LAGRangian analysis of the Impact  
on the global hydrological cycle of the Major Mechanisms of  
Atmospheric Moisture Transport (LAGRIMA)

 

Summary:

Atmospheric Rivers (ARs) and Low-Level Jets (LLJs) are both major mechanisms in the atmospheric moisture transport. ARs carry large amounts of moisture together with baroclinic eddies from tropical to higher latitudes and are frequently associated with extreme precipitation worldwide. LLJs also contribute to the tropics-extratropics interaction behaving as semi-steady and well-located flows of moisture which play a key role providing advective transports that are essential to the maintenance of the hydrological cycle as we know it in different regions around the world. This project will make use of both Lagrangian and Eulerian approaches to accurately identify sources
and sinks of moisture in the most relevant ARs and LLJs of the climate system as well as in the analysis of the transport mechanisms. The proper identification of moisture sources is fundamental to the understanding of the cited mechanisms as well as in the comprehension of their impacts in the sink regions, which is particularly important in the further analysis of climate change scenarios where both ARs and LLJs are projected to undergo dramatic changes Even when both ARs and LLJs gained increased attention in the last decades, the lack of an accurate identification of the moisture sources/sinks, as well as the existence of unanswered questions regarding the transport mechanisms still pose an stumbling block in the full understanding of the phenomena. In this sense, we will address a number of scientific questions aimed to find critical answers about the mechanism and the amount of moisture transported by ARs and LLJ, the impact of eventual changes in anomalous moisture sources, and the effect of these mechanisms in both droughts and floods in the present and future conditions. A subsidiary but a relevant issue, such as the optimum water vapor resilience time in the atmosphere or the synoptic features of the advective transport will be also addressed and will result in useful contributions to the literature. Principally, although not exclusively, the Lagrangian model FLEXPART will be used in the identification and further analysis of moisture sources associated with both ARs and LLJs. Both FLEXPART and the recently developed WRF Eulerian tracers tool (WRF-TT) will be used to identify moisture sinks and to analyze their impact on local climate conditions of the studied regions. Overall, conclusions obtained in this project will help to a substantially better comprehension of the phenomena and associated impacts.This will also help to predict further effects on climate driven by possible disturbances in the moisture transport mechanisms.

Goals:

Challenge 1. The role of the major mechanisms of atmospheric moisture transport in the hydrological cycle.

Challenge 2. To find the “optimal time for the integration” in the Lagrangian analysis for the best estimation of moisture sources and sinks.

Hypothesis:

There is a need for a complete analysis of the anomalous moisture transported by the LLJs and ARs at global scale over regions of high LLJs and ARs activity, as well as the global identification of their sources of moisture.

 

Project technical report 

 

List of publications:

(39) R. SoríL. Gimeno-SoteloR. Nieto, M.L.R. Liberato, M. StojanovicA. Pérez-AlarcónJ. C. Fernández-ÁlvarezL. Gimeno (2023) Oceanic and terrestrial origin of precipitation over 50 major world river basins: Implications for the occurrence of droughtScience of The Total Environment 859(2); doi: 10.1016/j.scitotenv.2022.160288

(38) A. Pérez-AlarcónP. Coll-HidalgoJ. C. Fernández-ÁlvarezR. NietoL. Gimeno (2022) Estimation of mean water vapour residence time during tropical cyclones using a Lagrangian approachTropical Cyclone Research and Review 11(2); doi: 10.1016/j.tcrr.2022.08.001

(37) J. Eiras-BarcaI. AlgarraR. Nieto, M. Schröder, M. I. Hegglin, L. Gimeno (2022) Analysis of the main source regions of moisture transport events with the new ESA CCI/CM-SAF total column water vapour climate data record (v2)Quarterly Journal of the Royal Meteorological Society; doi: 10.1002/qj.4358

(36) S. A. Te Wierik, J. Keune, D.G. Miralles, J. Gupta, Y. A. Artzy-Randrup, L. GimenoR. Nieto, L. H. Cammeraat (2022) The Contribution of Transpiration to Precipitation Over African WatershedsWater Resources Research, Vol. 58, Issue 11; DOI: 10.1029/2021WR031721

(35) M. VázquezR. Nieto, M.L.R. Liberato, L. Gimeno (2022) Influence of teleconnection patterns on global moisture transport during peak precipitation monthInternational Journal of Climatology ; doi: 10.1002/joc.7843 SFX

(34) A. Pérez-AlarcónJ. C. Fernández-ÁlvarezR. SoríR. NietoL. Gimeno (2022) Moisture source identification for precipitation associated with tropical cyclone development over the Indian Ocean: a Lagrangian approachClimate Dynamics; doi: 10.1007/s00382-022-06429-4 

(33) P. Coll-HidalgoA. Pérez-AlarcónR. Nieto (2022) Moisture Sources for the Precipitation of Tropical-like Cyclones in the Mediterranean Sea: A Case of StudyAtmosphere 13; doi: 10.3390/atmos13081327 

