): e111031. doi:10.1371/journal.pone.0111031.
§ C. Altomare, A.J.C. Crespo, B.D. Rogers, J.M. Domínguez, X. Gironella, M. Gómez-Gesteira. 2014. Numerical modelling of armour block sea breakwater with Smoothed Particle Hydrodynamics. Computers and Structures, 130: 34-45. doi:10.1016/j.compstruc.2013.10.011.
§ J.M. Domínguez, A.J.C. Crespo, D. Valdez-Balderas, B.D. Rogers. and M. Gómez-Gesteira. 2013. New multi-GPU implementation for Smoothed Particle Hydrodynamics on heterogeneous clusters. Computer Physics Communications, 184: 1848-1860. doi:10.1016/j.cpc.2013.03.008.
§ J.M. Domínguez, A.J.C. Crespo and M. Gómez-Gesteira. 2013. Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Computer Physics Communications, 184(3): 617-627. doi:10.1016/j.cpc.2012.10.015.
§ A. Barreiro, A.J.C. Crespo, J.M. Domínguez and M. Gómez-Gesteira. 2013. Smoothed Particle Hydrodynamics for coastal engineering problems. Computers and Structures, 120(15): 96-106. doi:10.1016/j.compstruc.2013.02.010.
§ D. Valdez-Balderas, J.M. Domínguez, B.D. Rogers, A.J.C. Crespo. 2013. Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal of Parallel and Distributed Computing, 73(11): 1483-1493. doi:10.1016/j.jpdc.2012.07.010.
§ M. Gómez-Gesteira, A.J.C. Crespo, B.D. Rogers, R.A. Dalrymple, J.M. Domínguez and A. Barreiro. 2012. SPHysics – development of a free-surface fluid solver- Part 2: Efficiency and test cases. Computers & Geosciences, 48: 300-307. doi:10.1016/j.cageo.2012.02.028.
§ M. Gómez-Gesteira, B.D. Rogers, A.J.C. Crespo, R.A. Dalrymple, M. Narayanaswamy and J.M. Domínguez. 2012. SPHysics – development of a free-surface fluid solver- Part 1: Theory and Formulations. Computers & Geosciences, 48: 289-299. doi:10.1016/j.cageo.2012.02.029.
§ A.J.C. Crespo, J.M. Domínguez, A. Barreiro, M. Gómez-Gesteira and B.D. Rogers. 2011. GPUs, a new tool of acceleration in CFD: Efficiency and reliability on Smoothed Particle Hydrodynamics methods. PLoS ONE, 6(6), e20685. doi:10.1371/journal.pone.0020685.
§ J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira, J.C. Marongiu. 2011. Neighbour lists in Smoothed Particle Hydrodynamics. International Journal For Numerical Methods in Fluids, 67(12): 2026-2042. doi:10.1002/fld.2481.