(32) L. GimenoR. SoríM. VázquezM. StojanovicI. AlgarraJ. Eiras-BarcaL. Gimeno-SoteloR. Nieto (2022) Extreme precipitation eventsWiley Interdisciplinary Reviews-Water, e1611; doi: 10.1002/wat2.1611 

(31) L. Gimeno-SoteloL. Gimeno (2022) Concurrent extreme events of atmospheric moisture transport and continental precipitation: The role of landfalling atmospheric riversAtmospheric Research 278, 106356; doi: 10.1016/j.atmosres.2022.106356

(30) P. Coll-HidalgoA. Pérez-AlarcónL. Gimeno (2022) Origin of Moisture for the Precipitation Produced by the Exceptional Winter Storm Formed over the Gulf of Mexico in March 1993Atmosphere 13, 7, 1154; doi: 10.3390/atmos13071154

(29) M. Stojanovic, G. Mehabie Mulualem, R. SoríM. VázquezR. NietoL. Gimeno (2022) Precipitation Moisture Sources of Ethiopian River Basins and Their Role During Drought ConditionsFrontiers in Earth Science 10, 929497 ; doi: 10.3389/feart.2022.929497

(28) M. Escobar, I. Hoyos, R. Nieto, J. C. Villegas (2022) The Importance of Continental Evaporation for Precipitation in Colombia: A Baseline Combining Observations from Stable Isotopes and Modeling Moisture TrajectoriesHydrological Processes; doi: 10.1002/hyp.14595

(27) L. Gimeno-Sotelo, P. de Zea Bermudez, I. AlgarraL. Gimeno (2022) Modelling hydrometeorological extremes associated to the moisture transport driven by the Great Plains low-level jetStochastic Environmental Research and Risk Assessment, doi: 10.1007/s00477-022-02199-x

(26) A. Pérez-AlarcónR. SoríJ. C. Fernández-ÁlvarezR. NietoL. Gimeno (2022) Where Does the Moisture for North Atlantic Tropical Cyclones Come From?Journal of Hydrometeorology, Vol. 23, Issue 3, 457–472 ; doi: 10.1175/JHM-D-21-0117.1

(25) R. SoríM. StojanovicR. Nieto, M.L.R. Liberato, L. Gimeno (2022) Spatiotemporal Variability of Droughts in the Congo River BasinChapter 11, AGU Book, Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future; doi: https://doi.org/10.1002/9781119657002.ch11  

(24) F. Dominguez, J. Eiras-Barca, Z. Yang, D. Bock, R. NietoL. Gimeno (2022) Amazonian Moisture Recycling Revisited Using WRF With Water Vapor TracersJournal of Geophysical Research: Atmospheres 127(4), doi: 10.1029/2021JD035259

(23) A. Pérez-AlarcónP. Coll-HidalgoJ. C. Fernández-ÁlvarezR. SoríR. NietoL. Gimeno (2022) Moisture Sources for Precipitation Associated With Major Hurricanes During 2017 in the North Atlantic BasinJournal of Geophysical Research: Atmospheres 127(4), doi: 10.1029/2021JD035554 

(22) A. Pérez-AlarcónR. SoríJ. C. Fernández-ÁlvarezR. NietoL. Gimeno (2022) Dataset of outer tropical cyclone size from a radial wind profileData in Brief 40, doi: 10.1016/j.dib.2022.107825

(21) L. GimenoI. AlgarraJ. Eiras-Barca, A.M. Ramos, R. Nieto (2021) Atmospheric river, a term encompassing different meteorological patternsWiley Interdisciplinary Reviews-Water, doi: 10.1002/wat2.1558

(20) A. Pérez-AlarcónR. SoríJ. C. Fernández-Álvarez, R. NietoL. Gimeno (2021) Comparative climatology of outer tropical cyclone size using radial wind profilesWeather and Climate Extremes 33; 100366, doi: 10.1016/j.wace.2021.100366 

(19) R. SoríR. Nieto, M.L.R. Liberato, L. Gimeno (2021) Oceanic versus terrestrial origin of El Niño Southern Oscillation–associated continental precipitation anomaliesAnnals of the New York Academy of Sciences, doi: 10.1111/nyas.14665

(18)  L. GimenoJ. Eiras-Barca, A.M. Durán-Quesada, F. Domínguez, R. van der Ent, H. Sodemann, R. Sánchez-Murillo, R. Nieto, J. W. Kirchner (2021) The residence time of water vapour in the atmosphereNature Reviews Earth & Environment, doi: 10.1038/s43017-021-00181-9

(17) R. NietoL. Gimeno (2021) Addendum: A database of optimal integration times for Lagrangian studies of atmospheric moisture sources and sinksScientific Data 8: 130, doi: 10.1038/s41597-021-00902-1 -> [ Data in Zenodo ] Version 2 of data described in the paper (4) of this list.

(16) D. Ferreira Braz, T. Ambrizzi, R.P. da Rocha, I. AlgarraR. NietoL. Gimeno (2021) Assessing the Moisture Transports Associated With Nocturnal Low-Level Jets in Continental South AmericaFrontiers in Environmental Science 9, Art. 657764, doi: 10.3389/fenvs.2021.657764

(15) M. VázquezR. Nieto, M.L.R. Liberato, L. Gimeno (2021) A database of contributions of major oceanic and terrestrial moisture sources on continental daily extreme precipitationData in Brief 35, 106830https://doi.org/10.1016/j.dib.2021.106830  -> [ Data in Mendeley Data ] Data refers to paper (10) of this list.

(14) J. Eiras-Barca, A.M. Ramos, I. AlgarraM. Vázquez, F. Domínguez, G. Miguez-Macho, R. NietoL. Gimeno, J.J. Taboada, F. M. Ralph (2021) European West Coast atmospheric rivers: A scale to characterize strength and impactsWeather and Climate Extremes 31, https://doi.org/10.1016/j.wace.2021.100305

(13) J. Perdigón-Morales, R. Romero-Centeno, P. Ordoñez, R. NietoL. Gimeno, B. S. Barrett (2021) Influence of the Madden-Julian Oscillation on moisture transport by the Caribbean Low Level Jet during the Midsummer Drought in MexicoAtmospheric Research 248, 105243, https://doi.org/10.1016/j.atmosres.2020.105243

(12) E. Ghasemifar, J. Eiras-BarcaI. Algarra, A.M. Ramos, M. Farajzadeh, R. NietoL. Gimeno (2020) A Preliminary Study of Winter Atmospheric River’s Precipitation
Characteristics Using Satellite Data over Galicia (NW Spain)
. Environ. Sci. Proc. 2021, 4, 26. https://doi.org/10.3390/ecas2020-08119

(11) A. Pérez-AlarcónR. Sorí, J.C. Fernández-ÁlvarezR. NietoL. Gimeno (2020) Moisture Sources for Tropical Cyclones Genesis in the Coast of West Africa through a Lagrangian Approach. Environ. Sci. Proc. 2021, 4, 3. https://doi.org/ 10.3390/ecas2020-08126

(10) M. VázquezR. Nieto, M.L.R. Liberato, L. Gimeno (2020) Atmospheric moisture sources associated with extreme precipitation during the peak precipitation monthWeather and Climate Extremes 30, 100289; https://doi.org/10.1016/j.wace.2020.100289

(9) I. AlgarraR. Nieto, A.M. Ramos, J. Eiras-Barca, R.M. Trigo, L. Gimeno (2020) Significant increase of global anomalous moisture uptake feeding landfalling Atmospheric RiversNature Communications 11, 5082, https://doi.org/10.1038/s41467-020-18876-w

(8) L. GimenoR. NietoR. Sorí (2020) The growing importance of oceanic moisture sources for continental precipitationnpj Climate and Atmospheric Science 3; doi: https://doi.org/10.1038/s41612-020-00133-y 

(7) J. Eiras-Barca, F. Domínguez, Z. Yang, D. Chug, R. NietoL. Gimeno, G. Miguez-Macho (2020) Changes in South American hydroclimate under projected Amazonian deforestationAnnals of the New York Academy of Sciences, Special Issue: The Year in Climate Science Research; doi: 10.1111/nyas.14364

(6) L. GimenoM. VázquezJ. Eiras-BarcaR. SoríM. StojanovicI. AlgarraR. Nieto, A.M. Ramos, A.M. Durán-Quesada, F. Dominguez (2020) Recent progress on the sources of continental precipitation as revealed by moisture transport analysisEarth Science Reviews 201, 103070, 1-25; https://doi.org/10.1016/j.earscirev.2019.103070

(5) I. AlgarraJ. Eiras-Barca, G. Miguez-Macho, R. NietoL. Gimeno (2019) On the assessment of the moisture transport by the Great Plains low-level jetEarth System Dynamics 10(1), 107-119, https://doi.org/10.5194/esd-10-107-2019

(4) R. NietoL. Gimeno (2019) A database of optimal integration times for Lagrangian studies of atmospheric moisture sources and sinksScientific Data 6, 1-10https://doi.org/10.1038/s41597-019-0068-8 -> [ Data in Zenodo ]

(3) I. AlgarraJ. Eiras-BarcaR. NietoL. Gimeno (2019) Global climatology of nocturnal low-level jets and associated moisture sources and sinksAtmospheric Research 229, 39-59, https://doi.org/10.1016/j.atmosres.2019.06.016

(2) R. Nieto, D. Ciric, M. Vázquez, M.L.R. Liberato, L. Gimeno (2019) Contribution of the main moisture sources to precipitation during extreme peak precipitation monthsAdvances in Water Resources 131, 1-8, https://doi.org/10.1016/j.advwatres.2019.103385 

(1) A.M. Ramos, R.C. Blamey, I. AlgarraR. NietoL. Gimeno, R. Tomé, C. Reason, R.M. Trigo (2019) From Amazonia to southern Africa: atmospheric moisture transport through low-level jets and atmospheric riversAnnals of the New York Academy of Sciences 1436, 217-230, doi: 10.1111/nyas.13960